git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@13198 f3b2605a-c512-4ea7-a41b-209d697bcdaa

This commit is contained in:
sjplimp 2015-03-06 15:36:22 +00:00
parent 42adc21fe0
commit 3c499e7896
16 changed files with 865 additions and 67 deletions

BIN
doc/Eqs/pair_cs.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.4 KiB

9
doc/Eqs/pair_cs.tex Normal file
View File

@ -0,0 +1,9 @@
\documentstyle[12pt]{article}
\begin{document}
$$
E = \frac{C q_i q_j}{\epsilon (r + r_{min})} \qquad r \rightarrow 0
$$
\end{document}

View File

@ -449,9 +449,9 @@ KOKKOS, o = USER-OMP, t = OPT.
<TR ALIGN="center"><TD ><A HREF = "compute_msd_chunk.html">msd/chunk</A></TD><TD ><A HREF = "compute_msd_nongauss.html">msd/nongauss</A></TD><TD ><A HREF = "compute_pair.html">pair</A></TD><TD ><A HREF = "compute_pair_local.html">pair/local</A></TD><TD ><A HREF = "compute_pe.html">pe (c)</A></TD><TD ><A HREF = "compute_pe_atom.html">pe/atom</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "compute_plasticity_atom.html">plasticity/atom</A></TD><TD ><A HREF = "compute_pressure.html">pressure (c)</A></TD><TD ><A HREF = "compute_property_atom.html">property/atom</A></TD><TD ><A HREF = "compute_property_local.html">property/local</A></TD><TD ><A HREF = "compute_property_chunk.html">property/chunk</A></TD><TD ><A HREF = "compute_rdf.html">rdf</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "compute_reduce.html">reduce</A></TD><TD ><A HREF = "compute_reduce.html">reduce/region</A></TD><TD ><A HREF = "compute_slice.html">slice</A></TD><TD ><A HREF = "compute_sna.html">sna/atom</A></TD><TD ><A HREF = "compute_sna.html">snad/atom</A></TD><TD ><A HREF = "compute_sna.html">snav/atom</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "compute_stress_atom.html">stress/atom</A></TD><TD ><A HREF = "compute_temp.html">temp (c)</A></TD><TD ><A HREF = "compute_temp_asphere.html">temp/asphere</A></TD><TD ><A HREF = "compute_temp_com.html">temp/com</A></TD><TD ><A HREF = "compute_temp_chunk.html">temp/chunk</A></TD><TD ><A HREF = "compute_temp_deform.html">temp/deform</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "compute_temp_partial.html">temp/partial (c)</A></TD><TD ><A HREF = "compute_temp_profile.html">temp/profile</A></TD><TD ><A HREF = "compute_temp_ramp.html">temp/ramp</A></TD><TD ><A HREF = "compute_temp_region.html">temp/region</A></TD><TD ><A HREF = "compute_temp_sphere.html">temp/sphere</A></TD><TD ><A HREF = "compute_ti.html">ti</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "compute_torque_chunk.html">torque/chunk</A></TD><TD ><A HREF = "compute_vacf.html">vacf</A></TD><TD ><A HREF = "compute_vcm_chunk.html">vcm/chunk</A></TD><TD ><A HREF = "compute_voronoi_atom.html">voronoi/atom</A>
<TR ALIGN="center"><TD ><A HREF = "compute_stress_atom.html">stress/atom</A></TD><TD ><A HREF = "compute_temp.html">temp (c)</A></TD><TD ><A HREF = "compute_temp_asphere.html">temp/asphere</A></TD><TD ><A HREF = "compute_temp_com.html">temp/com</A></TD><TD ><A HREF = "compute_temp_chunk.html">temp/chunk</A></TD><TD ><A HREF = "compute_temp_cs.html">temp/cs</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "compute_temp_deform.html">temp/deform</A></TD><TD ><A HREF = "compute_temp_partial.html">temp/partial (c)</A></TD><TD ><A HREF = "compute_temp_profile.html">temp/profile</A></TD><TD ><A HREF = "compute_temp_ramp.html">temp/ramp</A></TD><TD ><A HREF = "compute_temp_region.html">temp/region</A></TD><TD ><A HREF = "compute_temp_sphere.html">temp/sphere</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "compute_ti.html">ti</A></TD><TD ><A HREF = "compute_torque_chunk.html">torque/chunk</A></TD><TD ><A HREF = "compute_vacf.html">vacf</A></TD><TD ><A HREF = "compute_vcm_chunk.html">vcm/chunk</A></TD><TD ><A HREF = "compute_voronoi_atom.html">voronoi/atom</A>
</TD></TR></TABLE></DIV>
<P>These are additional compute styles in USER packages, which can be
@ -478,30 +478,31 @@ KOKKOS, o = USER-OMP, t = OPT.
<DIV ALIGN=center><TABLE BORDER=1 >
<TR ALIGN="center"><TD ><A HREF = "pair_none.html">none</A></TD><TD ><A HREF = "pair_hybrid.html">hybrid</A></TD><TD ><A HREF = "pair_hybrid.html">hybrid/overlay</A></TD><TD ><A HREF = "pair_adp.html">adp (o)</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_airebo.html">airebo (o)</A></TD><TD ><A HREF = "pair_beck.html">beck (go)</A></TD><TD ><A HREF = "pair_body.html">body</A></TD><TD ><A HREF = "pair_bop.html">bop</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_born.html">born (go)</A></TD><TD ><A HREF = "pair_born.html">born/coul/long (cgo)</A></TD><TD ><A HREF = "pair_born.html">born/coul/msm (o)</A></TD><TD ><A HREF = "pair_born.html">born/coul/wolf (go)</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_brownian.html">brownian (o)</A></TD><TD ><A HREF = "pair_brownian.html">brownian/poly (o)</A></TD><TD ><A HREF = "pair_buck.html">buck (cgko)</A></TD><TD ><A HREF = "pair_buck.html">buck/coul/cut (cgo)</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_buck.html">buck/coul/long (cgo)</A></TD><TD ><A HREF = "pair_buck.html">buck/coul/msm (o)</A></TD><TD ><A HREF = "pair_buck_long.html">buck/long/coul/long (o)</A></TD><TD ><A HREF = "pair_colloid.html">colloid (go)</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_comb.html">comb (o)</A></TD><TD ><A HREF = "pair_comb.html">comb3</A></TD><TD ><A HREF = "pair_coul.html">coul/cut (gko)</A></TD><TD ><A HREF = "pair_coul.html">coul/debye (go)</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_coul.html">coul/dsf (gko)</A></TD><TD ><A HREF = "pair_coul.html">coul/long (go)</A></TD><TD ><A HREF = "pair_coul.html">coul/msm</A></TD><TD ><A HREF = "pair_coul.html">coul/streitz</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_coul.html">coul/wolf (ko)</A></TD><TD ><A HREF = "pair_dpd.html">dpd (o)</A></TD><TD ><A HREF = "pair_dpd.html">dpd/tstat (o)</A></TD><TD ><A HREF = "pair_dsmc.html">dsmc</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_eam.html">eam (cgkot)</A></TD><TD ><A HREF = "pair_eam.html">eam/alloy (cgot)</A></TD><TD ><A HREF = "pair_eam.html">eam/fs (cgot)</A></TD><TD ><A HREF = "pair_eim.html">eim (o)</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_gauss.html">gauss (go)</A></TD><TD ><A HREF = "pair_gayberne.html">gayberne (gio)</A></TD><TD ><A HREF = "pair_gran.html">gran/hertz/history (o)</A></TD><TD ><A HREF = "pair_gran.html">gran/hooke (co)</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_gran.html">gran/hooke/history (o)</A></TD><TD ><A HREF = "pair_hbond_dreiding.html">hbond/dreiding/lj (o)</A></TD><TD ><A HREF = "pair_hbond_dreiding.html">hbond/dreiding/morse (o)</A></TD><TD ><A HREF = "pair_kim.html">kim</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_lcbop.html">lcbop</A></TD><TD ><A HREF = "pair_line_lj.html">line/lj (o)</A></TD><TD ><A HREF = "pair_charmm.html">lj/charmm/coul/charmm (co)</A></TD><TD ><A HREF = "pair_charmm.html">lj/charmm/coul/charmm/implicit (co)</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_charmm.html">lj/charmm/coul/long (cgio)</A></TD><TD ><A HREF = "pair_charmm.html">lj/charmm/coul/msm</A></TD><TD ><A HREF = "pair_class2.html">lj/class2 (cgo)</A></TD><TD ><A HREF = "pair_class2.html">lj/class2/coul/cut (co)</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_class2.html">lj/class2/coul/long (cgo)</A></TD><TD ><A HREF = "pair_lj.html">lj/cut (cgikot)</A></TD><TD ><A HREF = "pair_lj.html">lj/cut/coul/cut (cgko)</A></TD><TD ><A HREF = "pair_lj.html">lj/cut/coul/debye (cgo)</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_lj.html">lj/cut/coul/dsf (go)</A></TD><TD ><A HREF = "pair_lj.html">lj/cut/coul/long (cgikot)</A></TD><TD ><A HREF = "pair_lj.html">lj/cut/coul/msm (go)</A></TD><TD ><A HREF = "pair_dipole.html">lj/cut/dipole/cut (go)</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_dipole.html">lj/cut/dipole/long</A></TD><TD ><A HREF = "pair_lj.html">lj/cut/tip4p/cut (o)</A></TD><TD ><A HREF = "pair_lj.html">lj/cut/tip4p/long (ot)</A></TD><TD ><A HREF = "pair_lj_expand.html">lj/expand (cgo)</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_gromacs.html">lj/gromacs (cgo)</A></TD><TD ><A HREF = "pair_gromacs.html">lj/gromacs/coul/gromacs (co)</A></TD><TD ><A HREF = "pair_lj_long.html">lj/long/coul/long (o)</A></TD><TD ><A HREF = "pair_dipole.html">lj/long/dipole/long</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_lj_long.html">lj/long/tip4p/long</A></TD><TD ><A HREF = "pair_lj_smooth.html">lj/smooth (co)</A></TD><TD ><A HREF = "pair_lj_smooth_linear.html">lj/smooth/linear (o)</A></TD><TD ><A HREF = "pair_lj96.html">lj96/cut (cgo)</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_lubricate.html">lubricate (o)</A></TD><TD ><A HREF = "pair_lubricate.html">lubricate/poly (o)</A></TD><TD ><A HREF = "pair_lubricateU.html">lubricateU</A></TD><TD ><A HREF = "pair_lubricateU.html">lubricateU/poly</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_meam.html">meam (o)</A></TD><TD ><A HREF = "pair_mie.html">mie/cut (o)</A></TD><TD ><A HREF = "pair_morse.html">morse (cgot)</A></TD><TD ><A HREF = "pair_nb3b_harmonic.html">nb3b/harmonic (o)</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_nm.html">nm/cut (o)</A></TD><TD ><A HREF = "pair_nm.html">nm/cut/coul/cut (o)</A></TD><TD ><A HREF = "pair_nm.html">nm/cut/coul/long (o)</A></TD><TD ><A HREF = "pair_peri.html">peri/eps</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_peri.html">peri/lps (o)</A></TD><TD ><A HREF = "pair_peri.html">peri/pmb (o)</A></TD><TD ><A HREF = "pair_peri.html">peri/ves</A></TD><TD ><A HREF = "pair_reax.html">reax</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_airebo.html">rebo (o)</A></TD><TD ><A HREF = "pair_resquared.html">resquared (go)</A></TD><TD ><A HREF = "pair_snap.html">snap</A></TD><TD ><A HREF = "pair_soft.html">soft (go)</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_sw.html">sw (cgio)</A></TD><TD ><A HREF = "pair_table.html">table (gko)</A></TD><TD ><A HREF = "pair_tersoff.html">tersoff (co)</A></TD><TD ><A HREF = "pair_tersoff_mod.html">tersoff/mod (o)</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_tersoff_zbl.html">tersoff/zbl (o)</A></TD><TD ><A HREF = "pair_coul.html">tip4p/cut (o)</A></TD><TD ><A HREF = "pair_coul.html">tip4p/long (o)</A></TD><TD ><A HREF = "pair_tri_lj.html">tri/lj (o)</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_yukawa.html">yukawa (go)</A></TD><TD ><A HREF = "pair_yukawa_colloid.html">yukawa/colloid (go)</A></TD><TD ><A HREF = "pair_zbl.html">zbl (o)</A>
<TR ALIGN="center"><TD ><A HREF = "pair_born.html">born (go)</A></TD><TD ><A HREF = "pair_born.html">born/coul/long (cgo)</A></TD><TD ><A HREF = "pair_cs.html">born/coul/long/cs</A></TD><TD ><A HREF = "pair_born.html">born/coul/msm (o)</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_born.html">born/coul/wolf (go)</A></TD><TD ><A HREF = "pair_brownian.html">brownian (o)</A></TD><TD ><A HREF = "pair_brownian.html">brownian/poly (o)</A></TD><TD ><A HREF = "pair_buck.html">buck (cgko)</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_buck.html">buck/coul/cut (cgo)</A></TD><TD ><A HREF = "pair_buck.html">buck/coul/long (cgo)</A></TD><TD ><A HREF = "pair_cs.html">buck/coul/long/cs</A></TD><TD ><A HREF = "pair_buck.html">buck/coul/msm (o)</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_buck_long.html">buck/long/coul/long (o)</A></TD><TD ><A HREF = "pair_colloid.html">colloid (go)</A></TD><TD ><A HREF = "pair_comb.html">comb (o)</A></TD><TD ><A HREF = "pair_comb.html">comb3</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_coul.html">coul/cut (gko)</A></TD><TD ><A HREF = "pair_coul.html">coul/debye (go)</A></TD><TD ><A HREF = "pair_coul.html">coul/dsf (gko)</A></TD><TD ><A HREF = "pair_coul.html">coul/long (go)</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_coul.html">coul/msm</A></TD><TD ><A HREF = "pair_coul.html">coul/streitz</A></TD><TD ><A HREF = "pair_coul.html">coul/wolf (ko)</A></TD><TD ><A HREF = "pair_dpd.html">dpd (o)</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_dpd.html">dpd/tstat (o)</A></TD><TD ><A HREF = "pair_dsmc.html">dsmc</A></TD><TD ><A HREF = "pair_eam.html">eam (cgkot)</A></TD><TD ><A HREF = "pair_eam.html">eam/alloy (cgot)</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_eam.html">eam/fs (cgot)</A></TD><TD ><A HREF = "pair_eim.html">eim (o)</A></TD><TD ><A HREF = "pair_gauss.html">gauss (go)</A></TD><TD ><A HREF = "pair_gayberne.html">gayberne (gio)</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_gran.html">gran/hertz/history (o)</A></TD><TD ><A HREF = "pair_gran.html">gran/hooke (co)</A></TD><TD ><A HREF = "pair_gran.html">gran/hooke/history (o)</A></TD><TD ><A HREF = "pair_hbond_dreiding.html">hbond/dreiding/lj (o)</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_hbond_dreiding.html">hbond/dreiding/morse (o)</A></TD><TD ><A HREF = "pair_kim.html">kim</A></TD><TD ><A HREF = "pair_lcbop.html">lcbop</A></TD><TD ><A HREF = "pair_line_lj.html">line/lj (o)</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_charmm.html">lj/charmm/coul/charmm (co)</A></TD><TD ><A HREF = "pair_charmm.html">lj/charmm/coul/charmm/implicit (co)</A></TD><TD ><A HREF = "pair_charmm.html">lj/charmm/coul/long (cgio)</A></TD><TD ><A HREF = "pair_charmm.html">lj/charmm/coul/msm</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_class2.html">lj/class2 (cgo)</A></TD><TD ><A HREF = "pair_class2.html">lj/class2/coul/cut (co)</A></TD><TD ><A HREF = "pair_class2.html">lj/class2/coul/long (cgo)</A></TD><TD ><A HREF = "pair_lj.html">lj/cut (cgikot)</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_lj.html">lj/cut/coul/cut (cgko)</A></TD><TD ><A HREF = "pair_lj.html">lj/cut/coul/debye (cgo)</A></TD><TD ><A HREF = "pair_lj.html">lj/cut/coul/dsf (go)</A></TD><TD ><A HREF = "pair_lj.html">lj/cut/coul/long (cgikot)</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_lj.html">lj/cut/coul/msm (go)</A></TD><TD ><A HREF = "pair_dipole.html">lj/cut/dipole/cut (go)</A></TD><TD ><A HREF = "pair_dipole.html">lj/cut/dipole/long</A></TD><TD ><A HREF = "pair_lj.html">lj/cut/tip4p/cut (o)</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_lj.html">lj/cut/tip4p/long (ot)</A></TD><TD ><A HREF = "pair_lj_expand.html">lj/expand (cgo)</A></TD><TD ><A HREF = "pair_gromacs.html">lj/gromacs (cgo)</A></TD><TD ><A HREF = "pair_gromacs.html">lj/gromacs/coul/gromacs (co)</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_lj_long.html">lj/long/coul/long (o)</A></TD><TD ><A HREF = "pair_dipole.html">lj/long/dipole/long</A></TD><TD ><A HREF = "pair_lj_long.html">lj/long/tip4p/long</A></TD><TD ><A HREF = "pair_lj_smooth.html">lj/smooth (co)</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_lj_smooth_linear.html">lj/smooth/linear (o)</A></TD><TD ><A HREF = "pair_lj96.html">lj96/cut (cgo)</A></TD><TD ><A HREF = "pair_lubricate.html">lubricate (o)</A></TD><TD ><A HREF = "pair_lubricate.html">lubricate/poly (o)</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_lubricateU.html">lubricateU</A></TD><TD ><A HREF = "pair_lubricateU.html">lubricateU/poly</A></TD><TD ><A HREF = "pair_meam.html">meam (o)</A></TD><TD ><A HREF = "pair_mie.html">mie/cut (o)</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_morse.html">morse (cgot)</A></TD><TD ><A HREF = "pair_nb3b_harmonic.html">nb3b/harmonic (o)</A></TD><TD ><A HREF = "pair_nm.html">nm/cut (o)</A></TD><TD ><A HREF = "pair_nm.html">nm/cut/coul/cut (o)</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_nm.html">nm/cut/coul/long (o)</A></TD><TD ><A HREF = "pair_peri.html">peri/eps</A></TD><TD ><A HREF = "pair_peri.html">peri/lps (o)</A></TD><TD ><A HREF = "pair_peri.html">peri/pmb (o)</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_peri.html">peri/ves</A></TD><TD ><A HREF = "pair_reax.html">reax</A></TD><TD ><A HREF = "pair_airebo.html">rebo (o)</A></TD><TD ><A HREF = "pair_resquared.html">resquared (go)</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_snap.html">snap</A></TD><TD ><A HREF = "pair_soft.html">soft (go)</A></TD><TD ><A HREF = "pair_sw.html">sw (cgio)</A></TD><TD ><A HREF = "pair_table.html">table (gko)</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_tersoff.html">tersoff (co)</A></TD><TD ><A HREF = "pair_tersoff_mod.html">tersoff/mod (o)</A></TD><TD ><A HREF = "pair_tersoff_zbl.html">tersoff/zbl (o)</A></TD><TD ><A HREF = "pair_coul.html">tip4p/cut (o)</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_coul.html">tip4p/long (o)</A></TD><TD ><A HREF = "pair_tri_lj.html">tri/lj (o)</A></TD><TD ><A HREF = "pair_yukawa.html">yukawa (go)</A></TD><TD ><A HREF = "pair_yukawa_colloid.html">yukawa/colloid (go)</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "pair_zbl.html">zbl (o)</A>
</TD></TR></TABLE></DIV>
<P>These are additional pair styles in USER packages, which can be used

View File

@ -681,6 +681,7 @@ KOKKOS, o = USER-OMP, t = OPT.
"temp/asphere"_compute_temp_asphere.html,
"temp/com"_compute_temp_com.html,
"temp/chunk"_compute_temp_chunk.html,
"temp/cs"_compute_temp_cs.html,
"temp/deform"_compute_temp_deform.html,
"temp/partial (c)"_compute_temp_partial.html,
"temp/profile"_compute_temp_profile.html,
@ -732,6 +733,7 @@ KOKKOS, o = USER-OMP, t = OPT.
"bop"_pair_bop.html,
"born (go)"_pair_born.html,
"born/coul/long (cgo)"_pair_born.html,
"born/coul/long/cs"_pair_cs.html,
"born/coul/msm (o)"_pair_born.html,
"born/coul/wolf (go)"_pair_born.html,
"brownian (o)"_pair_brownian.html,
@ -739,6 +741,7 @@ KOKKOS, o = USER-OMP, t = OPT.
"buck (cgko)"_pair_buck.html,
"buck/coul/cut (cgo)"_pair_buck.html,
"buck/coul/long (cgo)"_pair_buck.html,
"buck/coul/long/cs"_pair_cs.html,
"buck/coul/msm (o)"_pair_buck.html,
"buck/long/coul/long (o)"_pair_buck_long.html,
"colloid (go)"_pair_colloid.html,

View File

@ -36,7 +36,8 @@
6.21 <A HREF = "#howto_21">Calculating viscosity</A><BR>
6.22 <A HREF = "#howto_22">Calculating a diffusion coefficient</A><BR>
6.23 <A HREF = "#howto_23">Using chunks to calculate system properties</A><BR>
6.24 <A HREF = "#howto_24">Setting parameters for the kspace_style pppm/disp command</A> <BR>
6.24 <A HREF = "#howto_24">Setting parameters for the kspace_style pppm/disp command</A><BR>
6.25 <A HREF = "#howto_25">Adiabatic core/shell model</A> <BR>
<P>The example input scripts included in the LAMMPS distribution and
highlighted in <A HREF = "Section_example.html">Section_example</A> also show how to
@ -2418,6 +2419,191 @@ to specify this command explicitly.
</P>
<HR>
<A NAME = "howto_25"></A><H4>6.25 Adiabatic core/shell model
</H4>
<P>The adiabatic core-shell model by <A HREF = "#MitchellFinchham">Mitchell and
Finchham</A> is a simple method for adding
polarizability to a system. In order to mimic the electron shell of
an ion, a ghost atom is attached to it. This way the ions are split
into a core and a shell where the latter is meant to react to the
electrostatic environment inducing polarizability.
</P>
<P>Technically, shells are attached to the cores by a spring force f =
k*r where k is a parametrized spring constant and r is the distance
between the core and the shell. The charges of the core and the shell
add up to the ion charge, thus q(ion) = q(core) + q(shell). In a
similar fashion the mass of the ion is distributed on the core and the
shell with the core having the larger mass.
</P>
<P>To run this model in LAMMPS, <A HREF = "atom_style.html">atom_style</A> <I>full</I> can
be used since atom charge and bonds are needed. Each kind of
core/shell pair requires two atom types and a bond type. The core and
shell of a core/shell pair should be bonded to each other with a
harmonic bond that provides the spring force. For example, a data file
for NaCl, as found in examples/coreshell, has this format:
</P>
<PRE>432 atoms # core and shell atoms
216 bonds # number of core/shell springs
</PRE>
<PRE>4 atom types # 2 cores and 2 shells for Na and Cl
2 bond types
</PRE>
<PRE>0.0 24.09597 xlo xhi
0.0 24.09597 ylo yhi
0.0 24.09597 zlo zhi
</PRE>
<PRE>Masses # core/shell mass ratio = 0.1
</PRE>
<PRE>1 20.690784 # Na core
2 31.90500 # Cl core
3 2.298976 # Na shell
4 3.54500 # Cl shell
</PRE>
<PRE>Atoms
</PRE>
<PRE>1 1 2 1.5005 0.00000000 0.00000000 0.00000000 # core of core/shell pair 1
2 1 4 -2.5005 0.00000000 0.00000000 0.00000000 # shell of core/shell pair 1
3 2 1 1.5056 4.01599500 4.01599500 4.01599500 # core of core/shell pair 2
4 2 3 -0.5056 4.01599500 4.01599500 4.01599500 # shell of core/shell pair 2
(...)
</PRE>
<PRE>Bonds # Bond topology for spring forces
</PRE>
<PRE>1 2 1 2 # spring for core/shell pair 1
2 2 3 4 # spring for core/shell pair 2
(...)
</PRE>
<P>Non-Coulombic (e.g. Lennard-Jones) pairwise interactions are only
defined between the shells. Coulombic interactions are defined
between all cores and shells. If desired, additional bonds can be
specified between cores.
</P>
<P>The <A HREF = "special_bonds.html">special_bonds</A> command should be used to
turn-off the Coulombic interaction within core/shell pairs, since that
interaction is set by the bond spring. This is done using the
<A HREF = "special_bonds.html">special_bonds</A> command with a 1-2 weight = 0.0,
which is the default value.
</P>
<P>Since the core/shell model permits distances of r = 0.0 between the
core and shell, a pair style with a "cs" suffix needs to be used to
implement a valid long-range Coulombic correction. Several such pair
styles are provided in the CORESHELL package. See <A HREF = "pair_cs.html">this doc
page</A> for details. All of the core/shell enabled pair
styles require the use of a long-range Coulombic solver, as specified
by the <A HREF = "kspace_style.html">kspace_style</A> command. Either the PPPM or
Ewald solvers can be used.
</P>
<P>For the NaCL example problem, these pair style and bond style settings
are used:
</P>
<PRE>pair_style born/coul/long/cs 20.0 20.0
pair_coeff * * 0.0 1.000 0.00 0.00 0.00
pair_coeff 3 3 487.0 0.23768 0.00 1.05 0.50 #Na-Na
pair_coeff 3 4 145134.0 0.23768 0.00 6.99 8.70 #Na-Cl
pair_coeff 4 4 405774.0 0.23768 0.00 72.40 145.40 #Cl-Cl
</PRE>
<PRE>bond_style harmonic
bond_coeff 1 63.014 0.0
bond_coeff 2 25.724 0.0
</PRE>
<P>When running dynamics with the adiabatic core/shell model, the
following issues should be considered. Since the relative motion of
the core and shell particles corresponds to the polarization, typical
thermostats can alter the polarization behaviour, meaining the shell
will not react freely to its electrostatic environment. Therefore
it's typically desirable to decouple the relative motion of the
core/shell pair, which is an imaginary degree of freedom, from the
real physical system. To do that, the <A HREF = "compute_temp_cs.html">compute
temp/cs</A> command can be used, in conjunction with
any of the thermostat fixes, such as <A HREF = "fix_nh.html">fix nvt</A> or <A HREF = "fix_langevin">fix
langevin</A>. This compute uses the center-of-mass velocity
of the core/shell pairs to calculate a temperature, and insures that
velocity is what is rescaled for thermostatting purposes. The
<A HREF = "compute_temp_cs.html">compute temp/cs</A> command requires input of two
groups, one for the core atoms, another for the shell atoms. These
can be defined using the <A HREF = "group.html">group <I>type</I></A> command. Note that
to perform thermostatting using this definition of temperature, the
<A HREF = "fix_modify.html">fix modify temp</A> command should be used to assign the
comptue to the thermostat fix. Likewise the <A HREF = "thermo_modify.html">thermo_modify
temp</A> command can be used to make this temperature
be output for the overall system.
</P>
<P>For the NaCl example, this can be done as follows:
</P>
<PRE>group cores type 1 2
group shells type 3 4
compute CSequ all temp/cs cores shells
fix thermoberendsen all temp/berendsen 1427 1427 0.4 # thermostat for the true physical system
fix thermostatequ all nve # integrator as needed for the berendsen thermostat
fix_modify thermoberendsen temp CSequ
thermo_modify temp CSequ # output of center-of-mass derived temperature
</PRE>
<P>When intializing the velocities of a system with core/shell pairs, it
is also desirable to not introduce energy into the relative motion of
the core/shell particles, but only assign a center-of-mass velocity to
the pairs. This can be done by using the <I>bias</I> keyword of the
<A HREF = "velocity.html">velocity create</A> command and assigning the <A HREF = "compute_temp_cs.html">compute
temp/cs</A> command to the <I>temp</I> keyword of the
<A HREF = "velocity.html">velocity</A> commmand, e.g.
</P>
<PRE>velocity all create 1427 134 bias yes temp CSequ
velocity all scale 1427 temp CSequ
</PRE>
<P>It is important to note that the polarizability of the core/shell
pairs is based on their relative motion. Therefore the choice of
spring force and mass ratio need to ensure much faster relative motion
of the 2 atoms within the core/shell pair than their center-of-mass
velocity. This allow the shells to effectively react instantaneously
to the electrostatic environment. This fast movement also limits the
timestep size that can be used.
</P>
<P>Additionally, the mass mismatch of the core and shell particles means
that only a small amount of energy is transfered to the decoupled
imaginary degrees of freedom. However, this transfer will typically
lead to a a small drift in total energy over time. This internal
energy can be monitored using the <A HREF = "compute_chunk_atom.html">compute
chunk/atom</A> and <A HREF = "compute_temp_chunk.html">compute
temp/chunk</A> commands. The internal kinetic
energies of each core/shell pair can then be summed using the sum()
special functino of the <A HREF = "variable.html">variable</A> command. Or they can
be time/averaged and output using the <A HREF = "fix_ave_time.html">fix ave/time</A>
command. To use these commands, each core/shell pair must be defined
as a "chunk". If each core/shell pair is defined as its own molecule,
the molecule ID can be used to define the chunks. If cores are bonded
to each other to form larger molecules, then another way to define the
chunks is to use the <A HREF = "fix_property_atom.html">fix property/atom</A> to
assign a core/shell ID to each atom via a special field in the data
file read by the <A HREF = "read_data.html">read_data</A> command. This field can
then be accessed by the <A HREF = "compute_property_atom.html">compute
property/atom</A> command, to use as input to
the <A HREF = "compute_chunk_atom.html">compute chunk/atom</A> command to define the
core/shell pairs as chunks.
</P>
<P>For example,
</P>
<PRE>fix csinfo all property/atom i_CSID # property/atom command
read_data NaCl_CS_x0.1_prop.data fix csinfo NULL CS-Info # atom property added in the data-file
compute prop all property/atom i_CSID
compute cs_chunk all chunk/atom c_prop
compute cstherm all temp/chunk cs_chunk temp internal com yes cdof 3.0 # note the chosen degrees of freedom for the core/shell pairs
fix ave_chunk all ave/time 10 1 10 c_cstherm file chunk.dump mode vector
</PRE>
<P>The additional section in the date file would be formatted like this:
</P>
<PRE>CS-Info # header of additional section
</PRE>
<PRE>1 1 # column 1 = atom ID, column 2 = core/shell ID
2 1
3 2
4 2
5 3
6 3
7 4
8 4
(...)
</PRE>
<HR>
<HR>
<A NAME = "Berendsen"></A>
@ -2463,4 +2649,9 @@ Phys, 79, 926 (1983).
<P><B>(Shinoda)</B> Shinoda, Shiga, and Mikami, Phys Rev B, 69, 134103 (2004).
</P>
<A NAME = "MitchellFinchham"></A>
<P><B>(Mitchell and Finchham)</B> Mitchell, Finchham, J Phys Condensed Matter,
5, 1031-1038 (1993).
</P>
</HTML>

View File

@ -33,7 +33,8 @@ This section describes how to perform common tasks using LAMMPS.
6.21 "Calculating viscosity"_#howto_21
6.22 "Calculating a diffusion coefficient"_#howto_22
6.23 "Using chunks to calculate system properties"_#howto_23
6.24 "Setting parameters for the kspace_style pppm/disp command"_#howto_24 :all(b)
6.24 "Setting parameters for the kspace_style pppm/disp command"_#howto_24
6.25 "Adiabatic core/shell model"_#howto_25 :all(b)
The example input scripts included in the LAMMPS distribution and
highlighted in "Section_example"_Section_example.html also show how to
@ -2401,6 +2402,191 @@ Note that the code does not check automatically whether any mixing
rule is fulfilled. If mixing rules do not apply, the user will have
to specify this command explicitly.
:line
6.25 Adiabatic core/shell model :link(howto_25),h4
The adiabatic core-shell model by "Mitchell and
Finchham"_#MitchellFinchham is a simple method for adding
polarizability to a system. In order to mimic the electron shell of
an ion, a ghost atom is attached to it. This way the ions are split
into a core and a shell where the latter is meant to react to the
electrostatic environment inducing polarizability.
Technically, shells are attached to the cores by a spring force f =
k*r where k is a parametrized spring constant and r is the distance
between the core and the shell. The charges of the core and the shell
add up to the ion charge, thus q(ion) = q(core) + q(shell). In a
similar fashion the mass of the ion is distributed on the core and the
shell with the core having the larger mass.
To run this model in LAMMPS, "atom_style"_atom_style.html {full} can
be used since atom charge and bonds are needed. Each kind of
core/shell pair requires two atom types and a bond type. The core and
shell of a core/shell pair should be bonded to each other with a
harmonic bond that provides the spring force. For example, a data file
for NaCl, as found in examples/coreshell, has this format:
432 atoms # core and shell atoms
216 bonds # number of core/shell springs :pre
4 atom types # 2 cores and 2 shells for Na and Cl
2 bond types :pre
0.0 24.09597 xlo xhi
0.0 24.09597 ylo yhi
0.0 24.09597 zlo zhi :pre
Masses # core/shell mass ratio = 0.1 :pre
1 20.690784 # Na core
2 31.90500 # Cl core
3 2.298976 # Na shell
4 3.54500 # Cl shell :pre
Atoms :pre
1 1 2 1.5005 0.00000000 0.00000000 0.00000000 # core of core/shell pair 1
2 1 4 -2.5005 0.00000000 0.00000000 0.00000000 # shell of core/shell pair 1
3 2 1 1.5056 4.01599500 4.01599500 4.01599500 # core of core/shell pair 2
4 2 3 -0.5056 4.01599500 4.01599500 4.01599500 # shell of core/shell pair 2
(...) :pre
Bonds # Bond topology for spring forces :pre
1 2 1 2 # spring for core/shell pair 1
2 2 3 4 # spring for core/shell pair 2
(...) :pre
Non-Coulombic (e.g. Lennard-Jones) pairwise interactions are only
defined between the shells. Coulombic interactions are defined
between all cores and shells. If desired, additional bonds can be
specified between cores.
The "special_bonds"_special_bonds.html command should be used to
turn-off the Coulombic interaction within core/shell pairs, since that
interaction is set by the bond spring. This is done using the
"special_bonds"_special_bonds.html command with a 1-2 weight = 0.0,
which is the default value.
Since the core/shell model permits distances of r = 0.0 between the
core and shell, a pair style with a "cs" suffix needs to be used to
implement a valid long-range Coulombic correction. Several such pair
styles are provided in the CORESHELL package. See "this doc
page"_pair_cs.html for details. All of the core/shell enabled pair
styles require the use of a long-range Coulombic solver, as specified
by the "kspace_style"_kspace_style.html command. Either the PPPM or
Ewald solvers can be used.
For the NaCL example problem, these pair style and bond style settings
are used:
pair_style born/coul/long/cs 20.0 20.0
pair_coeff * * 0.0 1.000 0.00 0.00 0.00
pair_coeff 3 3 487.0 0.23768 0.00 1.05 0.50 #Na-Na
pair_coeff 3 4 145134.0 0.23768 0.00 6.99 8.70 #Na-Cl
pair_coeff 4 4 405774.0 0.23768 0.00 72.40 145.40 #Cl-Cl :pre
bond_style harmonic
bond_coeff 1 63.014 0.0
bond_coeff 2 25.724 0.0 :pre
When running dynamics with the adiabatic core/shell model, the
following issues should be considered. Since the relative motion of
the core and shell particles corresponds to the polarization, typical
thermostats can alter the polarization behaviour, meaining the shell
will not react freely to its electrostatic environment. Therefore
it's typically desirable to decouple the relative motion of the
core/shell pair, which is an imaginary degree of freedom, from the
real physical system. To do that, the "compute
temp/cs"_compute_temp_cs.html command can be used, in conjunction with
any of the thermostat fixes, such as "fix nvt"_fix_nh.html or "fix
langevin"_fix_langevin. This compute uses the center-of-mass velocity
of the core/shell pairs to calculate a temperature, and insures that
velocity is what is rescaled for thermostatting purposes. The
"compute temp/cs"_compute_temp_cs.html command requires input of two
groups, one for the core atoms, another for the shell atoms. These
can be defined using the "group {type}"_group.html command. Note that
to perform thermostatting using this definition of temperature, the
"fix modify temp"_fix_modify.html command should be used to assign the
comptue to the thermostat fix. Likewise the "thermo_modify
temp"_thermo_modify.html command can be used to make this temperature
be output for the overall system.
For the NaCl example, this can be done as follows:
group cores type 1 2
group shells type 3 4
compute CSequ all temp/cs cores shells
fix thermoberendsen all temp/berendsen 1427 1427 0.4 # thermostat for the true physical system
fix thermostatequ all nve # integrator as needed for the berendsen thermostat
fix_modify thermoberendsen temp CSequ
thermo_modify temp CSequ # output of center-of-mass derived temperature :pre
When intializing the velocities of a system with core/shell pairs, it
is also desirable to not introduce energy into the relative motion of
the core/shell particles, but only assign a center-of-mass velocity to
the pairs. This can be done by using the {bias} keyword of the
"velocity create"_velocity.html command and assigning the "compute
temp/cs"_compute_temp_cs.html command to the {temp} keyword of the
"velocity"_velocity.html commmand, e.g.
velocity all create 1427 134 bias yes temp CSequ
velocity all scale 1427 temp CSequ :pre
It is important to note that the polarizability of the core/shell
pairs is based on their relative motion. Therefore the choice of
spring force and mass ratio need to ensure much faster relative motion
of the 2 atoms within the core/shell pair than their center-of-mass
velocity. This allow the shells to effectively react instantaneously
to the electrostatic environment. This fast movement also limits the
timestep size that can be used.
Additionally, the mass mismatch of the core and shell particles means
that only a small amount of energy is transfered to the decoupled
imaginary degrees of freedom. However, this transfer will typically
lead to a a small drift in total energy over time. This internal
energy can be monitored using the "compute
chunk/atom"_compute_chunk_atom.html and "compute
temp/chunk"_compute_temp_chunk.html commands. The internal kinetic
energies of each core/shell pair can then be summed using the sum()
special functino of the "variable"_variable.html command. Or they can
be time/averaged and output using the "fix ave/time"_fix_ave_time.html
command. To use these commands, each core/shell pair must be defined
as a "chunk". If each core/shell pair is defined as its own molecule,
the molecule ID can be used to define the chunks. If cores are bonded
to each other to form larger molecules, then another way to define the
chunks is to use the "fix property/atom"_fix_property_atom.html to
assign a core/shell ID to each atom via a special field in the data
file read by the "read_data"_read_data.html command. This field can
then be accessed by the "compute
property/atom"_compute_property_atom.html command, to use as input to
the "compute chunk/atom"_compute_chunk_atom.html command to define the
core/shell pairs as chunks.
For example,
fix csinfo all property/atom i_CSID # property/atom command
read_data NaCl_CS_x0.1_prop.data fix csinfo NULL CS-Info # atom property added in the data-file
compute prop all property/atom i_CSID
compute cs_chunk all chunk/atom c_prop
compute cstherm all temp/chunk cs_chunk temp internal com yes cdof 3.0 # note the chosen degrees of freedom for the core/shell pairs
fix ave_chunk all ave/time 10 1 10 c_cstherm file chunk.dump mode vector :pre
The additional section in the date file would be formatted like this:
CS-Info # header of additional section :pre
1 1 # column 1 = atom ID, column 2 = core/shell ID
2 1
3 2
4 2
5 3
6 3
7 4
8 4
(...) :pre
:line
:line
@ -2437,3 +2623,7 @@ Phys, 79, 926 (1983).
:link(Shinoda)
[(Shinoda)] Shinoda, Shiga, and Mikami, Phys Rev B, 69, 134103 (2004).
:link(MitchellFinchham)
[(Mitchell and Finchham)] Mitchell, Finchham, J Phys Condensed Matter,
5, 1031-1038 (1993).

View File

@ -44,26 +44,27 @@ packages, more details are provided.
</P>
<DIV ALIGN=center><TABLE BORDER=1 >
<TR ALIGN="center"><TD >Package</TD><TD > Description</TD><TD > Author(s)</TD><TD > Doc page</TD><TD > Example</TD><TD > Library</TD></TR>
<TR ALIGN="center"><TD >ASPHERE</TD><TD > aspherical particles</TD><TD > -</TD><TD > <A HREF = "Section_howto.html#howto_14">Section_howto</A></TD><TD > ellipse</TD><TD > -</TD></TR>
<TR ALIGN="center"><TD >ASPHERE</TD><TD > aspherical particles</TD><TD > -</TD><TD > <A HREF = "Section_howto.html#howto_14">Section_howto 6.14</A></TD><TD > ellipse</TD><TD > -</TD></TR>
<TR ALIGN="center"><TD >BODY</TD><TD > body-style particles</TD><TD > -</TD><TD > <A HREF = "body.html">body</A></TD><TD > body</TD><TD > -</TD></TR>
<TR ALIGN="center"><TD >CLASS2</TD><TD > class 2 force fields</TD><TD > -</TD><TD > <A HREF = "pair_class2.html">pair_style lj/class2</A></TD><TD > -</TD><TD > -</TD></TR>
<TR ALIGN="center"><TD >COLLOID</TD><TD > colloidal particles</TD><TD > -</TD><TD > <A HREF = "atom_style.html">atom_style colloid</A></TD><TD > colloid</TD><TD > -</TD></TR>
<TR ALIGN="center"><TD >CORESHELL</TD><TD > adiabatic core/shell model</TD><TD > Hendrik Heenen</TD><TD > <A HREF = "Section_howto.html#howto_25">Section_howto 6.25</A></TD><TD > coreshell</TD><TD > -</TD></TR>
<TR ALIGN="center"><TD >DIPOLE</TD><TD > point dipole particles</TD><TD > -</TD><TD > <A HREF = "pair_dipole.html">pair_style dipole/cut</A></TD><TD > dipole</TD><TD > -</TD></TR>
<TR ALIGN="center"><TD >FLD</TD><TD > Fast Lubrication Dynamics</TD><TD > Kumar & Bybee & Higdon (1)</TD><TD > <A HREF = "pair_lubricateU.html">pair_style lubricateU</A></TD><TD > -</TD><TD > -</TD></TR>
<TR ALIGN="center"><TD >GPU</TD><TD > GPU-enabled styles</TD><TD > Mike Brown (ORNL)</TD><TD > <A HREF = "Section_accelerate.html#acc_6">Section accelerate</A></TD><TD > gpu</TD><TD > lib/gpu</TD></TR>
<TR ALIGN="center"><TD >GRANULAR</TD><TD > granular systems</TD><TD > -</TD><TD > <A HREF = "Section_howto.html#howto_6">Section_howto</A></TD><TD > pour</TD><TD > -</TD></TR>
<TR ALIGN="center"><TD >GPU</TD><TD > GPU-enabled styles</TD><TD > Mike Brown (ORNL)</TD><TD > <A HREF = "accelerate_gpu.html">Section accelerate</A></TD><TD > gpu</TD><TD > lib/gpu</TD></TR>
<TR ALIGN="center"><TD >GRANULAR</TD><TD > granular systems</TD><TD > -</TD><TD > <A HREF = "Section_howto.html#howto_6">Section_howto 6.6</A></TD><TD > pour</TD><TD > -</TD></TR>
<TR ALIGN="center"><TD >KIM</TD><TD > openKIM potentials</TD><TD > Smirichinski & Elliot & Tadmor (3)</TD><TD > <A HREF = "pair_kim.html">pair_style kim</A></TD><TD > kim</TD><TD > KIM</TD></TR>
<TR ALIGN="center"><TD >KOKKOS</TD><TD > Kokkos-enabled styles</TD><TD > Trott & Edwards (4)</TD><TD > <A HREF = "Section_accelerate.html#acc_8">Section_accelerate</A></TD><TD > kokkos</TD><TD > lib/kokkos</TD></TR>
<TR ALIGN="center"><TD >KOKKOS</TD><TD > Kokkos-enabled styles</TD><TD > Trott & Edwards (4)</TD><TD > <A HREF = "accelerate_kokkos.html">Section_accelerate</A></TD><TD > kokkos</TD><TD > lib/kokkos</TD></TR>
<TR ALIGN="center"><TD >KSPACE</TD><TD > long-range Coulombic solvers</TD><TD > -</TD><TD > <A HREF = "kspace_style.html">kspace_style</A></TD><TD > peptide</TD><TD > -</TD></TR>
<TR ALIGN="center"><TD >MANYBODY</TD><TD > many-body potentials</TD><TD > -</TD><TD > <A HREF = "pair_tersoff.html">pair_style tersoff</A></TD><TD > shear</TD><TD > -</TD></TR>
<TR ALIGN="center"><TD >MEAM</TD><TD > modified EAM potential</TD><TD > Greg Wagner (Sandia)</TD><TD > <A HREF = "pair_meam.html">pair_style meam</A></TD><TD > meam</TD><TD > lib/meam</TD></TR>
<TR ALIGN="center"><TD >MC</TD><TD > Monte Carlo options</TD><TD > -</TD><TD > <A HREF = "fix_gcmc.html">fix gcmc</A></TD><TD > -</TD><TD > -</TD></TR>
<TR ALIGN="center"><TD >MOLECULE</TD><TD > molecular system force fields</TD><TD > -</TD><TD > <A HREF = "Section_howto.html#howto_3">Section_howto</A></TD><TD > peptide</TD><TD > -</TD></TR>
<TR ALIGN="center"><TD >OPT</TD><TD > optimized pair styles</TD><TD > Fischer & Richie & Natoli (2)</TD><TD > <A HREF = "Section_accelerate.html#acc_4">Section accelerate</A></TD><TD > -</TD><TD > -</TD></TR>
<TR ALIGN="center"><TD >MOLECULE</TD><TD > molecular system force fields</TD><TD > -</TD><TD > <A HREF = "Section_howto.html#howto_3">Section_howto 6.3</A></TD><TD > peptide</TD><TD > -</TD></TR>
<TR ALIGN="center"><TD >OPT</TD><TD > optimized pair styles</TD><TD > Fischer & Richie & Natoli (2)</TD><TD > <A HREF = "accelerate_opt.html">Section accelerate</A></TD><TD > -</TD><TD > -</TD></TR>
<TR ALIGN="center"><TD >PERI</TD><TD > Peridynamics models</TD><TD > Mike Parks (Sandia)</TD><TD > <A HREF = "pair_peri.html">pair_style peri</A></TD><TD > peri</TD><TD > -</TD></TR>
<TR ALIGN="center"><TD >POEMS</TD><TD > coupled rigid body motion</TD><TD > Rudra Mukherjee (JPL)</TD><TD > <A HREF = "fix_poems.html">fix poems</A></TD><TD > rigid</TD><TD > lib/poems</TD></TR>
<TR ALIGN="center"><TD >REAX</TD><TD > ReaxFF potential</TD><TD > Aidan Thompson (Sandia)</TD><TD > <A HREF = "pair_reax.html">pair_style reax</A></TD><TD > reax</TD><TD > lib/reax</TD></TR>
<TR ALIGN="center"><TD >REPLICA</TD><TD > multi-replica methods</TD><TD > -</TD><TD > <A HREF = "Section_howto.html#howto_5">Section_howto</A></TD><TD > tad</TD><TD > -</TD></TR>
<TR ALIGN="center"><TD >REPLICA</TD><TD > multi-replica methods</TD><TD > -</TD><TD > <A HREF = "Section_howto.html#howto_5">Section_howto 6.5</A></TD><TD > tad</TD><TD > -</TD></TR>
<TR ALIGN="center"><TD >RIGID</TD><TD > rigid bodies</TD><TD > -</TD><TD > <A HREF = "fix_rigid.html">fix rigid</A></TD><TD > rigid</TD><TD > -</TD></TR>
<TR ALIGN="center"><TD >SHOCK</TD><TD > shock loading methods</TD><TD > -</TD><TD > <A HREF = "fix_msst.html">fix msst</A></TD><TD > -</TD><TD > -</TD></TR>
<TR ALIGN="center"><TD >SNAP</TD><TD > quantum-fit potential</TD><TD > Aidan Thompson (Sandia)</TD><TD > <A HREF = "pair_snap.html">pair snap</A></TD><TD > snap</TD><TD > -</TD></TR>
@ -123,14 +124,14 @@ on how to build LAMMPS with both kinds of auxiliary libraries.
<TR ALIGN="center"><TD >USER-AWPMD</TD><TD > wave-packet MD</TD><TD > Ilya Valuev (JIHT)</TD><TD > <A HREF = "pair_awpmd.html">pair_style awpmd/cut</A></TD><TD > USER/awpmd</TD><TD > -</TD><TD > lib/awpmd</TD></TR>
<TR ALIGN="center"><TD >USER-CG-CMM</TD><TD > coarse-graining model</TD><TD > Axel Kohlmeyer (Temple U)</TD><TD > <A HREF = "pair_sdk.html">pair_style lj/sdk</A></TD><TD > USER/cg-cmm</TD><TD > <A HREF = "http://lammps.sandia.gov/pictures.html#cg">cg</A></TD><TD > -</TD></TR>
<TR ALIGN="center"><TD >USER-COLVARS</TD><TD > collective variables</TD><TD > Fiorin & Henin & Kohlmeyer (3)</TD><TD > <A HREF = "fix_colvars.html">fix colvars</A></TD><TD > USER/colvars</TD><TD > <A HREF = "colvars">colvars</A></TD><TD > lib/colvars</TD></TR>
<TR ALIGN="center"><TD >USER-CUDA</TD><TD > NVIDIA GPU styles</TD><TD > Christian Trott (U Tech Ilmenau)</TD><TD > <A HREF = "Section_accelerate.html#acc_7">Section accelerate</A></TD><TD > USER/cuda</TD><TD > -</TD><TD > lib/cuda</TD></TR>
<TR ALIGN="center"><TD >USER-CUDA</TD><TD > NVIDIA GPU styles</TD><TD > Christian Trott (U Tech Ilmenau)</TD><TD > <A HREF = "accelerate_cuda.html">Section accelerate</A></TD><TD > USER/cuda</TD><TD > -</TD><TD > lib/cuda</TD></TR>
<TR ALIGN="center"><TD >USER-EFF</TD><TD > electron force field</TD><TD > Andres Jaramillo-Botero (Caltech)</TD><TD > <A HREF = "pair_eff.html">pair_style eff/cut</A></TD><TD > USER/eff</TD><TD > <A HREF = "http://lammps.sandia.gov/movies.html#eff">eff</A></TD><TD > -</TD></TR>
<TR ALIGN="center"><TD >USER-FEP</TD><TD > free energy perturbation</TD><TD > Agilio Padua (U Blaise Pascal Clermont-Ferrand)</TD><TD > <A HREF = "fix_adapt.html">fix adapt/fep</A></TD><TD > USER/fep</TD><TD > -</TD><TD > -</TD></TR>
<TR ALIGN="center"><TD >USER-INTEL</TD><TD > Vectorized CPU and Intel(R) coprocessor styles</TD><TD > W. Michael Brown (Intel)</TD><TD > <A HREF = "Section_accelerate.html#acc_9">Section accelerate</A></TD><TD > examples/intel</TD><TD > -</TD><TD > -</TD></TR>
<TR ALIGN="center"><TD >USER-INTEL</TD><TD > Vectorized CPU and Intel(R) coprocessor styles</TD><TD > W. Michael Brown (Intel)</TD><TD > <A HREF = "accelerate_intel.html">Section accelerate</A></TD><TD > examples/intel</TD><TD > -</TD><TD > -</TD></TR>
<TR ALIGN="center"><TD >USER-LB</TD><TD > Lattice Boltzmann fluid</TD><TD > Colin Denniston (U Western Ontario)</TD><TD > <A HREF = "fix_lb_fluid.html">fix lb/fluid</A></TD><TD > USER/lb</TD><TD > -</TD><TD > -</TD></TR>
<TR ALIGN="center"><TD >USER-MISC</TD><TD > single-file contributions</TD><TD > USER-MISC/README</TD><TD > USER-MISC/README</TD><TD > -</TD><TD > -</TD><TD > -</TD></TR>
<TR ALIGN="center"><TD >USER-MOLFILE</TD><TD > <A HREF = "http://www.ks.uiuc.edu/Research/vmd">VMD</A> molfile plug-ins</TD><TD > Axel Kohlmeyer (Temple U)</TD><TD > <A HREF = "dump_molfile.html">dump molfile</A></TD><TD > -</TD><TD > -</TD><TD > VMD-MOLFILE</TD></TR>
<TR ALIGN="center"><TD >USER-OMP</TD><TD > OpenMP threaded styles</TD><TD > Axel Kohlmeyer (Temple U)</TD><TD > <A HREF = "Section_accelerate.html#acc_5">Section accelerate</A></TD><TD > -</TD><TD > -</TD><TD > -</TD></TR>
<TR ALIGN="center"><TD >USER-OMP</TD><TD > OpenMP threaded styles</TD><TD > Axel Kohlmeyer (Temple U)</TD><TD > <A HREF = "accelerate_omp.html">Section accelerate</A></TD><TD > -</TD><TD > -</TD><TD > -</TD></TR>
<TR ALIGN="center"><TD >USER-PHONON</TD><TD > phonon dynamical matrix</TD><TD > Ling-Ti Kong (Shanghai Jiao Tong U)</TD><TD > <A HREF = "fix_phonon.html">fix phonon</A></TD><TD > USER/phonon</TD><TD > -</TD><TD > -</TD></TR>
<TR ALIGN="center"><TD >USER-QMMM</TD><TD > QM/MM coupling</TD><TD > Axel Kohlmeyer (Temple U)</TD><TD > <A HREF = "fix_qmmm.html">fix qmmm</A></TD><TD > USER/qmmm</TD><TD > -</TD><TD > lib/qmmm</TD></TR>
<TR ALIGN="center"><TD >USER-QUIP</TD><TD > QM/MM coupling</TD><TD > Albert Bartok-Partay (U Cambridge)</TD><TD > <A HREF = "fix_quip.html">fix quip</A></TD><TD > USER/quip</TD><TD > -</TD><TD > lib/quip</TD></TR>

View File

@ -39,26 +39,27 @@ packages, more details are provided.
The current list of standard packages is as follows:
Package, Description, Author(s), Doc page, Example, Library
ASPHERE, aspherical particles, -, "Section_howto"_Section_howto.html#howto_14, ellipse, -
ASPHERE, aspherical particles, -, "Section_howto 6.14"_Section_howto.html#howto_14, ellipse, -
BODY, body-style particles, -, "body"_body.html, body, -
CLASS2, class 2 force fields, -, "pair_style lj/class2"_pair_class2.html, -, -
COLLOID, colloidal particles, -, "atom_style colloid"_atom_style.html, colloid, -
CORESHELL, adiabatic core/shell model, Hendrik Heenen, "Section_howto 6.25"_Section_howto.html#howto_25, coreshell, -
DIPOLE, point dipole particles, -, "pair_style dipole/cut"_pair_dipole.html, dipole, -
FLD, Fast Lubrication Dynamics, Kumar & Bybee & Higdon (1), "pair_style lubricateU"_pair_lubricateU.html, -, -
GPU, GPU-enabled styles, Mike Brown (ORNL), "Section accelerate"_Section_accelerate.html#acc_6, gpu, lib/gpu
GRANULAR, granular systems, -, "Section_howto"_Section_howto.html#howto_6, pour, -
GPU, GPU-enabled styles, Mike Brown (ORNL), "Section accelerate"_accelerate_gpu.html, gpu, lib/gpu
GRANULAR, granular systems, -, "Section_howto 6.6"_Section_howto.html#howto_6, pour, -
KIM, openKIM potentials, Smirichinski & Elliot & Tadmor (3), "pair_style kim"_pair_kim.html, kim, KIM
KOKKOS, Kokkos-enabled styles, Trott & Edwards (4), "Section_accelerate"_Section_accelerate.html#acc_8, kokkos, lib/kokkos
KOKKOS, Kokkos-enabled styles, Trott & Edwards (4), "Section_accelerate"_accelerate_kokkos.html, kokkos, lib/kokkos
KSPACE, long-range Coulombic solvers, -, "kspace_style"_kspace_style.html, peptide, -
MANYBODY, many-body potentials, -, "pair_style tersoff"_pair_tersoff.html, shear, -
MEAM, modified EAM potential, Greg Wagner (Sandia), "pair_style meam"_pair_meam.html, meam, lib/meam
MC, Monte Carlo options, -, "fix gcmc"_fix_gcmc.html, -, -
MOLECULE, molecular system force fields, -, "Section_howto"_Section_howto.html#howto_3, peptide, -
OPT, optimized pair styles, Fischer & Richie & Natoli (2), "Section accelerate"_Section_accelerate.html#acc_4, -, -
MOLECULE, molecular system force fields, -, "Section_howto 6.3"_Section_howto.html#howto_3, peptide, -
OPT, optimized pair styles, Fischer & Richie & Natoli (2), "Section accelerate"_accelerate_opt.html, -, -
PERI, Peridynamics models, Mike Parks (Sandia), "pair_style peri"_pair_peri.html, peri, -
POEMS, coupled rigid body motion, Rudra Mukherjee (JPL), "fix poems"_fix_poems.html, rigid, lib/poems
REAX, ReaxFF potential, Aidan Thompson (Sandia), "pair_style reax"_pair_reax.html, reax, lib/reax
REPLICA, multi-replica methods, -, "Section_howto"_Section_howto.html#howto_5, tad, -
REPLICA, multi-replica methods, -, "Section_howto 6.5"_Section_howto.html#howto_5, tad, -
RIGID, rigid bodies, -, "fix rigid"_fix_rigid.html, rigid, -
SHOCK, shock loading methods, -, "fix msst"_fix_msst.html, -, -
SNAP, quantum-fit potential, Aidan Thompson (Sandia), "pair snap"_pair_snap.html, snap, -
@ -115,14 +116,14 @@ USER-ATC, atom-to-continuum coupling, Jones & Templeton & Zimmerman (2), "fix at
USER-AWPMD, wave-packet MD, Ilya Valuev (JIHT), "pair_style awpmd/cut"_pair_awpmd.html, USER/awpmd, -, lib/awpmd
USER-CG-CMM, coarse-graining model, Axel Kohlmeyer (Temple U), "pair_style lj/sdk"_pair_sdk.html, USER/cg-cmm, "cg"_cg, -
USER-COLVARS, collective variables, Fiorin & Henin & Kohlmeyer (3), "fix colvars"_fix_colvars.html, USER/colvars, "colvars"_colvars, lib/colvars
USER-CUDA, NVIDIA GPU styles, Christian Trott (U Tech Ilmenau), "Section accelerate"_Section_accelerate.html#acc_7, USER/cuda, -, lib/cuda
USER-CUDA, NVIDIA GPU styles, Christian Trott (U Tech Ilmenau), "Section accelerate"_accelerate_cuda.html, USER/cuda, -, lib/cuda
USER-EFF, electron force field, Andres Jaramillo-Botero (Caltech), "pair_style eff/cut"_pair_eff.html, USER/eff, "eff"_eff, -
USER-FEP, free energy perturbation, Agilio Padua (U Blaise Pascal Clermont-Ferrand), "fix adapt/fep"_fix_adapt.html, USER/fep, -, -
USER-INTEL, Vectorized CPU and Intel(R) coprocessor styles, W. Michael Brown (Intel), "Section accelerate"_Section_accelerate.html#acc_9, examples/intel, -, -
USER-INTEL, Vectorized CPU and Intel(R) coprocessor styles, W. Michael Brown (Intel), "Section accelerate"_accelerate_intel.html, examples/intel, -, -
USER-LB, Lattice Boltzmann fluid, Colin Denniston (U Western Ontario), "fix lb/fluid"_fix_lb_fluid.html, USER/lb, -, -
USER-MISC, single-file contributions, USER-MISC/README, USER-MISC/README, -, -, -
USER-MOLFILE, "VMD"_VMD molfile plug-ins, Axel Kohlmeyer (Temple U), "dump molfile"_dump_molfile.html, -, -, VMD-MOLFILE
USER-OMP, OpenMP threaded styles, Axel Kohlmeyer (Temple U), "Section accelerate"_Section_accelerate.html#acc_5, -, -, -
USER-OMP, OpenMP threaded styles, Axel Kohlmeyer (Temple U), "Section accelerate"_accelerate_omp.html, -, -, -
USER-PHONON, phonon dynamical matrix, Ling-Ti Kong (Shanghai Jiao Tong U), "fix phonon"_fix_phonon.html, USER/phonon, -, -
USER-QMMM, QM/MM coupling, Axel Kohlmeyer (Temple U), "fix qmmm"_fix_qmmm.html, USER/qmmm, -, lib/qmmm
USER-QUIP, QM/MM coupling, Albert Bartok-Partay (U Cambridge), "fix quip"_fix_quip.html, USER/quip, -, lib/quip

117
doc/compute_temp_cs.html Normal file
View File

@ -0,0 +1,117 @@
<HTML>
<CENTER><A HREF = "http://lammps.sandia.gov">LAMMPS WWW Site</A> - <A HREF = "Manual.html">LAMMPS Documentation</A> - <A HREF = "Section_commands.html#comm">LAMMPS Commands</A>
</CENTER>
<HR>
<H3>compute temp/cs command
</H3>
<P><B>Syntax:</B>
</P>
<P>compute ID group-ID temp/cs group1 group2 pre
</P>
<UL><LI>ID, group-ID are documented in <A HREF = "compute.html">compute</A> command
<LI>temp/cs = style name of this compute command
<LI>group1 = group-ID of either cores or shells
<LI>group2 = group-ID of either shells or cores
</UL>
<P><B>Examples:</B>
</P>
<PRE>compute oxygen_c-s all temp/cs O_core O_shell
compute core_shells all temp/cs cores shells
</PRE>
<P><B>Description:</B>
</P>
<P>Define a computation that calculates the temperature of a system based
on the center-of-mass velocity of atom pairs that are bonded to each
other. This compute is designed to be used with the adiabatic
core/shell model of <A HREF = "#MitchellFinchham">(Mitchell and Finchham)</A>. See
<A HREF = "Section_howto.html#howto_25">Section_howto 25</A> of the manual for an
overview of the model as implemented in LAMMPS. Specifically, this
compute enables correct temperature calculation and thermostatting of
core/shell pairs where it is desirable for the internal degrees of
freedom of the core/shell pairs to not be influenced by a thermostat.
A compute of this style can be used by any command that computes a
temperature via <A HREF = "fix_modify.html">fix_modify</A> e.g. <A HREF = "fix_temp_rescale.html">fix
temp/rescale</A>, <A HREF = "fix_nh.html">fix npt</A>, etc.
</P>
<P>For this compute, core and shell particles are specified by two
respective group IDs, which can be defined using the
<A HREF = "group.html">group</A> command. The number of atoms in the two groups
must be the same and there should be one bond defined between a pair
of atoms in the two groups.
</P>
<P>The temperature is calculated by the formula KE = dim/2 N k T, where
KE = total kinetic energy of the group of atoms (sum of 1/2 m v^2),
dim = 2 or 3 = dimensionality of the simulation, N = number of atoms
in the group, k = Boltzmann constant, and T = temperature. Note that
the velocity of each core or shell atom used in the KE calculation is
the velocity of the center-of-mass (COM) of the core/shell pair the
atom is part of.
</P>
<P>A kinetic energy tensor, stored as a 6-element vector, is also
calculated by this compute for use in the computation of a pressure
tensor. The formula for the components of the tensor is the same as
the above formula, except that v^2 is replaced by vx*vy for the xy
component, etc. The 6 components of the vector are ordered xx, yy,
zz, xy, xz, yz. Again, the velocity of each core or shell atom is its
COM velocity.
</P>
<P>The change this fix makes to core/shell atom velocities is essentially
computing the temperature after a "bias" has been removed from the
velocity of the atoms. This "bias" is the velocity of the atom
relative to the COM velocity of the core/shell pair. If this compute
is used with a fix command that performs thermostatting then this bias
will be subtracted from each atom, thermostatting of the remaining COM
velocity will be performed, and the bias will be added back in. This
means the thermostating will effectively be performed on the
core/shell pairs, instead of on the individual core and shell atoms.
Thermostatting fixes that work in this way include <A HREF = "fix_nh.html">fix
nvt</A>, <A HREF = "fix_temp_rescale.html">fix temp/rescale</A>, <A HREF = "fix_temp_berendsen.html">fix
temp/berendsen</A>, and <A HREF = "fix_langevin.html">fix
langevin</A>.
</P>
<P>The internal energy of core/shell pairs can be calculated by the
<A HREF = "compute_temp_chunk.html">compute temp/chunk</A> command, if chunks are
defined as core/shell pairs. See <A HREF = "Section_howto.html#howto_25">Section_howto
25</A> for more discussion on how to do this.
</P>
<P><B>Output info:</B>
</P>
<P>This compute calculates a global scalar (the temperature) and a global
vector of length 6 (KE tensor), which can be accessed by indices 1-6.
These values can be used by any command that uses global scalar or
vector values from a compute as input.
</P>
<P>The scalar value calculated by this compute is "intensive". The
vector values are "extensive".
</P>
<P>The scalar value will be in temperature <A HREF = "units.html">units</A>. The
vector values will be in energy <A HREF = "units.html">units</A>.
</P>
<P><B>Restrictions:</B>
</P>
<P>The number of core/shell pairs contributing to the temperature is
assumed to be constant for the duration of the run. No fixes should
be used which generate new molecules or atoms during a simulation.
</P>
<P><B>Related commands:</B>
</P>
<P><A HREF = "compute_temp.html">compute temp</A>, <A HREF = "compute_temp_chunk.html">compute
temp/chunk</A>
</P>
<P><B>Default:</B> none
</P>
<HR>
<A NAME = "MitchellFinchham"></A>
<P><B>(Mitchell and Finchham)</B> Mitchell, Finchham, J Phys Condensed Matter,
5, 1031-1038 (1993).
</P>
</HTML>

111
doc/compute_temp_cs.txt Normal file
View File

@ -0,0 +1,111 @@
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Section_commands.html#comm)
:line
compute temp/cs command :h3
[Syntax:]
compute ID group-ID temp/cs group1 group2 pre
ID, group-ID are documented in "compute"_compute.html command
temp/cs = style name of this compute command
group1 = group-ID of either cores or shells
group2 = group-ID of either shells or cores :ul
[Examples:]
compute oxygen_c-s all temp/cs O_core O_shell
compute core_shells all temp/cs cores shells :pre
[Description:]
Define a computation that calculates the temperature of a system based
on the center-of-mass velocity of atom pairs that are bonded to each
other. This compute is designed to be used with the adiabatic
core/shell model of "(Mitchell and Finchham)"_#MitchellFinchham. See
"Section_howto 25"_Section_howto.html#howto_25 of the manual for an
overview of the model as implemented in LAMMPS. Specifically, this
compute enables correct temperature calculation and thermostatting of
core/shell pairs where it is desirable for the internal degrees of
freedom of the core/shell pairs to not be influenced by a thermostat.
A compute of this style can be used by any command that computes a
temperature via "fix_modify"_fix_modify.html e.g. "fix
temp/rescale"_fix_temp_rescale.html, "fix npt"_fix_nh.html, etc.
For this compute, core and shell particles are specified by two
respective group IDs, which can be defined using the
"group"_group.html command. The number of atoms in the two groups
must be the same and there should be one bond defined between a pair
of atoms in the two groups.
The temperature is calculated by the formula KE = dim/2 N k T, where
KE = total kinetic energy of the group of atoms (sum of 1/2 m v^2),
dim = 2 or 3 = dimensionality of the simulation, N = number of atoms
in the group, k = Boltzmann constant, and T = temperature. Note that
the velocity of each core or shell atom used in the KE calculation is
the velocity of the center-of-mass (COM) of the core/shell pair the
atom is part of.
A kinetic energy tensor, stored as a 6-element vector, is also
calculated by this compute for use in the computation of a pressure
tensor. The formula for the components of the tensor is the same as
the above formula, except that v^2 is replaced by vx*vy for the xy
component, etc. The 6 components of the vector are ordered xx, yy,
zz, xy, xz, yz. Again, the velocity of each core or shell atom is its
COM velocity.
The change this fix makes to core/shell atom velocities is essentially
computing the temperature after a "bias" has been removed from the
velocity of the atoms. This "bias" is the velocity of the atom
relative to the COM velocity of the core/shell pair. If this compute
is used with a fix command that performs thermostatting then this bias
will be subtracted from each atom, thermostatting of the remaining COM
velocity will be performed, and the bias will be added back in. This
means the thermostating will effectively be performed on the
core/shell pairs, instead of on the individual core and shell atoms.
Thermostatting fixes that work in this way include "fix
nvt"_fix_nh.html, "fix temp/rescale"_fix_temp_rescale.html, "fix
temp/berendsen"_fix_temp_berendsen.html, and "fix
langevin"_fix_langevin.html.
The internal energy of core/shell pairs can be calculated by the
"compute temp/chunk"_compute_temp_chunk.html command, if chunks are
defined as core/shell pairs. See "Section_howto
25"_Section_howto.html#howto_25 for more discussion on how to do this.
[Output info:]
This compute calculates a global scalar (the temperature) and a global
vector of length 6 (KE tensor), which can be accessed by indices 1-6.
These values can be used by any command that uses global scalar or
vector values from a compute as input.
The scalar value calculated by this compute is "intensive". The
vector values are "extensive".
The scalar value will be in temperature "units"_units.html. The
vector values will be in energy "units"_units.html.
[Restrictions:]
The number of core/shell pairs contributing to the temperature is
assumed to be constant for the duration of the run. No fixes should
be used which generate new molecules or atoms during a simulation.
[Related commands:]
"compute temp"_compute_temp.html, "compute
temp/chunk"_compute_temp_chunk.html
[Default:] none
:line
:link(MitchellFinchham)
[(Mitchell and Finchham)] Mitchell, Finchham, J Phys Condensed Matter,
5, 1031-1038 (1993).

View File

@ -235,11 +235,10 @@ of SHAKE parameters and monitoring the energy versus time.
<A NAME = "Ryckaert"></A>
<P><B>(Ryckaert)</B> J.-P. Ryckaert, G. Ciccotti and H. J. C. Berendsen,
Journal of Computational Physics, 23, 327341 (1977).
J of Comp Phys, 23, 327-341 (1977).
</P>
<A NAME = "Andersen"></A>
<P><B>(Andersen)</B> H. Andersen,
Journal of Computational Physics, 52, 24-34 (1983).
<P><B>(Andersen)</B> H. Andersen, J of Comp Phys, 52, 24-34 (1983).
</P>
</HTML>

View File

@ -218,8 +218,7 @@ of SHAKE parameters and monitoring the energy versus time.
:link(Ryckaert)
[(Ryckaert)] J.-P. Ryckaert, G. Ciccotti and H. J. C. Berendsen,
Journal of Computational Physics, 23, 327341 (1977).
J of Comp Phys, 23, 327-341 (1977).
:link(Andersen)
[(Andersen)] H. Andersen,
Journal of Computational Physics, 52, 24-34 (1983).
[(Andersen)] H. Andersen, J of Comp Phys, 52, 24-34 (1983).

91
doc/pair_cs.html Normal file
View File

@ -0,0 +1,91 @@
<HTML>
<CENTER><A HREF = "http://lammps.sandia.gov">LAMMPS WWW Site</A> - <A HREF = "Manual.html">LAMMPS Documentation</A> - <A HREF = "Section_commands.html#comm">LAMMPS Commands</A>
</CENTER>
<HR>
<H3>pair_style born/coul/long/cs command
</H3>
<H3>pair_style buck/coul/long/cs command
</H3>
<P><B>Syntax:</B>
</P>
<PRE>pair_style style args
</PRE>
<UL><LI>style = <I>born/coul/long/cs</I> or <I>buck/coul/long/cs</I>
<LI>args = list of arguments for a particular style
</UL>
<PRE> <I>born/coul/long/cs</I> args = cutoff (cutoff2)
cutoff = global cutoff for non-Coulombic (and Coulombic if only 1 arg) (distance units)
cutoff2 = global cutoff for Coulombic (optional) (distance units)
<I>buck/coul/long/cs</I> args = cutoff (cutoff2)
cutoff = global cutoff for Buckingham (and Coulombic if only 1 arg) (distance units)
cutoff2 = global cutoff for Coulombic (optional) (distance units)
</PRE>
<P><B>Examples:</B>
</P>
<PRE>pair_style born/coul/long/cs 10.0 8.0
pair_coeff 1 1 6.08 0.317 2.340 24.18 11.51
</PRE>
<PRE>pair_style buck/coul/long/cs 10.0
pair_style buck/coul/long/cs 10.0 8.0
pair_coeff * * 100.0 1.5 200.0
pair_coeff 1 1 100.0 1.5 200.0 9.0
</PRE>
<P><B>Description:</B>
</P>
<P>These pair styles are designed to be used with the adiabatic
core/shell model of <A HREF = "#MitchellFinchham">(Mitchell and Finchham)</A>. See
<A HREF = "Section_howto.html#howto_25">Section_howto 25</A> of the manual for an
overview of the model as implemented in LAMMPS.
</P>
<P>These pair styles are identical to the <A HREF = "pair_born.html">pair_style
born/coul/long</A> and <A HREF = "pair_buck.html">pair_style
buck/coul/long</A> styles, except they correctly treat the
special case where the distance between two charged core and shell
atoms in the same core/shell pair approach r = 0.0. This needs
special treatment when a long-range solver for Coulombic interactions
is also used, i.e. via the <A HREF = "kspace_style.html">kspace_style</A> command.
</P>
<P>More specifically, the short-range Coulomb interaction between a core
and its shell should be turned off using the
<A HREF = "special_bonds.html">special_bonds</A> command by setting the 1-2 weight
to 0.0, which works because the core and shell atoms are bonded to
each other. This induces a long-range correction approximation which
fails at small distances (~< 10e-8). Therefore, the Coulomb term which
is used to calculate the correction factor is extended by a minimal
distance (r_min = 1.0-6) when the interaction between a core/shell
pair is treated, as follows
</P>
<CENTER><IMG SRC = "Eqs/pair_cs.jpg">
</CENTER>
<P>where C is an energy-conversion constant, Qi and Qj are the charges on
the core and shell, epsilon is the dielectric constant and r_min is the
minimal distance.
</P>
<P><B>Restrictions:</B>
</P>
<P>These pair styles are part of the CORESHELL package. They are only
enabled if LAMMPS was built with that package. See the <A HREF = "Section_start.html#start_3">Making
LAMMPS</A> section for more info.
</P>
<P><B>Related commands:</B>
</P>
<P><A HREF = "pair_coeff.html">pair_coeff</A>, <A HREF = "pair_born.html">pair_style born</A>,
<A HREF = "pair_buck.html">pair_style buck</A>
</P>
<P><B>Default:</B> none
</P>
<HR>
<A NAME = "MitchellFinchham"></A>
<P><B>(Mitchell and Finchham)</B> Mitchell, Finchham, J Phys Condensed Matter,
5, 1031-1038 (1993).
</P>
</HTML>

83
doc/pair_cs.txt Normal file
View File

@ -0,0 +1,83 @@
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Section_commands.html#comm)
:line
pair_style born/coul/long/cs command :h3
pair_style buck/coul/long/cs command :h3
[Syntax:]
pair_style style args :pre
style = {born/coul/long/cs} or {buck/coul/long/cs}
args = list of arguments for a particular style :ul
{born/coul/long/cs} args = cutoff (cutoff2)
cutoff = global cutoff for non-Coulombic (and Coulombic if only 1 arg) (distance units)
cutoff2 = global cutoff for Coulombic (optional) (distance units)
{buck/coul/long/cs} args = cutoff (cutoff2)
cutoff = global cutoff for Buckingham (and Coulombic if only 1 arg) (distance units)
cutoff2 = global cutoff for Coulombic (optional) (distance units) :pre
[Examples:]
pair_style born/coul/long/cs 10.0 8.0
pair_coeff 1 1 6.08 0.317 2.340 24.18 11.51 :pre
pair_style buck/coul/long/cs 10.0
pair_style buck/coul/long/cs 10.0 8.0
pair_coeff * * 100.0 1.5 200.0
pair_coeff 1 1 100.0 1.5 200.0 9.0 :pre
[Description:]
These pair styles are designed to be used with the adiabatic
core/shell model of "(Mitchell and Finchham)"_#MitchellFinchham. See
"Section_howto 25"_Section_howto.html#howto_25 of the manual for an
overview of the model as implemented in LAMMPS.
These pair styles are identical to the "pair_style
born/coul/long"_pair_born.html and "pair_style
buck/coul/long"_pair_buck.html styles, except they correctly treat the
special case where the distance between two charged core and shell
atoms in the same core/shell pair approach r = 0.0. This needs
special treatment when a long-range solver for Coulombic interactions
is also used, i.e. via the "kspace_style"_kspace_style.html command.
More specifically, the short-range Coulomb interaction between a core
and its shell should be turned off using the
"special_bonds"_special_bonds.html command by setting the 1-2 weight
to 0.0, which works because the core and shell atoms are bonded to
each other. This induces a long-range correction approximation which
fails at small distances (~< 10e-8). Therefore, the Coulomb term which
is used to calculate the correction factor is extended by a minimal
distance (r_min = 1.0-6) when the interaction between a core/shell
pair is treated, as follows
:c,image(Eqs/pair_cs.jpg)
where C is an energy-conversion constant, Qi and Qj are the charges on
the core and shell, epsilon is the dielectric constant and r_min is the
minimal distance.
[Restrictions:]
These pair styles are part of the CORESHELL package. They are only
enabled if LAMMPS was built with that package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info.
[Related commands:]
"pair_coeff"_pair_coeff.html, "pair_style born"_pair_born.html,
"pair_style buck"_pair_buck.html
[Default:] none
:line
:link(MitchellFinchham)
[(Mitchell and Finchham)] Mitchell, Finchham, J Phys Condensed Matter,
5, 1031-1038 (1993).

View File

@ -302,12 +302,13 @@ sub-styles of the hybrid potential.
and J,J is the same, and if the sub-style allows for mixing, then the
coefficients for I,J can be mixed. This means you do not have to
specify a pair_coeff command for I,J since the I,J type pair will be
assigned automatically to the I,I sub-style and its coefficients
generated by the mixing rule used by that sub-style. For the
<I>hybrid/overlay</I> style, there is an additional requirement that both
the I,I and J,J pairs are assigned to a single sub-style. See the
"pair_modify" command for details of mixing rules. See the See the
doc page for the sub-style to see if allows for mixing.
assigned automatically to the sub-style defined for both I,I and J,J
and its coefficients generated by the mixing rule used by that
sub-style. For the <I>hybrid/overlay</I> style, there is an additional
requirement that both the I,I and J,J pairs are assigned to a single
sub-style. See the "pair_modify" command for details of mixing rules.
See the See the doc page for the sub-style to see if allows for
mixing.
</P>
<P>The hybrid pair styles supports the <A HREF = "pair_modify.html">pair_modify</A>
shift, table, and tail options for an I,J pair interaction, if the

View File

@ -296,12 +296,13 @@ For atom type pairs I,J and I != J, if the sub-style assigned to I,I
and J,J is the same, and if the sub-style allows for mixing, then the
coefficients for I,J can be mixed. This means you do not have to
specify a pair_coeff command for I,J since the I,J type pair will be
assigned automatically to the I,I sub-style and its coefficients
generated by the mixing rule used by that sub-style. For the
{hybrid/overlay} style, there is an additional requirement that both
the I,I and J,J pairs are assigned to a single sub-style. See the
"pair_modify" command for details of mixing rules. See the See the
doc page for the sub-style to see if allows for mixing.
assigned automatically to the sub-style defined for both I,I and J,J
and its coefficients generated by the mixing rule used by that
sub-style. For the {hybrid/overlay} style, there is an additional
requirement that both the I,I and J,J pairs are assigned to a single
sub-style. See the "pair_modify" command for details of mixing rules.
See the See the doc page for the sub-style to see if allows for
mixing.
The hybrid pair styles supports the "pair_modify"_pair_modify.html
shift, table, and tail options for an I,J pair interaction, if the