massive whitespace cleanup in USER-INTEL

removed are:
- DOS/Windows text format carriage return characters (^M)
- tabs replaced with spaces (tabs are evil!!)
- trailing whitespace
This commit is contained in:
Axel Kohlmeyer 2017-06-19 13:23:01 -04:00
parent b687d16177
commit 3c329d1707
62 changed files with 7890 additions and 7890 deletions

View File

@ -37,7 +37,7 @@ typedef struct { int a,b,c,t; } int4_t;
/* ---------------------------------------------------------------------- */
AngleCharmmIntel::AngleCharmmIntel(LAMMPS *lmp) : AngleCharmm(lmp)
AngleCharmmIntel::AngleCharmmIntel(LAMMPS *lmp) : AngleCharmm(lmp)
{
suffix_flag |= Suffix::INTEL;
}
@ -74,8 +74,8 @@ void AngleCharmmIntel::compute(int eflag, int vflag)
template <class flt_t, class acc_t>
void AngleCharmmIntel::compute(int eflag, int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
{
if (eflag || vflag) ev_setup(eflag,vflag);
else evflag = 0;
@ -83,14 +83,14 @@ void AngleCharmmIntel::compute(int eflag, int vflag,
if (evflag) {
if (vflag && !eflag) {
if (force->newton_bond)
eval<0,1,1>(vflag, buffers, fc);
eval<0,1,1>(vflag, buffers, fc);
else
eval<0,1,0>(vflag, buffers, fc);
eval<0,1,0>(vflag, buffers, fc);
} else {
if (force->newton_bond)
eval<1,1,1>(vflag, buffers, fc);
eval<1,1,1>(vflag, buffers, fc);
else
eval<1,1,0>(vflag, buffers, fc);
eval<1,1,0>(vflag, buffers, fc);
}
} else {
if (force->newton_bond)
@ -103,9 +103,9 @@ void AngleCharmmIntel::compute(int eflag, int vflag,
/* ---------------------------------------------------------------------- */
template <int EFLAG, int VFLAG, int NEWTON_BOND, class flt_t, class acc_t>
void AngleCharmmIntel::eval(const int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
void AngleCharmmIntel::eval(const int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
{
const int inum = neighbor->nanglelist;
@ -133,7 +133,7 @@ void AngleCharmmIntel::eval(const int vflag,
#if defined(_OPENMP)
#pragma omp parallel default(none) \
shared(f_start,f_stride,fc) \
shared(f_start,f_stride,fc) \
reduction(+:oeangle,ov0,ov1,ov2,ov3,ov4,ov5)
#endif
{
@ -148,7 +148,7 @@ void AngleCharmmIntel::eval(const int vflag,
if (fix->need_zero(tid))
memset(f, 0, f_stride * sizeof(FORCE_T));
const int4_t * _noalias const anglelist =
const int4_t * _noalias const anglelist =
(int4_t *) neighbor->anglelist[0];
#ifdef LMP_INTEL_USE_SIMDOFF
@ -246,35 +246,35 @@ void AngleCharmmIntel::eval(const int vflag,
{
if (NEWTON_BOND || i1 < nlocal) {
f[i1].x += f1x;
f[i1].y += f1y;
f[i1].z += f1z;
f[i1].y += f1y;
f[i1].z += f1z;
}
if (NEWTON_BOND || i2 < nlocal) {
f[i2].x -= f1x + f3x;
f[i2].y -= f1y + f3y;
f[i2].z -= f1z + f3z;
f[i2].y -= f1y + f3y;
f[i2].z -= f1z + f3z;
}
if (NEWTON_BOND || i3 < nlocal) {
f[i3].x += f3x;
f[i3].y += f3y;
f[i3].z += f3z;
f[i3].y += f3y;
f[i3].z += f3z;
}
}
if (EFLAG || VFLAG) {
#ifdef LMP_INTEL_USE_SIMDOFF
IP_PRE_ev_tally_angle(EFLAG, VFLAG, eatom, vflag, eangle, i1, i2,
i3, f1x, f1y, f1z, f3x, f3y, f3z, delx1,
dely1, delz1, delx2, dely2, delz2, seangle,
f, NEWTON_BOND, nlocal, sv0, sv1, sv2, sv3,
IP_PRE_ev_tally_angle(EFLAG, VFLAG, eatom, vflag, eangle, i1, i2,
i3, f1x, f1y, f1z, f3x, f3y, f3z, delx1,
dely1, delz1, delx2, dely2, delz2, seangle,
f, NEWTON_BOND, nlocal, sv0, sv1, sv2, sv3,
sv4, sv5);
#else
IP_PRE_ev_tally_angle(EFLAG, VFLAG, eatom, vflag, eangle, i1, i2,
i3, f1x, f1y, f1z, f3x, f3y, f3z, delx1,
dely1, delz1, delx2, dely2, delz2, oeangle,
f, NEWTON_BOND, nlocal, ov0, ov1, ov2, ov3,
#else
IP_PRE_ev_tally_angle(EFLAG, VFLAG, eatom, vflag, eangle, i1, i2,
i3, f1x, f1y, f1z, f3x, f3y, f3z, delx1,
dely1, delz1, delx2, dely2, delz2, oeangle,
f, NEWTON_BOND, nlocal, ov0, ov1, ov2, ov3,
ov4, ov5);
#endif
}
@ -282,8 +282,8 @@ void AngleCharmmIntel::eval(const int vflag,
#ifdef LMP_INTEL_USE_SIMDOFF
if (EFLAG) oeangle += seangle;
if (VFLAG && vflag) {
ov0 += sv0; ov1 += sv1; ov2 += sv2;
ov3 += sv3; ov4 += sv4; ov5 += sv5;
ov0 += sv0; ov1 += sv1; ov2 += sv2;
ov3 += sv3; ov4 += sv4; ov5 += sv5;
}
#endif
} // omp parallel
@ -291,7 +291,7 @@ void AngleCharmmIntel::eval(const int vflag,
if (EFLAG) energy += oeangle;
if (VFLAG && vflag) {
virial[0] += ov0; virial[1] += ov1; virial[2] += ov2;
virial[3] += ov3; virial[4] += ov4; virial[5] += ov5;
virial[3] += ov3; virial[4] += ov4; virial[5] += ov5;
}
fix->set_reduce_flag();
@ -348,11 +348,11 @@ void AngleCharmmIntel::pack_force_const(ForceConst<flt_t> &fc,
template <class flt_t>
void AngleCharmmIntel::ForceConst<flt_t>::set_ntypes(const int nangletypes,
Memory *memory) {
Memory *memory) {
if (nangletypes != _nangletypes) {
if (_nangletypes > 0)
_memory->destroy(fc);
if (nangletypes > 0)
_memory->create(fc,nangletypes,"anglecharmmintel.fc");
}

View File

@ -45,8 +45,8 @@ class AngleCharmmIntel : public AngleCharmm {
void compute(int eflag, int vflag, IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc);
template <int EVFLAG, int EFLAG, int NEWTON_BOND, class flt_t, class acc_t>
void eval(const int vflag, IntelBuffers<flt_t,acc_t> * buffers,
const ForceConst<flt_t> &fc);
void eval(const int vflag, IntelBuffers<flt_t,acc_t> * buffers,
const ForceConst<flt_t> &fc);
template <class flt_t, class acc_t>
void pack_force_const(ForceConst<flt_t> &fc,
IntelBuffers<flt_t, acc_t> *buffers);

View File

@ -37,7 +37,7 @@ typedef struct { int a,b,c,t; } int4_t;
/* ---------------------------------------------------------------------- */
AngleHarmonicIntel::AngleHarmonicIntel(LAMMPS *lmp) : AngleHarmonic(lmp)
AngleHarmonicIntel::AngleHarmonicIntel(LAMMPS *lmp) : AngleHarmonic(lmp)
{
suffix_flag |= Suffix::INTEL;
}
@ -74,8 +74,8 @@ void AngleHarmonicIntel::compute(int eflag, int vflag)
template <class flt_t, class acc_t>
void AngleHarmonicIntel::compute(int eflag, int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
{
if (eflag || vflag) ev_setup(eflag,vflag);
else evflag = 0;
@ -83,14 +83,14 @@ void AngleHarmonicIntel::compute(int eflag, int vflag,
if (evflag) {
if (vflag && !eflag) {
if (force->newton_bond)
eval<0,1,1>(vflag, buffers, fc);
eval<0,1,1>(vflag, buffers, fc);
else
eval<0,1,0>(vflag, buffers, fc);
eval<0,1,0>(vflag, buffers, fc);
} else {
if (force->newton_bond)
eval<1,1,1>(vflag, buffers, fc);
eval<1,1,1>(vflag, buffers, fc);
else
eval<1,1,0>(vflag, buffers, fc);
eval<1,1,0>(vflag, buffers, fc);
}
} else {
if (force->newton_bond)
@ -103,9 +103,9 @@ void AngleHarmonicIntel::compute(int eflag, int vflag,
/* ---------------------------------------------------------------------- */
template <int EFLAG, int VFLAG, int NEWTON_BOND, class flt_t, class acc_t>
void AngleHarmonicIntel::eval(const int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
void AngleHarmonicIntel::eval(const int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
{
const int inum = neighbor->nanglelist;
@ -133,7 +133,7 @@ void AngleHarmonicIntel::eval(const int vflag,
#if defined(_OPENMP)
#pragma omp parallel default(none) \
shared(f_start,f_stride,fc) \
shared(f_start,f_stride,fc) \
reduction(+:oeangle,ov0,ov1,ov2,ov3,ov4,ov5)
#endif
{
@ -148,7 +148,7 @@ void AngleHarmonicIntel::eval(const int vflag,
if (fix->need_zero(tid))
memset(f, 0, f_stride * sizeof(FORCE_T));
const int4_t * _noalias const anglelist =
const int4_t * _noalias const anglelist =
(int4_t *) neighbor->anglelist[0];
#ifdef LMP_INTEL_USE_SIMDOFF
@ -228,35 +228,35 @@ void AngleHarmonicIntel::eval(const int vflag,
{
if (NEWTON_BOND || i1 < nlocal) {
f[i1].x += f1x;
f[i1].y += f1y;
f[i1].z += f1z;
f[i1].y += f1y;
f[i1].z += f1z;
}
if (NEWTON_BOND || i2 < nlocal) {
if (NEWTON_BOND || i2 < nlocal) {
f[i2].x -= f1x + f3x;
f[i2].y -= f1y + f3y;
f[i2].z -= f1z + f3z;
f[i2].y -= f1y + f3y;
f[i2].z -= f1z + f3z;
}
if (NEWTON_BOND || i3 < nlocal) {
f[i3].x += f3x;
f[i3].y += f3y;
f[i3].z += f3z;
f[i3].y += f3y;
f[i3].z += f3z;
}
}
if (EFLAG || VFLAG) {
#ifdef LMP_INTEL_USE_SIMDOFF
IP_PRE_ev_tally_angle(EFLAG, VFLAG, eatom, vflag, eangle, i1, i2, i3,
f1x, f1y, f1z, f3x, f3y, f3z, delx1, dely1,
delz1, delx2, dely2, delz2, seangle, f,
NEWTON_BOND, nlocal, sv0, sv1, sv2, sv3, sv4,
IP_PRE_ev_tally_angle(EFLAG, VFLAG, eatom, vflag, eangle, i1, i2, i3,
f1x, f1y, f1z, f3x, f3y, f3z, delx1, dely1,
delz1, delx2, dely2, delz2, seangle, f,
NEWTON_BOND, nlocal, sv0, sv1, sv2, sv3, sv4,
sv5);
#else
IP_PRE_ev_tally_angle(EFLAG, VFLAG, eatom, vflag, eangle, i1, i2, i3,
f1x, f1y, f1z, f3x, f3y, f3z, delx1, dely1,
delz1, delx2, dely2, delz2, oeangle, f,
NEWTON_BOND, nlocal, ov0, ov1, ov2, ov3, ov4,
IP_PRE_ev_tally_angle(EFLAG, VFLAG, eatom, vflag, eangle, i1, i2, i3,
f1x, f1y, f1z, f3x, f3y, f3z, delx1, dely1,
delz1, delx2, dely2, delz2, oeangle, f,
NEWTON_BOND, nlocal, ov0, ov1, ov2, ov3, ov4,
ov5);
#endif
}
@ -264,8 +264,8 @@ void AngleHarmonicIntel::eval(const int vflag,
#ifdef LMP_INTEL_USE_SIMDOFF
if (EFLAG) oeangle += seangle;
if (VFLAG && vflag) {
ov0 += sv0; ov1 += sv1; ov2 += sv2;
ov3 += sv3; ov4 += sv4; ov5 += sv5;
ov0 += sv0; ov1 += sv1; ov2 += sv2;
ov3 += sv3; ov4 += sv4; ov5 += sv5;
}
#endif
} // omp parallel
@ -273,7 +273,7 @@ void AngleHarmonicIntel::eval(const int vflag,
if (EFLAG) energy += oeangle;
if (VFLAG && vflag) {
virial[0] += ov0; virial[1] += ov1; virial[2] += ov2;
virial[3] += ov3; virial[4] += ov4; virial[5] += ov5;
virial[3] += ov3; virial[4] += ov4; virial[5] += ov5;
}
fix->set_reduce_flag();
@ -328,11 +328,11 @@ void AngleHarmonicIntel::pack_force_const(ForceConst<flt_t> &fc,
template <class flt_t>
void AngleHarmonicIntel::ForceConst<flt_t>::set_ntypes(const int nangletypes,
Memory *memory) {
Memory *memory) {
if (nangletypes != _nangletypes) {
if (_nangletypes > 0)
_memory->destroy(fc);
if (nangletypes > 0)
_memory->create(fc,nangletypes,"anglecharmmintel.fc");
}

View File

@ -45,8 +45,8 @@ class AngleHarmonicIntel : public AngleHarmonic {
void compute(int eflag, int vflag, IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc);
template <int EVFLAG, int EFLAG, int NEWTON_BOND, class flt_t, class acc_t>
void eval(const int vflag, IntelBuffers<flt_t,acc_t> * buffers,
const ForceConst<flt_t> &fc);
void eval(const int vflag, IntelBuffers<flt_t,acc_t> * buffers,
const ForceConst<flt_t> &fc);
template <class flt_t, class acc_t>
void pack_force_const(ForceConst<flt_t> &fc,
IntelBuffers<flt_t, acc_t> *buffers);

View File

@ -33,7 +33,7 @@ typedef struct { int a,b,t; } int3_t;
/* ---------------------------------------------------------------------- */
BondFENEIntel::BondFENEIntel(LAMMPS *lmp) : BondFENE(lmp)
BondFENEIntel::BondFENEIntel(LAMMPS *lmp) : BondFENE(lmp)
{
suffix_flag |= Suffix::INTEL;
}
@ -70,8 +70,8 @@ void BondFENEIntel::compute(int eflag, int vflag)
template <class flt_t, class acc_t>
void BondFENEIntel::compute(int eflag, int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
{
if (eflag || vflag) ev_setup(eflag,vflag);
else evflag = 0;
@ -79,14 +79,14 @@ void BondFENEIntel::compute(int eflag, int vflag,
if (evflag) {
if (vflag && !eflag) {
if (force->newton_bond)
eval<0,1,1>(vflag, buffers, fc);
eval<0,1,1>(vflag, buffers, fc);
else
eval<0,1,0>(vflag, buffers, fc);
eval<0,1,0>(vflag, buffers, fc);
} else {
if (force->newton_bond)
eval<1,1,1>(vflag, buffers, fc);
eval<1,1,1>(vflag, buffers, fc);
else
eval<1,1,0>(vflag, buffers, fc);
eval<1,1,0>(vflag, buffers, fc);
}
} else {
if (force->newton_bond)
@ -97,9 +97,9 @@ void BondFENEIntel::compute(int eflag, int vflag,
}
template <int EFLAG, int VFLAG, int NEWTON_BOND, class flt_t, class acc_t>
void BondFENEIntel::eval(const int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
void BondFENEIntel::eval(const int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
{
const int inum = neighbor->nbondlist;
if (inum == 0) return;
@ -126,7 +126,7 @@ void BondFENEIntel::eval(const int vflag,
#if defined(_OPENMP)
#pragma omp parallel default(none) \
shared(f_start,f_stride,fc) \
shared(f_start,f_stride,fc) \
reduction(+:oebond,ov0,ov1,ov2,ov3,ov4,ov5)
#endif
{
@ -141,7 +141,7 @@ void BondFENEIntel::eval(const int vflag,
if (fix->need_zero(tid))
memset(f, 0, f_stride * sizeof(FORCE_T));
const int3_t * _noalias const bondlist =
const int3_t * _noalias const bondlist =
(int3_t *) neighbor->bondlist[0];
#ifdef LMP_INTEL_USE_SIMDOFF
@ -176,7 +176,7 @@ void BondFENEIntel::eval(const int vflag,
// if r -> r0, then rlogarg < 0.0 which is an error
// issue a warning and reset rlogarg = epsilon
// if r > 2*r0 something serious is wrong, abort
if (rlogarg < (flt_t)0.1) {
char str[128];
sprintf(str,"FENE bond too long: " BIGINT_FORMAT " "
@ -186,18 +186,18 @@ void BondFENEIntel::eval(const int vflag,
if (rlogarg <= (flt_t)-3.0) error->one(FLERR,"Bad FENE bond");
rlogarg = (flt_t)0.1;
}
flt_t fbond = -k/rlogarg;
// force from LJ term
flt_t sr2,sr6;
if (rsq < (flt_t)TWO_1_3*sigmasq) {
sr2 = sigmasq * irsq;
sr2 = sigmasq * irsq;
sr6 = sr2 * sr2 * sr2;
fbond += (flt_t)48.0 * epsilon * sr6 * (sr6 - (flt_t)0.5) * irsq;
}
// energy
flt_t ebond;
@ -215,27 +215,27 @@ void BondFENEIntel::eval(const int vflag,
{
if (NEWTON_BOND || i1 < nlocal) {
f[i1].x += delx*fbond;
f[i1].y += dely*fbond;
f[i1].z += delz*fbond;
f[i1].y += dely*fbond;
f[i1].z += delz*fbond;
}
if (NEWTON_BOND || i2 < nlocal) {
f[i2].x -= delx*fbond;
f[i2].y -= dely*fbond;
f[i2].z -= delz*fbond;
f[i2].y -= dely*fbond;
f[i2].z -= delz*fbond;
}
}
}
if (EFLAG || VFLAG) {
#ifdef LMP_INTEL_USE_SIMDOFF
IP_PRE_ev_tally_bond(EFLAG, VFLAG, eatom, vflag, ebond, i1, i2, fbond,
delx, dely, delz, sebond, f, NEWTON_BOND,
IP_PRE_ev_tally_bond(EFLAG, VFLAG, eatom, vflag, ebond, i1, i2, fbond,
delx, dely, delz, sebond, f, NEWTON_BOND,
nlocal, sv0, sv1, sv2, sv3, sv4, sv5);
#else
IP_PRE_ev_tally_bond(EFLAG, VFLAG, eatom, vflag, ebond, i1, i2, fbond,
delx, dely, delz, oebond, f, NEWTON_BOND,
#else
IP_PRE_ev_tally_bond(EFLAG, VFLAG, eatom, vflag, ebond, i1, i2, fbond,
delx, dely, delz, oebond, f, NEWTON_BOND,
nlocal, ov0, ov1, ov2, ov3, ov4, ov5);
#endif
#endif
}
} // for n
#ifdef LMP_INTEL_USE_SIMDOFF
@ -250,7 +250,7 @@ void BondFENEIntel::eval(const int vflag,
if (EFLAG) energy += oebond;
if (VFLAG && vflag) {
virial[0] += ov0; virial[1] += ov1; virial[2] += ov2;
virial[3] += ov3; virial[4] += ov4; virial[5] += ov5;
virial[3] += ov3; virial[4] += ov4; virial[5] += ov5;
}
fix->set_reduce_flag();
@ -307,11 +307,11 @@ void BondFENEIntel::pack_force_const(ForceConst<flt_t> &fc,
template <class flt_t>
void BondFENEIntel::ForceConst<flt_t>::set_ntypes(const int nbondtypes,
Memory *memory) {
Memory *memory) {
if (nbondtypes != _nbondtypes) {
if (_nbondtypes > 0)
_memory->destroy(fc);
if (nbondtypes > 0)
_memory->create(fc,nbondtypes,"bondfeneintel.fc");
}

View File

@ -45,8 +45,8 @@ class BondFENEIntel : public BondFENE {
void compute(int eflag, int vflag, IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc);
template <int EVFLAG, int EFLAG, int NEWTON_BOND, class flt_t, class acc_t>
void eval(const int vflag, IntelBuffers<flt_t,acc_t> * buffers,
const ForceConst<flt_t> &fc);
void eval(const int vflag, IntelBuffers<flt_t,acc_t> * buffers,
const ForceConst<flt_t> &fc);
template <class flt_t, class acc_t>
void pack_force_const(ForceConst<flt_t> &fc,
IntelBuffers<flt_t, acc_t> *buffers);

View File

@ -33,7 +33,7 @@ typedef struct { int a,b,t; } int3_t;
/* ---------------------------------------------------------------------- */
BondHarmonicIntel::BondHarmonicIntel(LAMMPS *lmp) : BondHarmonic(lmp)
BondHarmonicIntel::BondHarmonicIntel(LAMMPS *lmp) : BondHarmonic(lmp)
{
suffix_flag |= Suffix::INTEL;
}
@ -70,8 +70,8 @@ void BondHarmonicIntel::compute(int eflag, int vflag)
template <class flt_t, class acc_t>
void BondHarmonicIntel::compute(int eflag, int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
{
if (eflag || vflag) ev_setup(eflag,vflag);
else evflag = 0;
@ -79,14 +79,14 @@ void BondHarmonicIntel::compute(int eflag, int vflag,
if (evflag) {
if (vflag && !eflag) {
if (force->newton_bond)
eval<0,1,1>(vflag, buffers, fc);
eval<0,1,1>(vflag, buffers, fc);
else
eval<0,1,0>(vflag, buffers, fc);
eval<0,1,0>(vflag, buffers, fc);
} else {
if (force->newton_bond)
eval<1,1,1>(vflag, buffers, fc);
eval<1,1,1>(vflag, buffers, fc);
else
eval<1,1,0>(vflag, buffers, fc);
eval<1,1,0>(vflag, buffers, fc);
}
} else {
if (force->newton_bond)
@ -97,9 +97,9 @@ void BondHarmonicIntel::compute(int eflag, int vflag,
}
template <int EFLAG, int VFLAG, int NEWTON_BOND, class flt_t, class acc_t>
void BondHarmonicIntel::eval(const int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
void BondHarmonicIntel::eval(const int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
{
const int inum = neighbor->nbondlist;
if (inum == 0) return;
@ -126,7 +126,7 @@ void BondHarmonicIntel::eval(const int vflag,
#if defined(_OPENMP)
#pragma omp parallel default(none) \
shared(f_start,f_stride,fc) \
shared(f_start,f_stride,fc) \
reduction(+:oebond,ov0,ov1,ov2,ov3,ov4,ov5)
#endif
{
@ -141,7 +141,7 @@ void BondHarmonicIntel::eval(const int vflag,
if (fix->need_zero(tid))
memset(f, 0, f_stride * sizeof(FORCE_T));
const int3_t * _noalias const bondlist =
const int3_t * _noalias const bondlist =
(int3_t *) neighbor->bondlist[0];
#ifdef LMP_INTEL_USE_SIMDOFF
@ -184,29 +184,29 @@ void BondHarmonicIntel::eval(const int vflag,
{
if (NEWTON_BOND || i1 < nlocal) {
f[i1].x += delx*fbond;
f[i1].y += dely*fbond;
f[i1].z += delz*fbond;
f[i1].y += dely*fbond;
f[i1].z += delz*fbond;
}
if (NEWTON_BOND || i2 < nlocal) {
f[i2].x -= delx*fbond;
f[i2].y -= dely*fbond;
f[i2].z -= delz*fbond;
f[i2].y -= dely*fbond;
f[i2].z -= delz*fbond;
}
}
if (EFLAG || VFLAG) {
#ifdef LMP_INTEL_USE_SIMDOFF
IP_PRE_ev_tally_bond(EFLAG, VFLAG, eatom, vflag, ebond, i1, i2,
fbond, delx, dely, delz, sebond, f,
NEWTON_BOND, nlocal, sv0, sv1, sv2, sv3,
IP_PRE_ev_tally_bond(EFLAG, VFLAG, eatom, vflag, ebond, i1, i2,
fbond, delx, dely, delz, sebond, f,
NEWTON_BOND, nlocal, sv0, sv1, sv2, sv3,
sv4, sv5);
#else
IP_PRE_ev_tally_bond(EFLAG, VFLAG, eatom, vflag, ebond, i1, i2,
fbond, delx, dely, delz, oebond, f,
NEWTON_BOND, nlocal, ov0, ov1, ov2, ov3,
#else
IP_PRE_ev_tally_bond(EFLAG, VFLAG, eatom, vflag, ebond, i1, i2,
fbond, delx, dely, delz, oebond, f,
NEWTON_BOND, nlocal, ov0, ov1, ov2, ov3,
ov4, ov5);
#endif
#endif
}
} // for n
#ifdef LMP_INTEL_USE_SIMDOFF
@ -221,7 +221,7 @@ void BondHarmonicIntel::eval(const int vflag,
if (EFLAG) energy += oebond;
if (VFLAG && vflag) {
virial[0] += ov0; virial[1] += ov1; virial[2] += ov2;
virial[3] += ov3; virial[4] += ov4; virial[5] += ov5;
virial[3] += ov3; virial[4] += ov4; virial[5] += ov5;
}
fix->set_reduce_flag();
@ -276,11 +276,11 @@ void BondHarmonicIntel::pack_force_const(ForceConst<flt_t> &fc,
template <class flt_t>
void BondHarmonicIntel::ForceConst<flt_t>::set_ntypes(const int nbondtypes,
Memory *memory) {
Memory *memory) {
if (nbondtypes != _nbondtypes) {
if (_nbondtypes > 0)
_memory->destroy(fc);
if (nbondtypes > 0)
_memory->create(fc,nbondtypes,"bondharmonicintel.fc");
}

View File

@ -45,8 +45,8 @@ class BondHarmonicIntel : public BondHarmonic {
void compute(int eflag, int vflag, IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc);
template <int EVFLAG, int EFLAG, int NEWTON_BOND, class flt_t, class acc_t>
void eval(const int vflag, IntelBuffers<flt_t,acc_t> * buffers,
const ForceConst<flt_t> &fc);
void eval(const int vflag, IntelBuffers<flt_t,acc_t> * buffers,
const ForceConst<flt_t> &fc);
template <class flt_t, class acc_t>
void pack_force_const(ForceConst<flt_t> &fc,
IntelBuffers<flt_t, acc_t> *buffers);

View File

@ -80,8 +80,8 @@ void DihedralCharmmIntel::compute(int eflag, int vflag)
template <class flt_t, class acc_t>
void DihedralCharmmIntel::compute(int eflag, int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
{
if (eflag || vflag) {
ev_setup(eflag,vflag);
@ -95,14 +95,14 @@ void DihedralCharmmIntel::compute(int eflag, int vflag,
if (evflag) {
if (vflag && !eflag) {
if (force->newton_bond)
eval<0,1,1>(vflag, buffers, fc);
eval<0,1,1>(vflag, buffers, fc);
else
eval<0,1,0>(vflag, buffers, fc);
eval<0,1,0>(vflag, buffers, fc);
} else {
if (force->newton_bond)
eval<1,1,1>(vflag, buffers, fc);
eval<1,1,1>(vflag, buffers, fc);
else
eval<1,1,0>(vflag, buffers, fc);
eval<1,1,0>(vflag, buffers, fc);
}
} else {
if (force->newton_bond)
@ -115,9 +115,9 @@ void DihedralCharmmIntel::compute(int eflag, int vflag,
#ifndef LMP_USE_AVXCD_DHC
template <int EFLAG, int VFLAG, int NEWTON_BOND, class flt_t, class acc_t>
void DihedralCharmmIntel::eval(const int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
void DihedralCharmmIntel::eval(const int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
{
const int inum = neighbor->ndihedrallist;
@ -148,9 +148,9 @@ void DihedralCharmmIntel::eval(const int vflag,
#if defined(_OPENMP)
#pragma omp parallel default(none) \
shared(f_start,f_stride,fc) \
shared(f_start,f_stride,fc) \
reduction(+:oevdwl,oecoul,oedihedral,ov0,ov1,ov2,ov3,ov4,ov5, \
opv0,opv1,opv2,opv3,opv4,opv5)
opv0,opv1,opv2,opv3,opv4,opv5)
#endif
{
#if defined(LMP_SIMD_COMPILER_TEST)
@ -165,7 +165,7 @@ void DihedralCharmmIntel::eval(const int vflag,
if (fix->need_zero(tid))
memset(f, 0, f_stride * sizeof(FORCE_T));
const int5_t * _noalias const dihedrallist =
const int5_t * _noalias const dihedrallist =
(int5_t *) neighbor->dihedrallist[0];
const flt_t qqrd2e = force->qqrd2e;
@ -180,7 +180,7 @@ void DihedralCharmmIntel::eval(const int vflag,
#if defined(LMP_SIMD_COMPILER_TEST)
#pragma vector aligned
#pragma simd reduction(+:sedihedral, sevdwl, secoul, sv0, sv1, sv2, \
sv3, sv4, sv5, spv0, spv1, spv2, spv3, spv4, spv5)
sv3, sv4, sv5, spv0, spv1, spv2, spv3, spv4, spv5)
for (int n = nfrom; n < nto; n++) {
#endif
for (int n = nfrom; n < nto; n += npl) {
@ -204,7 +204,7 @@ void DihedralCharmmIntel::eval(const int vflag,
const flt_t vb2zm = x[i2].z - x[i3].z;
// 3rd bond
const flt_t vb3x = x[i4].x - x[i3].x;
const flt_t vb3y = x[i4].y - x[i3].y;
const flt_t vb3z = x[i4].z - x[i3].z;
@ -244,25 +244,25 @@ void DihedralCharmmIntel::eval(const int vflag,
// error check
#ifndef LMP_SIMD_COMPILER_TEST
if (c > PTOLERANCE || c < MTOLERANCE) {
int me = comm->me;
int me = comm->me;
if (screen) {
char str[128];
sprintf(str,"Dihedral problem: %d/%d " BIGINT_FORMAT " "
TAGINT_FORMAT " " TAGINT_FORMAT " "
TAGINT_FORMAT " " TAGINT_FORMAT,
me,tid,update->ntimestep,
atom->tag[i1],atom->tag[i2],atom->tag[i3],atom->tag[i4]);
error->warning(FLERR,str,0);
fprintf(screen," 1st atom: %d %g %g %g\n",
me,x[i1].x,x[i1].y,x[i1].z);
fprintf(screen," 2nd atom: %d %g %g %g\n",
me,x[i2].x,x[i2].y,x[i2].z);
fprintf(screen," 3rd atom: %d %g %g %g\n",
me,x[i3].x,x[i3].y,x[i3].z);
fprintf(screen," 4th atom: %d %g %g %g\n",
me,x[i4].x,x[i4].y,x[i4].z);
}
if (screen) {
char str[128];
sprintf(str,"Dihedral problem: %d/%d " BIGINT_FORMAT " "
TAGINT_FORMAT " " TAGINT_FORMAT " "
TAGINT_FORMAT " " TAGINT_FORMAT,
me,tid,update->ntimestep,
atom->tag[i1],atom->tag[i2],atom->tag[i3],atom->tag[i4]);
error->warning(FLERR,str,0);
fprintf(screen," 1st atom: %d %g %g %g\n",
me,x[i1].x,x[i1].y,x[i1].z);
fprintf(screen," 2nd atom: %d %g %g %g\n",
me,x[i2].x,x[i2].y,x[i2].z);
fprintf(screen," 3rd atom: %d %g %g %g\n",
me,x[i3].x,x[i3].y,x[i3].z);
fprintf(screen," 4th atom: %d %g %g %g\n",
me,x[i4].x,x[i4].y,x[i4].z);
}
}
#endif
@ -279,19 +279,19 @@ void DihedralCharmmIntel::eval(const int vflag,
ddf1 = df1 = (flt_t)0.0;
for (int i = 0; i < m; i++) {
ddf1 = p*c - df1*s;
df1 = p*s + df1*c;
p = ddf1;
ddf1 = p*c - df1*s;
df1 = p*s + df1*c;
p = ddf1;
}
p = p*tcos_shift + df1*tsin_shift;
df1 = df1*tcos_shift - ddf1*tsin_shift;
df1 *= -m;
p += (flt_t)1.0;
if (m == 0) {
p = (flt_t)1.0 + tcos_shift;
df1 = (flt_t)0.0;
p = (flt_t)1.0 + tcos_shift;
df1 = (flt_t)0.0;
}
const flt_t fg = vb1x*vb2xm + vb1y*vb2ym + vb1z*vb2zm;
@ -334,12 +334,12 @@ void DihedralCharmmIntel::eval(const int vflag,
const flt_t f3z = -sz2 - f4z;
if (EFLAG || VFLAG) {
flt_t deng;
if (EFLAG) deng = tk * p;
IP_PRE_ev_tally_dihed(EFLAG, VFLAG, eatom, vflag, deng, i1, i2, i3,
i4, f1x, f1y, f1z, f3x, f3y, f3z, f4x, f4y,
flt_t deng;
if (EFLAG) deng = tk * p;
IP_PRE_ev_tally_dihed(EFLAG, VFLAG, eatom, vflag, deng, i1, i2, i3,
i4, f1x, f1y, f1z, f3x, f3y, f3z, f4x, f4y,
f4z, vb1x, vb1y, vb1z, -vb2xm, -vb2ym, -vb2zm,
vb3x, vb3y, vb3z, sedihedral, f, NEWTON_BOND,
vb3x, vb3y, vb3z, sedihedral, f, NEWTON_BOND,
nlocal, sv0, sv1, sv2, sv3, sv4, sv5);
}
@ -349,15 +349,15 @@ void DihedralCharmmIntel::eval(const int vflag,
#endif
{
if (NEWTON_BOND || i2 < nlocal) {
f[i2].x += f2x;
f[i2].y += f2y;
f[i2].z += f2z;
f[i2].x += f2x;
f[i2].y += f2y;
f[i2].z += f2z;
}
if (NEWTON_BOND || i3 < nlocal) {
f[i3].x += f3x;
f[i3].y += f3y;
f[i3].z += f3z;
f[i3].x += f3x;
f[i3].y += f3y;
f[i3].z += f3z;
}
}
@ -372,54 +372,54 @@ void DihedralCharmmIntel::eval(const int vflag,
flt_t forcecoul;
if (implicit) forcecoul = qqrd2e * q[i1]*q[i4]*r2inv;
else forcecoul = qqrd2e * q[i1]*q[i4]*sqrt(r2inv);
const flt_t forcelj = r6inv * (fc.ljp[itype][jtype].lj1*r6inv -
fc.ljp[itype][jtype].lj2);
const flt_t forcelj = r6inv * (fc.ljp[itype][jtype].lj1*r6inv -
fc.ljp[itype][jtype].lj2);
const flt_t fpair = tweight * (forcelj+forcecoul)*r2inv;
if (NEWTON_BOND || i1 < nlocal) {
f1x += delx*fpair;
f1y += dely*fpair;
f1z += delz*fpair;
f1x += delx*fpair;
f1y += dely*fpair;
f1z += delz*fpair;
}
if (NEWTON_BOND || i4 < nlocal) {
f4x -= delx*fpair;
f4y -= dely*fpair;
f4z -= delz*fpair;
f4x -= delx*fpair;
f4y -= dely*fpair;
f4z -= delz*fpair;
}
if (EFLAG || VFLAG) {
flt_t ev_pre = (flt_t)0;
if (NEWTON_BOND || i1 < nlocal)
ev_pre += (flt_t)0.5;
if (NEWTON_BOND || i4 < nlocal)
ev_pre += (flt_t)0.5;
flt_t ev_pre = (flt_t)0;
if (NEWTON_BOND || i1 < nlocal)
ev_pre += (flt_t)0.5;
if (NEWTON_BOND || i4 < nlocal)
ev_pre += (flt_t)0.5;
if (EFLAG) {
flt_t ecoul, evdwl;
ecoul = tweight * forcecoul;
evdwl = tweight * r6inv * (fc.ljp[itype][jtype].lj3*r6inv -
fc.ljp[itype][jtype].lj4);
secoul += ev_pre * ecoul;
sevdwl += ev_pre * evdwl;
if (eatom) {
evdwl *= (flt_t)0.5;
evdwl += (flt_t)0.5 * ecoul;
if (NEWTON_BOND || i1 < nlocal)
f[i1].w += evdwl;
if (NEWTON_BOND || i4 < nlocal)
f[i4].w += evdwl;
}
}
// IP_PRE_ev_tally_nbor(vflag, ev_pre, fpair,
// delx, dely, delz);
if (VFLAG && vflag) {
spv0 += ev_pre * delx * delx * fpair;
spv1 += ev_pre * dely * dely * fpair;
spv2 += ev_pre * delz * delz * fpair;
spv3 += ev_pre * delx * dely * fpair;
spv4 += ev_pre * delx * delz * fpair;
spv5 += ev_pre * dely * delz * fpair;
}
if (EFLAG) {
flt_t ecoul, evdwl;
ecoul = tweight * forcecoul;
evdwl = tweight * r6inv * (fc.ljp[itype][jtype].lj3*r6inv -
fc.ljp[itype][jtype].lj4);
secoul += ev_pre * ecoul;
sevdwl += ev_pre * evdwl;
if (eatom) {
evdwl *= (flt_t)0.5;
evdwl += (flt_t)0.5 * ecoul;
if (NEWTON_BOND || i1 < nlocal)
f[i1].w += evdwl;
if (NEWTON_BOND || i4 < nlocal)
f[i4].w += evdwl;
}
}
// IP_PRE_ev_tally_nbor(vflag, ev_pre, fpair,
// delx, dely, delz);
if (VFLAG && vflag) {
spv0 += ev_pre * delx * delx * fpair;
spv1 += ev_pre * dely * dely * fpair;
spv2 += ev_pre * delz * delz * fpair;
spv3 += ev_pre * delx * dely * fpair;
spv4 += ev_pre * delx * delz * fpair;
spv5 += ev_pre * dely * delz * fpair;
}
}
// apply force to each of 4 atoms
@ -428,15 +428,15 @@ void DihedralCharmmIntel::eval(const int vflag,
#endif
{
if (NEWTON_BOND || i1 < nlocal) {
f[i1].x += f1x;
f[i1].y += f1y;
f[i1].z += f1z;
f[i1].x += f1x;
f[i1].y += f1y;
f[i1].z += f1z;
}
if (NEWTON_BOND || i4 < nlocal) {
f[i4].x += f4x;
f[i4].y += f4y;
f[i4].z += f4z;
f[i4].x += f4x;
f[i4].y += f4y;
f[i4].z += f4z;
}
}
} // for n
@ -447,7 +447,7 @@ void DihedralCharmmIntel::eval(const int vflag,
}
if (VFLAG && vflag) {
ov0 += sv0; ov1 += sv1; ov2 += sv2; ov3 += sv3; ov4 += sv4; ov5 += sv5;
opv0 += spv0; opv1 += spv1; opv2 += spv2;
opv0 += spv0; opv1 += spv1; opv2 += spv2;
opv3 += spv3; opv4 += spv4; opv5 += spv5;
}
} // omp parallel
@ -485,9 +485,9 @@ authors for more details.
------------------------------------------------------------------------- */
template <int EFLAG, int VFLAG, int NEWTON_BOND, class flt_t, class acc_t>
void DihedralCharmmIntel::eval(const int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
void DihedralCharmmIntel::eval(const int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
{
typedef typename SIMD_type<flt_t>::SIMD_vec SIMD_flt_t;
@ -522,20 +522,20 @@ void DihedralCharmmIntel::eval(const int vflag,
#if defined(_OPENMP)
#pragma omp parallel default(none) \
shared(f_start,f_stride,fc) \
shared(f_start,f_stride,fc) \
reduction(+:oevdwl,oecoul,oedihedral,ov0,ov1,ov2,ov3,ov4,ov5, \
opv0,opv1,opv2,opv3,opv4,opv5)
opv0,opv1,opv2,opv3,opv4,opv5)
#endif
{
int nfrom, npl, nto, tid;
IP_PRE_omp_stride_id_vec(nfrom, npl, nto, tid, inum, nthreads,
swidth);
swidth);
FORCE_T * _noalias const f = f_start + (tid * f_stride);
if (fix->need_zero(tid))
memset(f, 0, f_stride * sizeof(FORCE_T));
const int * _noalias const dihedrallist =
const int * _noalias const dihedrallist =
(int *) neighbor->dihedrallist[0];
const flt_t * _noalias const weight = &(fc.weight[0]);
const flt_t * _noalias const x_f = &(x[0].x);
@ -574,7 +574,7 @@ void DihedralCharmmIntel::eval(const int vflag,
}
SIMD_int n_offset = SIMD_set(0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50,
55, 60, 65, 70, 75) + (nfrom * 5);
55, 60, 65, 70, 75) + (nfrom * 5);
const int nto5 = nto * 5;
const int nlocals4 = nlocal << 4;
const SIMD_int simd_nlocals4 = SIMD_set(nlocals4);
@ -618,7 +618,7 @@ void DihedralCharmmIntel::eval(const int vflag,
const SIMD_flt_t vb2zm = z2 - z3;
// 3rd bond
SIMD_flt_t x4, y4, z4;
SIMD_int jtype;
@ -664,7 +664,7 @@ void DihedralCharmmIntel::eval(const int vflag,
const SIMD_flt_t ptol = SIMD_set(PTOLERANCE);
const SIMD_flt_t ntol = SIMD_set(MTOLERANCE);
if (c > ptol || c < ntol)
if (screen)
if (screen)
error->warning(FLERR,"Dihedral problem.");
c = SIMD_set(c, c > one, one);
@ -678,14 +678,14 @@ void DihedralCharmmIntel::eval(const int vflag,
SIMD_flt_t p(one);
SIMD_flt_t ddf1(szero);
SIMD_flt_t df1(szero);
const int m_max = SIMD_max(m);
for (int i = 0; i < m_max; i++) {
const SIMD_mask my_m = i < m;
ddf1 = SIMD_set(ddf1, my_m, p*c - df1*s);
df1 = SIMD_set(df1, my_m, p*s + df1*c);
p = SIMD_set(p, my_m, ddf1);
const SIMD_mask my_m = i < m;
ddf1 = SIMD_set(ddf1, my_m, p*c - df1*s);
df1 = SIMD_set(df1, my_m, p*s + df1*c);
p = SIMD_set(p, my_m, ddf1);
}
SIMD_flt_t multf;
@ -694,7 +694,7 @@ void DihedralCharmmIntel::eval(const int vflag,
df1 = df1*tcos_shift - ddf1*tsin_shift;
df1 = df1 * multf;
p = p + one;
SIMD_mask mzero = (m == SIMD_set((int)0));
p = SIMD_set(p, mzero, one + tcos_shift);
df1 = SIMD_set(df1, mzero, szero);
@ -740,40 +740,40 @@ void DihedralCharmmIntel::eval(const int vflag,
SIMD_flt_t qdeng;
if (EFLAG || VFLAG) {
SIMD_flt_t ev_pre;
if (NEWTON_BOND) ev_pre = one;
else {
ev_pre = szero;
const SIMD_flt_t quarter = SIMD_set((flt_t)0.25);
ev_pre = SIMD_add(ev_pre, i1 < simd_nlocals4, ev_pre, quarter);
ev_pre = SIMD_add(ev_pre, i2 < simd_nlocals4, ev_pre, quarter);
ev_pre = SIMD_add(ev_pre, i3 < simd_nlocals4, ev_pre, quarter);
ev_pre = SIMD_add(ev_pre, i4 < simd_nlocals4, ev_pre, quarter);
}
SIMD_zero_masked(nmask, ev_pre);
if (EFLAG) {
const SIMD_flt_t deng = tk * p;
sedihedral = SIMD_ev_add(sedihedral, ev_pre * deng);
if (eatom) {
qdeng = deng * SIMD_set((flt_t)0.25);
SIMD_mask newton_mask;
if (NEWTON_BOND) newton_mask = nmask;
if (!NEWTON_BOND) newton_mask = SIMD_lt(nmask, i2, simd_nlocals4);
SIMD_flt_t ieng = qdeng;
SIMD_jeng_update(newton_mask, featom, i2, ieng);
ieng = qdeng;
if (!NEWTON_BOND) newton_mask = SIMD_lt(nmask, i3, simd_nlocals4);
SIMD_jeng_update(newton_mask, featom, i3, ieng);
}
}
if (VFLAG && vflag) {
SIMD_flt_t ev_pre;
if (NEWTON_BOND) ev_pre = one;
else {
ev_pre = szero;
const SIMD_flt_t quarter = SIMD_set((flt_t)0.25);
ev_pre = SIMD_add(ev_pre, i1 < simd_nlocals4, ev_pre, quarter);
ev_pre = SIMD_add(ev_pre, i2 < simd_nlocals4, ev_pre, quarter);
ev_pre = SIMD_add(ev_pre, i3 < simd_nlocals4, ev_pre, quarter);
ev_pre = SIMD_add(ev_pre, i4 < simd_nlocals4, ev_pre, quarter);
}
SIMD_zero_masked(nmask, ev_pre);
if (EFLAG) {
const SIMD_flt_t deng = tk * p;
sedihedral = SIMD_ev_add(sedihedral, ev_pre * deng);
if (eatom) {
qdeng = deng * SIMD_set((flt_t)0.25);
SIMD_mask newton_mask;
if (NEWTON_BOND) newton_mask = nmask;
if (!NEWTON_BOND) newton_mask = SIMD_lt(nmask, i2, simd_nlocals4);
SIMD_flt_t ieng = qdeng;
SIMD_jeng_update(newton_mask, featom, i2, ieng);
ieng = qdeng;
if (!NEWTON_BOND) newton_mask = SIMD_lt(nmask, i3, simd_nlocals4);
SIMD_jeng_update(newton_mask, featom, i3, ieng);
}
}
if (VFLAG && vflag) {
sv0 = SIMD_ev_add(sv0, ev_pre*(vb1x*f1x-vb2xm*f3x+(vb3x-vb2xm)*f4x));
sv1 = SIMD_ev_add(sv1, ev_pre*(vb1y*f1y-vb2ym*f3y+(vb3y-vb2ym)*f4y));
sv2 = SIMD_ev_add(sv2, ev_pre*(vb1z*f1z-vb2zm*f3z+(vb3z-vb2zm)*f4z));
sv3 = SIMD_ev_add(sv3, ev_pre*(vb1x*f1y-vb2xm*f3y+(vb3x-vb2xm)*f4y));
sv4 = SIMD_ev_add(sv4, ev_pre*(vb1x*f1z-vb2xm*f3z+(vb3x-vb2xm)*f4z));
sv5 = SIMD_ev_add(sv5, ev_pre*(vb1y*f1z-vb2ym*f3z+(vb3y-vb2ym)*f4z));
}
sv1 = SIMD_ev_add(sv1, ev_pre*(vb1y*f1y-vb2ym*f3y+(vb3y-vb2ym)*f4y));
sv2 = SIMD_ev_add(sv2, ev_pre*(vb1z*f1z-vb2zm*f3z+(vb3z-vb2zm)*f4z));
sv3 = SIMD_ev_add(sv3, ev_pre*(vb1x*f1y-vb2xm*f3y+(vb3x-vb2xm)*f4y));
sv4 = SIMD_ev_add(sv4, ev_pre*(vb1x*f1z-vb2xm*f3z+(vb3x-vb2xm)*f4z));
sv5 = SIMD_ev_add(sv5, ev_pre*(vb1y*f1z-vb2ym*f3z+(vb3y-vb2ym)*f4z));
}
}
SIMD_mask newton_mask;
@ -809,27 +809,27 @@ void DihedralCharmmIntel::eval(const int vflag,
f4z = f4z - delz * fpair;
if (EFLAG || VFLAG) {
SIMD_flt_t ev_pre;
if (NEWTON_BOND) ev_pre = one;
else {
ev_pre = szero;
SIMD_flt_t ev_pre;
if (NEWTON_BOND) ev_pre = one;
else {
ev_pre = szero;
const SIMD_flt_t half = SIMD_set((flt_t)0.5);
ev_pre = SIMD_add(ev_pre, i1 < simd_nlocals4,ev_pre,half);
ev_pre = SIMD_add(ev_pre, i4 < simd_nlocals4,ev_pre,half);
}
SIMD_zero_masked(nmask, ev_pre);
}
SIMD_zero_masked(nmask, ev_pre);
if (EFLAG) {
const SIMD_flt_t ecoul = tweight * forcecoul;
const SIMD_flt_t lj3 = SIMD_gather(nmask, plj3, ijtype);
const SIMD_flt_t lj4 = SIMD_gather(nmask, plj4, ijtype);
SIMD_flt_t evdwl = tweight * r6inv * (lj3 * r6inv - lj4);
secoul = SIMD_ev_add(secoul, ev_pre * ecoul);
sevdwl = SIMD_ev_add(sevdwl, ev_pre * evdwl);
if (eatom) {
const SIMD_flt_t half = SIMD_set((flt_t)0.5);
evdwl = evdwl * half;
evdwl = evdwl + half * ecoul + qdeng;
if (EFLAG) {
const SIMD_flt_t ecoul = tweight * forcecoul;
const SIMD_flt_t lj3 = SIMD_gather(nmask, plj3, ijtype);
const SIMD_flt_t lj4 = SIMD_gather(nmask, plj4, ijtype);
SIMD_flt_t evdwl = tweight * r6inv * (lj3 * r6inv - lj4);
secoul = SIMD_ev_add(secoul, ev_pre * ecoul);
sevdwl = SIMD_ev_add(sevdwl, ev_pre * evdwl);
if (eatom) {
const SIMD_flt_t half = SIMD_set((flt_t)0.5);
evdwl = evdwl * half;
evdwl = evdwl + half * ecoul + qdeng;
if (NEWTON_BOND) newton_mask = nmask;
if (!NEWTON_BOND) newton_mask = SIMD_lt(nmask, i1, simd_nlocals4);
@ -838,16 +838,16 @@ void DihedralCharmmIntel::eval(const int vflag,
ieng = evdwl;
if (!NEWTON_BOND) newton_mask = SIMD_lt(nmask, i4, simd_nlocals4);
SIMD_jeng_update(newton_mask, featom, i4, ieng);
}
}
if (VFLAG && vflag) {
}
}
if (VFLAG && vflag) {
spv0 = SIMD_ev_add(spv0, ev_pre * delx * delx * fpair);
spv1 = SIMD_ev_add(spv1, ev_pre * dely * dely * fpair);
spv2 = SIMD_ev_add(spv2, ev_pre * delz * delz * fpair);
spv3 = SIMD_ev_add(spv3, ev_pre * delx * dely * fpair);
spv4 = SIMD_ev_add(spv4, ev_pre * delx * delz * fpair);
spv5 = SIMD_ev_add(spv5, ev_pre * dely * delz * fpair);
}
spv1 = SIMD_ev_add(spv1, ev_pre * dely * dely * fpair);
spv2 = SIMD_ev_add(spv2, ev_pre * delz * delz * fpair);
spv3 = SIMD_ev_add(spv3, ev_pre * delx * dely * fpair);
spv4 = SIMD_ev_add(spv4, ev_pre * delx * delz * fpair);
spv5 = SIMD_ev_add(spv5, ev_pre * dely * delz * fpair);
}
}
if (NEWTON_BOND) newton_mask = nmask;
@ -863,17 +863,17 @@ void DihedralCharmmIntel::eval(const int vflag,
oevdwl += SIMD_sum(sevdwl);
}
if (VFLAG && vflag) {
ov0 += SIMD_sum(sv0);
ov1 += SIMD_sum(sv1);
ov2 += SIMD_sum(sv2);
ov3 += SIMD_sum(sv3);
ov4 += SIMD_sum(sv4);
ov0 += SIMD_sum(sv0);
ov1 += SIMD_sum(sv1);
ov2 += SIMD_sum(sv2);
ov3 += SIMD_sum(sv3);
ov4 += SIMD_sum(sv4);
ov5 += SIMD_sum(sv5);
opv0 += SIMD_sum(spv0);
opv1 += SIMD_sum(spv1);
opv2 += SIMD_sum(spv2);
opv3 += SIMD_sum(spv3);
opv4 += SIMD_sum(spv4);
opv0 += SIMD_sum(spv0);
opv1 += SIMD_sum(spv1);
opv2 += SIMD_sum(spv2);
opv3 += SIMD_sum(spv3);
opv4 += SIMD_sum(spv4);
opv5 += SIMD_sum(spv5);
}
} // omp parallel
@ -933,7 +933,7 @@ void DihedralCharmmIntel::init_style()
template <class flt_t, class acc_t>
void DihedralCharmmIntel::pack_force_const(ForceConst<flt_t> &fc,
IntelBuffers<flt_t,acc_t> *buffers)
IntelBuffers<flt_t,acc_t> *buffers)
{
const int tp1 = atom->ntypes + 1;
@ -944,10 +944,10 @@ void DihedralCharmmIntel::pack_force_const(ForceConst<flt_t> &fc,
if (weightflag) {
for (int i = 0; i < tp1; i++) {
for (int j = 0; j < tp1; j++) {
fc.ljp[i][j].lj1 = lj14_1[i][j];
fc.ljp[i][j].lj2 = lj14_2[i][j];
fc.ljp[i][j].lj3 = lj14_3[i][j];
fc.ljp[i][j].lj4 = lj14_4[i][j];
fc.ljp[i][j].lj1 = lj14_1[i][j];
fc.ljp[i][j].lj2 = lj14_2[i][j];
fc.ljp[i][j].lj3 = lj14_3[i][j];
fc.ljp[i][j].lj4 = lj14_4[i][j];
}
}
}
@ -965,8 +965,8 @@ void DihedralCharmmIntel::pack_force_const(ForceConst<flt_t> &fc,
template <class flt_t>
void DihedralCharmmIntel::ForceConst<flt_t>::set_ntypes(const int npairtypes,
const int nbondtypes,
Memory *memory) {
const int nbondtypes,
Memory *memory) {
if (npairtypes != _npairtypes) {
if (_npairtypes > 0)
_memory->destroy(ljp);
@ -979,7 +979,7 @@ void DihedralCharmmIntel::ForceConst<flt_t>::set_ntypes(const int npairtypes,
_memory->destroy(bp);
_memory->destroy(weight);
}
if (nbondtypes > 0) {
_memory->create(bp,nbondtypes,"dihedralcharmmintel.bp");
_memory->create(weight,nbondtypes,"dihedralcharmmintel.weight");

View File

@ -44,8 +44,8 @@ class DihedralCharmmIntel : public DihedralCharmm {
void compute(int eflag, int vflag, IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc);
template <int EVFLAG, int EFLAG, int NEWTON_BOND, class flt_t, class acc_t>
void eval(const int vflag, IntelBuffers<flt_t,acc_t> * buffers,
const ForceConst<flt_t> &fc);
void eval(const int vflag, IntelBuffers<flt_t,acc_t> * buffers,
const ForceConst<flt_t> &fc);
template <class flt_t, class acc_t>
void pack_force_const(ForceConst<flt_t> &fc,
IntelBuffers<flt_t, acc_t> *buffers);
@ -58,7 +58,7 @@ class DihedralCharmmIntel : public DihedralCharmm {
class ForceConst {
public:
typedef struct { flt_t lj1, lj2, lj3, lj4; } fc_packed1;
typedef struct { flt_t cos_shift, sin_shift, k;
typedef struct { flt_t cos_shift, sin_shift, k;
int multiplicity; } fc_packed3;
fc_packed1 **ljp;

View File

@ -69,8 +69,8 @@ void DihedralHarmonicIntel::compute(int eflag, int vflag)
template <class flt_t, class acc_t>
void DihedralHarmonicIntel::compute(int eflag, int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
{
if (eflag || vflag) {
ev_setup(eflag,vflag);
@ -79,14 +79,14 @@ void DihedralHarmonicIntel::compute(int eflag, int vflag,
if (evflag) {
if (vflag && !eflag) {
if (force->newton_bond)
eval<0,1,1>(vflag, buffers, fc);
eval<0,1,1>(vflag, buffers, fc);
else
eval<0,1,0>(vflag, buffers, fc);
eval<0,1,0>(vflag, buffers, fc);
} else {
if (force->newton_bond)
eval<1,1,1>(vflag, buffers, fc);
eval<1,1,1>(vflag, buffers, fc);
else
eval<1,1,0>(vflag, buffers, fc);
eval<1,1,0>(vflag, buffers, fc);
}
} else {
if (force->newton_bond)
@ -97,9 +97,9 @@ void DihedralHarmonicIntel::compute(int eflag, int vflag,
}
template <int EFLAG, int VFLAG, int NEWTON_BOND, class flt_t, class acc_t>
void DihedralHarmonicIntel::eval(const int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
void DihedralHarmonicIntel::eval(const int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
{
const int inum = neighbor->ndihedrallist;
@ -127,7 +127,7 @@ void DihedralHarmonicIntel::eval(const int vflag,
#if defined(_OPENMP)
#pragma omp parallel default(none) \
shared(f_start,f_stride,fc) \
shared(f_start,f_stride,fc) \
reduction(+:oedihedral,ov0,ov1,ov2,ov3,ov4,ov5)
#endif
{
@ -142,7 +142,7 @@ void DihedralHarmonicIntel::eval(const int vflag,
if (fix->need_zero(tid))
memset(f, 0, f_stride * sizeof(FORCE_T));
const int5_t * _noalias const dihedrallist =
const int5_t * _noalias const dihedrallist =
(int5_t *) neighbor->dihedrallist[0];
#ifdef LMP_INTEL_USE_SIMDOFF
@ -175,7 +175,7 @@ void DihedralHarmonicIntel::eval(const int vflag,
const flt_t vb2zm = x[i2].z - x[i3].z;
// 3rd bond
const flt_t vb3x = x[i4].x - x[i3].x;
const flt_t vb3y = x[i4].y - x[i3].y;
const flt_t vb3z = x[i4].z - x[i3].z;
@ -207,25 +207,25 @@ void DihedralHarmonicIntel::eval(const int vflag,
// error check
#ifndef LMP_INTEL_USE_SIMDOFF
if (c > PTOLERANCE || c < MTOLERANCE) {
int me = comm->me;
int me = comm->me;
if (screen) {
char str[128];
sprintf(str,"Dihedral problem: %d/%d " BIGINT_FORMAT " "
TAGINT_FORMAT " " TAGINT_FORMAT " "
TAGINT_FORMAT " " TAGINT_FORMAT,
me,tid,update->ntimestep,
atom->tag[i1],atom->tag[i2],atom->tag[i3],atom->tag[i4]);
error->warning(FLERR,str,0);
fprintf(screen," 1st atom: %d %g %g %g\n",
me,x[i1].x,x[i1].y,x[i1].z);
fprintf(screen," 2nd atom: %d %g %g %g\n",
me,x[i2].x,x[i2].y,x[i2].z);
fprintf(screen," 3rd atom: %d %g %g %g\n",
me,x[i3].x,x[i3].y,x[i3].z);
fprintf(screen," 4th atom: %d %g %g %g\n",
me,x[i4].x,x[i4].y,x[i4].z);
}
if (screen) {
char str[128];
sprintf(str,"Dihedral problem: %d/%d " BIGINT_FORMAT " "
TAGINT_FORMAT " " TAGINT_FORMAT " "
TAGINT_FORMAT " " TAGINT_FORMAT,
me,tid,update->ntimestep,
atom->tag[i1],atom->tag[i2],atom->tag[i3],atom->tag[i4]);
error->warning(FLERR,str,0);
fprintf(screen," 1st atom: %d %g %g %g\n",
me,x[i1].x,x[i1].y,x[i1].z);
fprintf(screen," 2nd atom: %d %g %g %g\n",
me,x[i2].x,x[i2].y,x[i2].z);
fprintf(screen," 3rd atom: %d %g %g %g\n",
me,x[i3].x,x[i3].y,x[i3].z);
fprintf(screen," 4th atom: %d %g %g %g\n",
me,x[i4].x,x[i4].y,x[i4].z);
}
}
#endif
@ -242,19 +242,19 @@ void DihedralHarmonicIntel::eval(const int vflag,
ddf1 = df1 = (flt_t)0.0;
for (int i = 0; i < m; i++) {
ddf1 = p*c - df1*s;
df1 = p*s + df1*c;
p = ddf1;
ddf1 = p*c - df1*s;
df1 = p*s + df1*c;
p = ddf1;
}
p = p*tcos_shift + df1*tsin_shift;
df1 = df1*tcos_shift - ddf1*tsin_shift;
df1 *= -m;
p += (flt_t)1.0;
if (m == 0) {
p = (flt_t)1.0 + tcos_shift;
df1 = (flt_t)0.0;
p = (flt_t)1.0 + tcos_shift;
df1 = (flt_t)0.0;
}
const flt_t fg = vb1x*vb2xm + vb1y*vb2ym + vb1z*vb2zm;
@ -297,20 +297,20 @@ void DihedralHarmonicIntel::eval(const int vflag,
const flt_t f3z = -sz2 - f4z;
if (EFLAG || VFLAG) {
flt_t deng;
if (EFLAG) deng = tk * p;
#ifdef LMP_INTEL_USE_SIMDOFF
IP_PRE_ev_tally_dihed(EFLAG, VFLAG, eatom, vflag, deng, i1, i2, i3, i4,
f1x, f1y, f1z, f3x, f3y, f3z, f4x, f4y, f4z,
vb1x, vb1y, vb1z, -vb2xm, -vb2ym, -vb2zm, vb3x,
vb3y, vb3z, sedihedral, f, NEWTON_BOND, nlocal,
sv0, sv1, sv2, sv3, sv4, sv5);
flt_t deng;
if (EFLAG) deng = tk * p;
#ifdef LMP_INTEL_USE_SIMDOFF
IP_PRE_ev_tally_dihed(EFLAG, VFLAG, eatom, vflag, deng, i1, i2, i3, i4,
f1x, f1y, f1z, f3x, f3y, f3z, f4x, f4y, f4z,
vb1x, vb1y, vb1z, -vb2xm, -vb2ym, -vb2zm, vb3x,
vb3y, vb3z, sedihedral, f, NEWTON_BOND, nlocal,
sv0, sv1, sv2, sv3, sv4, sv5);
#else
IP_PRE_ev_tally_dihed(EFLAG, VFLAG, eatom, vflag, deng, i1, i2, i3, i4,
f1x, f1y, f1z, f3x, f3y, f3z, f4x, f4y, f4z,
vb1x, vb1y, vb1z, -vb2xm, -vb2ym, -vb2zm, vb3x,
vb3y, vb3z, oedihedral, f, NEWTON_BOND, nlocal,
ov0, ov1, ov2, ov3, ov4, ov5);
IP_PRE_ev_tally_dihed(EFLAG, VFLAG, eatom, vflag, deng, i1, i2, i3, i4,
f1x, f1y, f1z, f3x, f3y, f3z, f4x, f4y, f4z,
vb1x, vb1y, vb1z, -vb2xm, -vb2ym, -vb2zm, vb3x,
vb3y, vb3z, oedihedral, f, NEWTON_BOND, nlocal,
ov0, ov1, ov2, ov3, ov4, ov5);
#endif
}
@ -319,35 +319,35 @@ void DihedralHarmonicIntel::eval(const int vflag,
#endif
{
if (NEWTON_BOND || i1 < nlocal) {
f[i1].x += f1x;
f[i1].y += f1y;
f[i1].z += f1z;
f[i1].x += f1x;
f[i1].y += f1y;
f[i1].z += f1z;
}
if (NEWTON_BOND || i2 < nlocal) {
f[i2].x += f2x;
f[i2].y += f2y;
f[i2].z += f2z;
f[i2].x += f2x;
f[i2].y += f2y;
f[i2].z += f2z;
}
if (NEWTON_BOND || i3 < nlocal) {
f[i3].x += f3x;
f[i3].y += f3y;
f[i3].z += f3z;
f[i3].x += f3x;
f[i3].y += f3y;
f[i3].z += f3z;
}
if (NEWTON_BOND || i4 < nlocal) {
f[i4].x += f4x;
f[i4].y += f4y;
f[i4].z += f4z;
f[i4].x += f4x;
f[i4].y += f4y;
f[i4].z += f4z;
}
}
} // for n
#ifdef LMP_INTEL_USE_SIMDOFF
if (EFLAG) oedihedral += sedihedral;
if (VFLAG && vflag) {
ov0 += sv0; ov1 += sv1; ov2 += sv2;
ov3 += sv3; ov4 += sv4; ov5 += sv5;
ov0 += sv0; ov1 += sv1; ov2 += sv2;
ov3 += sv3; ov4 += sv4; ov5 += sv5;
}
#endif
} // omp parallel
@ -395,7 +395,7 @@ void DihedralHarmonicIntel::init_style()
template <class flt_t, class acc_t>
void DihedralHarmonicIntel::pack_force_const(ForceConst<flt_t> &fc,
IntelBuffers<flt_t,acc_t> *buffers)
IntelBuffers<flt_t,acc_t> *buffers)
{
const int bp1 = atom->ndihedraltypes + 1;
fc.set_ntypes(bp1,memory);
@ -412,11 +412,11 @@ void DihedralHarmonicIntel::pack_force_const(ForceConst<flt_t> &fc,
template <class flt_t>
void DihedralHarmonicIntel::ForceConst<flt_t>::set_ntypes(const int nbondtypes,
Memory *memory) {
Memory *memory) {
if (nbondtypes != _nbondtypes) {
if (_nbondtypes > 0)
_memory->destroy(bp);
if (nbondtypes > 0)
_memory->create(bp,nbondtypes,"dihedralcharmmintel.bp");
}

View File

@ -44,8 +44,8 @@ class DihedralHarmonicIntel : public DihedralHarmonic {
void compute(int eflag, int vflag, IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc);
template <int EVFLAG, int EFLAG, int NEWTON_BOND, class flt_t, class acc_t>
void eval(const int vflag, IntelBuffers<flt_t,acc_t> * buffers,
const ForceConst<flt_t> &fc);
void eval(const int vflag, IntelBuffers<flt_t,acc_t> * buffers,
const ForceConst<flt_t> &fc);
template <class flt_t, class acc_t>
void pack_force_const(ForceConst<flt_t> &fc,
IntelBuffers<flt_t, acc_t> *buffers);
@ -57,7 +57,7 @@ class DihedralHarmonicIntel : public DihedralHarmonic {
template <class flt_t>
class ForceConst {
public:
typedef struct { flt_t cos_shift, sin_shift, k;
typedef struct { flt_t cos_shift, sin_shift, k;
int multiplicity; } fc_packed1;
fc_packed1 *bp;

View File

@ -73,8 +73,8 @@ void DihedralOPLSIntel::compute(int eflag, int vflag)
template <class flt_t, class acc_t>
void DihedralOPLSIntel::compute(int eflag, int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
{
if (eflag || vflag) {
ev_setup(eflag,vflag);
@ -83,14 +83,14 @@ void DihedralOPLSIntel::compute(int eflag, int vflag,
if (evflag) {
if (vflag && !eflag) {
if (force->newton_bond)
eval<0,1,1>(vflag, buffers, fc);
eval<0,1,1>(vflag, buffers, fc);
else
eval<0,1,0>(vflag, buffers, fc);
eval<0,1,0>(vflag, buffers, fc);
} else {
if (force->newton_bond)
eval<1,1,1>(vflag, buffers, fc);
eval<1,1,1>(vflag, buffers, fc);
else
eval<1,1,0>(vflag, buffers, fc);
eval<1,1,0>(vflag, buffers, fc);
}
} else {
if (force->newton_bond)
@ -101,9 +101,9 @@ void DihedralOPLSIntel::compute(int eflag, int vflag,
}
template <int EFLAG, int VFLAG, int NEWTON_BOND, class flt_t, class acc_t>
void DihedralOPLSIntel::eval(const int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
void DihedralOPLSIntel::eval(const int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
{
const int inum = neighbor->ndihedrallist;
@ -131,7 +131,7 @@ void DihedralOPLSIntel::eval(const int vflag,
#if defined(_OPENMP)
#pragma omp parallel default(none) \
shared(f_start,f_stride,fc) \
shared(f_start,f_stride,fc) \
reduction(+:oedihedral,ov0,ov1,ov2,ov3,ov4,ov5)
#endif
{
@ -146,7 +146,7 @@ void DihedralOPLSIntel::eval(const int vflag,
if (fix->need_zero(tid))
memset(f, 0, f_stride * sizeof(FORCE_T));
const int5_t * _noalias const dihedrallist =
const int5_t * _noalias const dihedrallist =
(int5_t *) neighbor->dihedrallist[0];
#ifdef LMP_INTEL_USE_SIMDOFF
@ -179,7 +179,7 @@ void DihedralOPLSIntel::eval(const int vflag,
const flt_t vb2zm = x[i2].z - x[i3].z;
// 3rd bond
const flt_t vb3x = x[i4].x - x[i3].x;
const flt_t vb3y = x[i4].y - x[i3].y;
const flt_t vb3z = x[i4].z - x[i3].z;
@ -209,7 +209,7 @@ void DihedralOPLSIntel::eval(const int vflag,
const flt_t c0 = (vb1x*vb3x + vb1y*vb3y + vb1z*vb3z) * rb1*rb3;
flt_t ctmp = -vb1x*vb2xm - vb1y*vb2ym - vb1z*vb2zm;
const flt_t r12c1 = rb1 * rb2;
const flt_t r12c1 = rb1 * rb2;
const flt_t c1mag = ctmp * r12c1;
ctmp = vb2xm*vb3x + vb2ym*vb3y + vb2zm*vb3z;
@ -240,25 +240,25 @@ void DihedralOPLSIntel::eval(const int vflag,
// error check
#ifndef LMP_INTEL_USE_SIMDOFF
if (c > PTOLERANCE || c < MTOLERANCE) {
int me = comm->me;
int me = comm->me;
if (screen) {
char str[128];
sprintf(str,"Dihedral problem: %d/%d " BIGINT_FORMAT " "
TAGINT_FORMAT " " TAGINT_FORMAT " "
TAGINT_FORMAT " " TAGINT_FORMAT,
me,tid,update->ntimestep,
atom->tag[i1],atom->tag[i2],atom->tag[i3],atom->tag[i4]);
error->warning(FLERR,str,0);
fprintf(screen," 1st atom: %d %g %g %g\n",
me,x[i1].x,x[i1].y,x[i1].z);
fprintf(screen," 2nd atom: %d %g %g %g\n",
me,x[i2].x,x[i2].y,x[i2].z);
fprintf(screen," 3rd atom: %d %g %g %g\n",
me,x[i3].x,x[i3].y,x[i3].z);
fprintf(screen," 4th atom: %d %g %g %g\n",
me,x[i4].x,x[i4].y,x[i4].z);
}
if (screen) {
char str[128];
sprintf(str,"Dihedral problem: %d/%d " BIGINT_FORMAT " "
TAGINT_FORMAT " " TAGINT_FORMAT " "
TAGINT_FORMAT " " TAGINT_FORMAT,
me,tid,update->ntimestep,
atom->tag[i1],atom->tag[i2],atom->tag[i3],atom->tag[i4]);
error->warning(FLERR,str,0);
fprintf(screen," 1st atom: %d %g %g %g\n",
me,x[i1].x,x[i1].y,x[i1].z);
fprintf(screen," 2nd atom: %d %g %g %g\n",
me,x[i2].x,x[i2].y,x[i2].z);
fprintf(screen," 3rd atom: %d %g %g %g\n",
me,x[i3].x,x[i3].y,x[i3].z);
fprintf(screen," 4th atom: %d %g %g %g\n",
me,x[i4].x,x[i4].y,x[i4].z);
}
}
#endif
@ -283,14 +283,14 @@ void DihedralOPLSIntel::eval(const int vflag,
const flt_t sin_4phim = (flt_t)2.0 * cos_2phi * sin_2phim;
flt_t p, pd;
p = fc.bp[type].k1*((flt_t)1.0 + c) +
fc.bp[type].k2*((flt_t)1.0 - cos_2phi) +
fc.bp[type].k3*((flt_t)1.0 + cos_3phi) +
fc.bp[type].k4*((flt_t)1.0 - cos_4phi) ;
pd = fc.bp[type].k1 -
(flt_t)2.0 * fc.bp[type].k2 * sin_2phim +
(flt_t)3.0 * fc.bp[type].k3 * sin_3phim -
(flt_t)4.0 * fc.bp[type].k4 * sin_4phim;
p = fc.bp[type].k1*((flt_t)1.0 + c) +
fc.bp[type].k2*((flt_t)1.0 - cos_2phi) +
fc.bp[type].k3*((flt_t)1.0 + cos_3phi) +
fc.bp[type].k4*((flt_t)1.0 - cos_4phi) ;
pd = fc.bp[type].k1 -
(flt_t)2.0 * fc.bp[type].k2 * sin_2phim +
(flt_t)3.0 * fc.bp[type].k3 * sin_3phim -
(flt_t)4.0 * fc.bp[type].k4 * sin_4phim;
flt_t edihed;
if (EFLAG) edihed = p;
@ -327,18 +327,18 @@ void DihedralOPLSIntel::eval(const int vflag,
if (EFLAG || VFLAG) {
#ifdef LMP_INTEL_USE_SIMDOFF
IP_PRE_ev_tally_dihed(EFLAG, VFLAG, eatom, vflag, edihed, i1, i2, i3,
i4, f1x, f1y, f1z, f3x, f3y, f3z, f4x, f4y, f4z,
vb1x, vb1y, vb1z, -vb2xm, -vb2ym, -vb2zm, vb3x,
vb3y, vb3z, sedihedral, f, NEWTON_BOND, nlocal,
sv0, sv1, sv2, sv3, sv4, sv5);
#else
IP_PRE_ev_tally_dihed(EFLAG, VFLAG, eatom, vflag, edihed, i1, i2, i3,
i4, f1x, f1y, f1z, f3x, f3y, f3z, f4x, f4y, f4z,
vb1x, vb1y, vb1z, -vb2xm, -vb2ym, -vb2zm, vb3x,
vb3y, vb3z, oedihedral, f, NEWTON_BOND, nlocal,
ov0, ov1, ov2, ov3, ov4, ov5);
#endif
IP_PRE_ev_tally_dihed(EFLAG, VFLAG, eatom, vflag, edihed, i1, i2, i3,
i4, f1x, f1y, f1z, f3x, f3y, f3z, f4x, f4y, f4z,
vb1x, vb1y, vb1z, -vb2xm, -vb2ym, -vb2zm, vb3x,
vb3y, vb3z, sedihedral, f, NEWTON_BOND, nlocal,
sv0, sv1, sv2, sv3, sv4, sv5);
#else
IP_PRE_ev_tally_dihed(EFLAG, VFLAG, eatom, vflag, edihed, i1, i2, i3,
i4, f1x, f1y, f1z, f3x, f3y, f3z, f4x, f4y, f4z,
vb1x, vb1y, vb1z, -vb2xm, -vb2ym, -vb2zm, vb3x,
vb3y, vb3z, oedihedral, f, NEWTON_BOND, nlocal,
ov0, ov1, ov2, ov3, ov4, ov5);
#endif
}
#ifdef LMP_INTEL_USE_SIMDOFF
@ -346,35 +346,35 @@ void DihedralOPLSIntel::eval(const int vflag,
#endif
{
if (NEWTON_BOND || i1 < nlocal) {
f[i1].x += f1x;
f[i1].y += f1y;
f[i1].z += f1z;
f[i1].x += f1x;
f[i1].y += f1y;
f[i1].z += f1z;
}
if (NEWTON_BOND || i2 < nlocal) {
f[i2].x += f2x;
f[i2].y += f2y;
f[i2].z += f2z;
f[i2].x += f2x;
f[i2].y += f2y;
f[i2].z += f2z;
}
if (NEWTON_BOND || i3 < nlocal) {
f[i3].x += f3x;
f[i3].y += f3y;
f[i3].z += f3z;
f[i3].x += f3x;
f[i3].y += f3y;
f[i3].z += f3z;
}
if (NEWTON_BOND || i4 < nlocal) {
f[i4].x += f4x;
f[i4].y += f4y;
f[i4].z += f4z;
f[i4].x += f4x;
f[i4].y += f4y;
f[i4].z += f4z;
}
}
} // for n
#ifdef LMP_INTEL_USE_SIMDOFF
if (EFLAG) oedihedral += sedihedral;
if (VFLAG && vflag) {
ov0 += sv0; ov1 += sv1; ov2 += sv2;
ov3 += sv3; ov4 += sv4; ov5 += sv5;
ov0 += sv0; ov1 += sv1; ov2 += sv2;
ov3 += sv3; ov4 += sv4; ov5 += sv5;
}
#endif
} // omp parallel
@ -422,7 +422,7 @@ void DihedralOPLSIntel::init_style()
template <class flt_t, class acc_t>
void DihedralOPLSIntel::pack_force_const(ForceConst<flt_t> &fc,
IntelBuffers<flt_t,acc_t> *buffers)
IntelBuffers<flt_t,acc_t> *buffers)
{
const int bp1 = atom->ndihedraltypes + 1;
fc.set_ntypes(bp1,memory);
@ -439,11 +439,11 @@ void DihedralOPLSIntel::pack_force_const(ForceConst<flt_t> &fc,
template <class flt_t>
void DihedralOPLSIntel::ForceConst<flt_t>::set_ntypes(const int nbondtypes,
Memory *memory) {
Memory *memory) {
if (nbondtypes != _nbondtypes) {
if (_nbondtypes > 0)
_memory->destroy(bp);
if (nbondtypes > 0)
_memory->create(bp,nbondtypes,"dihedralcharmmintel.bp");
}

View File

@ -44,8 +44,8 @@ class DihedralOPLSIntel : public DihedralOPLS {
void compute(int eflag, int vflag, IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc);
template <int EVFLAG, int EFLAG, int NEWTON_BOND, class flt_t, class acc_t>
void eval(const int vflag, IntelBuffers<flt_t,acc_t> * buffers,
const ForceConst<flt_t> &fc);
void eval(const int vflag, IntelBuffers<flt_t,acc_t> * buffers,
const ForceConst<flt_t> &fc);
template <class flt_t, class acc_t>
void pack_force_const(ForceConst<flt_t> &fc,
IntelBuffers<flt_t, acc_t> *buffers);

View File

@ -96,7 +96,7 @@ FixIntel::FixIntel(LAMMPS *lmp, int narg, char **arg) : Fix(lmp, narg, arg)
_allow_separate_buffers = 1;
_offload_ghost = -1;
_lrt = 0;
int iarg = 4;
while (iarg < narg) {
if (strcmp(arg[iarg],"omp") == 0) {
@ -141,7 +141,7 @@ FixIntel::FixIntel(LAMMPS *lmp, int narg, char **arg) : Fix(lmp, narg, arg)
else error->all(FLERR,"Illegal package intel command");
iarg += 2;
}
// undocumented options
else if (strcmp(arg[iarg],"offload_affinity_balanced") == 0) {
@ -179,7 +179,7 @@ FixIntel::FixIntel(LAMMPS *lmp, int narg, char **arg) : Fix(lmp, narg, arg)
_real_space_comm = MPI_COMM_WORLD;
if (no_affinity == 0)
if (set_host_affinity(nomp) != 0)
error->all(FLERR,"Could not set host affinity for offload tasks");
error->all(FLERR,"Could not set host affinity for offload tasks");
}
int max_offload_threads = 0, offload_cores = 0;
@ -264,7 +264,7 @@ FixIntel::~FixIntel()
double *time2 = off_watch_neighbor();
int *overflow = get_off_overflow_flag();
if (_offload_balance != 0.0 && time1 != NULL && time2 != NULL &&
overflow != NULL) {
overflow != NULL) {
#pragma offload_transfer target(mic:_cop) \
nocopy(time1,time2,overflow:alloc_if(0) free_if(1))
}
@ -320,11 +320,11 @@ void FixIntel::init()
if (strstr(hybrid->keywords[i], "/intel") != NULL)
nstyles++;
else
force->pair->no_virial_fdotr_compute = 1;
force->pair->no_virial_fdotr_compute = 1;
}
if (nstyles > 1)
error->all(FLERR,
"Currently, cannot use more than one intel style with hybrid.");
"Currently, cannot use more than one intel style with hybrid.");
check_neighbor_intel();
int off_mode = 0;
@ -349,13 +349,13 @@ void FixIntel::setup(int vflag)
{
if (neighbor->style != BIN)
error->all(FLERR,
"Currently, neighbor style BIN must be used with Intel package.");
"Currently, neighbor style BIN must be used with Intel package.");
if (neighbor->exclude_setting() != 0)
error->all(FLERR,
"Currently, cannot use neigh_modify exclude with Intel package.");
"Currently, cannot use neigh_modify exclude with Intel package.");
if (vflag_atom)
error->all(FLERR,
"Cannot currently get per-atom virials with Intel package.");
"Cannot currently get per-atom virials with Intel package.");
#ifdef _LMP_INTEL_OFFLOAD
post_force(vflag);
#endif
@ -392,7 +392,7 @@ void FixIntel::pair_init_check(const bool cdmessage)
double *time2 = off_watch_neighbor();
int *overflow = get_off_overflow_flag();
if (_offload_balance !=0.0 && time1 != NULL && time2 != NULL &&
overflow != NULL) {
overflow != NULL) {
#pragma offload_transfer target(mic:_cop) \
nocopy(time1,time2:length(1) alloc_if(1) free_if(0)) \
in(overflow:length(5) alloc_if(1) free_if(0))
@ -407,7 +407,7 @@ void FixIntel::pair_init_check(const bool cdmessage)
error->warning(FLERR, "Unknown Intel Compiler Version\n");
#else
if (__INTEL_COMPILER_BUILD_DATE != 20131008 &&
__INTEL_COMPILER_BUILD_DATE < 20141023)
__INTEL_COMPILER_BUILD_DATE < 20141023)
error->warning(FLERR, "Unsupported Intel Compiler.");
#endif
#if !defined(__INTEL_COMPILER)
@ -438,24 +438,24 @@ void FixIntel::pair_init_check(const bool cdmessage)
if (comm->me == 0) {
if (screen) {
fprintf(screen,
"----------------------------------------------------------\n");
"----------------------------------------------------------\n");
if (_offload_balance != 0.0) {
fprintf(screen,"Using Intel Coprocessor with %d threads per core, ",
_offload_tpc);
_offload_tpc);
fprintf(screen,"%d threads per task\n",_offload_threads);
} else {
fprintf(screen,"Using Intel Package without Coprocessor.\n");
fprintf(screen,"Using Intel Package without Coprocessor.\n");
}
fprintf(screen,"Precision: %s\n",kmode);
if (cdmessage) {
#ifdef LMP_USE_AVXCD
fprintf(screen,"AVX512 CD Optimizations: Enabled\n");
#else
fprintf(screen,"AVX512 CD Optimizations: Disabled\n");
#endif
#ifdef LMP_USE_AVXCD
fprintf(screen,"AVX512 CD Optimizations: Enabled\n");
#else
fprintf(screen,"AVX512 CD Optimizations: Disabled\n");
#endif
}
fprintf(screen,
"----------------------------------------------------------\n");
"----------------------------------------------------------\n");
}
}
}
@ -464,7 +464,7 @@ void FixIntel::pair_init_check(const bool cdmessage)
void FixIntel::bond_init_check()
{
if (_offload_balance != 0.0 && atom->molecular &&
if (_offload_balance != 0.0 && atom->molecular &&
force->newton_pair != force->newton_bond)
error->all(FLERR,
"USER-INTEL package requires same setting for newton bond and non-bond.");
@ -573,7 +573,7 @@ void FixIntel::reduce_results(acc_t * _noalias const f_scalar)
int o_range, f_stride;
if (force->newton_pair)
o_range = atom->nlocal + atom->nghost;
else
else
o_range = atom->nlocal;
IP_PRE_get_stride(f_stride, o_range, (sizeof(acc_t)*4), lmp->atom->torque);
@ -588,18 +588,18 @@ void FixIntel::reduce_results(acc_t * _noalias const f_scalar)
_use_simd_pragma("vector aligned")
_use_simd_pragma("simd")
for (int n = 0; n < o_range; n++)
f_scalar[n] += f_scalar2[n] + f_scalar3[n] + f_scalar4[n];
f_scalar[n] += f_scalar2[n] + f_scalar3[n] + f_scalar4[n];
} else if (_nthreads == 2) {
_use_simd_pragma("vector aligned")
_use_simd_pragma("simd")
for (int n = 0; n < o_range; n++)
f_scalar[n] += f_scalar2[n];
f_scalar[n] += f_scalar2[n];
} else {
acc_t *f_scalar3 = f_scalar2 + f_stride4;
_use_simd_pragma("vector aligned")
_use_simd_pragma("simd")
for (int n = 0; n < o_range; n++)
f_scalar[n] += f_scalar2[n] + f_scalar3[n];
f_scalar[n] += f_scalar2[n] + f_scalar3[n];
}
} else {
#if defined(_OPENMP)
@ -608,13 +608,13 @@ void FixIntel::reduce_results(acc_t * _noalias const f_scalar)
{
int iifrom, iito, tid;
IP_PRE_omp_range_id_align(iifrom, iito, tid, o_range, _nthreads,
sizeof(acc_t));
sizeof(acc_t));
acc_t *f_scalar2 = f_scalar + f_stride4;
for (int t = 1; t < _nthreads; t++) {
_use_simd_pragma("vector aligned")
_use_simd_pragma("simd")
for (int n = iifrom; n < iito; n++)
_use_simd_pragma("vector aligned")
_use_simd_pragma("simd")
for (int n = iifrom; n < iito; n++)
f_scalar[n] += f_scalar2[n];
f_scalar2 += f_stride4;
}
@ -648,33 +648,33 @@ template <class ft, class acc_t>
void FixIntel::add_results(const ft * _noalias const f_in,
const acc_t * _noalias const ev_global,
const int eatom, const int vatom,
const int offload) {
const int offload) {
start_watch(TIME_PACK);
int f_length;
#ifdef _LMP_INTEL_OFFLOAD
if (_separate_buffers) {
if (offload) {
if (force->newton_pair) {
add_oresults(f_in, ev_global, eatom, vatom, 0, _offload_nlocal);
const acc_t * _noalias const enull = 0;
int offset = _offload_nlocal;
if (atom->torque) offset *= 2;
add_oresults(f_in + offset, enull, eatom, vatom,
_offload_min_ghost, _offload_nghost);
add_oresults(f_in, ev_global, eatom, vatom, 0, _offload_nlocal);
const acc_t * _noalias const enull = 0;
int offset = _offload_nlocal;
if (atom->torque) offset *= 2;
add_oresults(f_in + offset, enull, eatom, vatom,
_offload_min_ghost, _offload_nghost);
} else
add_oresults(f_in, ev_global, eatom, vatom, 0, offload_end_pair());
add_oresults(f_in, ev_global, eatom, vatom, 0, offload_end_pair());
} else {
if (force->newton_pair) {
add_oresults(f_in, ev_global, eatom, vatom,
_host_min_local, _host_used_local);
const acc_t * _noalias const enull = 0;
int offset = _host_used_local;
if (atom->torque) offset *= 2;
add_oresults(f_in + offset, enull, eatom,
vatom, _host_min_ghost, _host_used_ghost);
add_oresults(f_in, ev_global, eatom, vatom,
_host_min_local, _host_used_local);
const acc_t * _noalias const enull = 0;
int offset = _host_used_local;
if (atom->torque) offset *= 2;
add_oresults(f_in + offset, enull, eatom,
vatom, _host_min_ghost, _host_used_ghost);
} else {
int start = host_start_pair();
add_oresults(f_in, ev_global, eatom, vatom, start, atom->nlocal-start);
int start = host_start_pair();
add_oresults(f_in, ev_global, eatom, vatom, start, atom->nlocal-start);
}
}
stop_watch(TIME_PACK);
@ -685,9 +685,9 @@ void FixIntel::add_results(const ft * _noalias const f_in,
start = 0;
if (force->newton_pair) {
if (_offload_noghost == 0)
f_length = atom->nlocal + atom->nghost;
f_length = atom->nlocal + atom->nghost;
else
f_length = atom->nlocal;
f_length = atom->nlocal;
} else
f_length = offload_end_pair();
} else {
@ -714,9 +714,9 @@ void FixIntel::add_results(const ft * _noalias const f_in,
template <class ft, class acc_t>
void FixIntel::add_oresults(const ft * _noalias const f_in,
const acc_t * _noalias const ev_global,
const int eatom, const int vatom,
const int out_offset, const int nall) {
const acc_t * _noalias const ev_global,
const int eatom, const int vatom,
const int out_offset, const int nall) {
lmp_ft * _noalias const f = (lmp_ft *) lmp->atom->f[0] + out_offset;
if (atom->torque) {
if (f_in[1].w)
@ -744,12 +744,12 @@ void FixIntel::add_oresults(const ft * _noalias const f_in,
if (atom->torque) {
int ii = ifrom * 2;
lmp_ft * _noalias const tor = (lmp_ft *) lmp->atom->torque[0] +
out_offset;
out_offset;
if (eatom) {
double * _noalias const lmp_eatom = force->pair->eatom + out_offset;
double * _noalias const lmp_eatom = force->pair->eatom + out_offset;
#if defined(LMP_SIMD_COMPILER)
#pragma novector
#endif
#pragma novector
#endif
for (int i = ifrom; i < ito; i++) {
f[i].x += f_in[ii].x;
f[i].y += f_in[ii].y;
@ -762,8 +762,8 @@ void FixIntel::add_oresults(const ft * _noalias const f_in,
}
} else {
#if defined(LMP_SIMD_COMPILER)
#pragma novector
#endif
#pragma novector
#endif
for (int i = ifrom; i < ito; i++) {
f[i].x += f_in[ii].x;
f[i].y += f_in[ii].y;
@ -776,10 +776,10 @@ void FixIntel::add_oresults(const ft * _noalias const f_in,
}
} else {
if (eatom) {
double * _noalias const lmp_eatom = force->pair->eatom + out_offset;
double * _noalias const lmp_eatom = force->pair->eatom + out_offset;
#if defined(LMP_SIMD_COMPILER)
#pragma novector
#endif
#pragma novector
#endif
for (int i = ifrom; i < ito; i++) {
f[i].x += f_in[i].x;
f[i].y += f_in[i].y;
@ -788,8 +788,8 @@ void FixIntel::add_oresults(const ft * _noalias const f_in,
}
} else {
#if defined(LMP_SIMD_COMPILER)
#pragma novector
#endif
#pragma novector
#endif
for (int i = ifrom; i < ito; i++) {
f[i].x += f_in[i].x;
f[i].y += f_in[i].y;
@ -931,7 +931,7 @@ void FixIntel::output_timing_data() {
balance_out[0] = _balance_pair;
balance_out[1] = _balance_neighbor;
MPI_Reduce(balance_out, balance_in, 2, MPI_DOUBLE, MPI_SUM,
0, _real_space_comm);
0, _real_space_comm);
balance_in[0] /= size;
balance_in[1] /= size;
@ -958,25 +958,25 @@ void FixIntel::output_timing_data() {
balance_in[1]);
fprintf(_tscreen, " Offload Pair Balance %f\n",
balance_in[0]);
fprintf(_tscreen, " Offload Ghost Atoms ");
if (_offload_noghost) fprintf(_tscreen,"No\n");
else fprintf(_tscreen,"Yes\n");
fprintf(_tscreen, " Offload Ghost Atoms ");
if (_offload_noghost) fprintf(_tscreen,"No\n");
else fprintf(_tscreen,"Yes\n");
#ifdef TIME_BALANCE
fprintf(_tscreen, " Offload Imbalance Seconds %f\n",
timers[TIME_IMBALANCE]);
fprintf(_tscreen, " Offload Min/Max Seconds ");
for (int i = 0; i < NUM_ITIMERS; i++)
fprintf(_tscreen, "[%f, %f] ",timers_min[i],timers_max[i]);
fprintf(_tscreen, "\n");
fprintf(_tscreen, " Offload Min/Max Seconds ");
for (int i = 0; i < NUM_ITIMERS; i++)
fprintf(_tscreen, "[%f, %f] ",timers_min[i],timers_max[i]);
fprintf(_tscreen, "\n");
#endif
double ht = timers[TIME_HOST_NEIGHBOR] + timers[TIME_HOST_PAIR] +
timers[TIME_OFFLOAD_WAIT];
double ct = timers[TIME_OFFLOAD_NEIGHBOR] +
timers[TIME_OFFLOAD_PAIR];
double tt = MAX(ht,ct);
if (timers[TIME_OFFLOAD_LATENCY] / tt > 0.07 && _separate_coi == 0)
error->warning(FLERR,
"Leaving a core free can improve performance for offload");
double ht = timers[TIME_HOST_NEIGHBOR] + timers[TIME_HOST_PAIR] +
timers[TIME_OFFLOAD_WAIT];
double ct = timers[TIME_OFFLOAD_NEIGHBOR] +
timers[TIME_OFFLOAD_PAIR];
double tt = MAX(ht,ct);
if (timers[TIME_OFFLOAD_LATENCY] / tt > 0.07 && _separate_coi == 0)
error->warning(FLERR,
"Leaving a core free can improve performance for offload");
}
fprintf(_tscreen, "------------------------------------------------\n");
}
@ -999,14 +999,14 @@ int FixIntel::get_ppn(int &node_rank) {
node_name[name_length] = '\0';
char *node_names = new char[MPI_MAX_PROCESSOR_NAME*nprocs];
MPI_Allgather(node_name, MPI_MAX_PROCESSOR_NAME, MPI_CHAR, node_names,
MPI_MAX_PROCESSOR_NAME, MPI_CHAR, _real_space_comm);
MPI_MAX_PROCESSOR_NAME, MPI_CHAR, _real_space_comm);
int ppn = 0;
node_rank = 0;
for (int i = 0; i < nprocs; i++) {
if (strcmp(node_name, node_names + i * MPI_MAX_PROCESSOR_NAME) == 0) {
ppn++;
if (i < rank)
node_rank++;
node_rank++;
}
}
@ -1068,19 +1068,19 @@ void FixIntel::set_offload_affinity()
kmp_create_affinity_mask(&mask);
int proc = offload_threads * node_rank + tnum;
#ifdef __AVX512F__
proc = (proc / offload_tpc) + (proc % offload_tpc) *
((offload_cores) / 4);
proc = (proc / offload_tpc) + (proc % offload_tpc) *
((offload_cores) / 4);
proc += 68;
#else
if (offload_affinity_balanced)
proc = proc * 4 - (proc / 60) * 240 + proc / 60 + 1;
proc = proc * 4 - (proc / 60) * 240 + proc / 60 + 1;
else
proc += (proc / 4) * (4 - offload_tpc) + 1;
proc += (proc / 4) * (4 - offload_tpc) + 1;
#endif
kmp_set_affinity_mask_proc(proc, &mask);
if (kmp_set_affinity(&mask) != 0)
printf("Could not set affinity on rank %d thread %d to %d\n",
node_rank, tnum, proc);
printf("Could not set affinity on rank %d thread %d to %d\n",
node_rank, tnum, proc);
}
}
@ -1110,7 +1110,7 @@ int FixIntel::set_host_affinity(const int nomp)
char cmd[512];
char readbuf[INTEL_MAX_HOST_CORE_COUNT*5];
sprintf(cmd, "lscpu -p | grep -v '#' |"
"sort -t, -k 3,3n -k 2,2n | awk -F, '{print $1}'");
"sort -t, -k 3,3n -k 2,2n | awk -F, '{print $1}'");
p = popen(cmd, "r");
if (p == NULL) return -1;
ncores = 0;
@ -1147,7 +1147,7 @@ int FixIntel::set_host_affinity(const int nomp)
if (subscription > ncores) {
if (rank == 0)
error->warning(FLERR,
"More MPI tasks/OpenMP threads than available cores");
"More MPI tasks/OpenMP threads than available cores");
return 0;
}
if (subscription == ncores)
@ -1173,10 +1173,10 @@ int FixIntel::set_host_affinity(const int nomp)
int first = coi_cores + node_rank * mpi_cores;
CPU_ZERO(&cpuset);
for (int i = first; i < first + mpi_cores; i++)
CPU_SET(proc_list[i], &cpuset);
CPU_SET(proc_list[i], &cpuset);
if (sched_setaffinity(lwp, sizeof(cpu_set_t), &cpuset)) {
fail = 1;
break;
fail = 1;
break;
}
plwp++;
}
@ -1189,13 +1189,13 @@ int FixIntel::set_host_affinity(const int nomp)
buf1 = (float*) malloc(sizeof(float)*pragma_size);
#pragma offload target (mic:0) mandatory \
in(buf1:length(pragma_size) alloc_if(1) free_if(0)) \
in(buf1:length(pragma_size) alloc_if(1) free_if(0)) \
signal(&sig1)
{ buf1[0] = 0.0; }
#pragma offload_wait target(mic:0) wait(&sig1)
#pragma offload target (mic:0) mandatory \
out(buf1:length(pragma_size) alloc_if(0) free_if(1)) \
out(buf1:length(pragma_size) alloc_if(0) free_if(1)) \
signal(&sig2)
{ buf1[0] = 1.0; }
#pragma offload_wait target(mic:0) wait(&sig2)
@ -1211,11 +1211,11 @@ int FixIntel::set_host_affinity(const int nomp)
CPU_ZERO(&cpuset);
for(int i=0; i<coi_cores; i++)
CPU_SET(proc_list[i], &cpuset);
CPU_SET(proc_list[i], &cpuset);
if (sched_setaffinity(lwp, sizeof(cpu_set_t), &cpuset)) {
fail = 1;
break;
fail = 1;
break;
}
}
pclose(p);
@ -1228,7 +1228,7 @@ int FixIntel::set_host_affinity(const int nomp)
if (screen && rank == 0) {
if (coi_cores)
fprintf(screen,"Intel Package: Affinitizing %d Offload Threads to %d Cores\n",
mlwp, coi_cores);
mlwp, coi_cores);
fprintf(screen,"Intel Package: Affinitizing MPI Tasks to %d Cores Each\n",mpi_cores);
}
if (fail) return -1;

View File

@ -72,7 +72,7 @@ class FixIntel : public Fix {
inline void nbor_pack_width(const int w) { _nbor_pack_width = w; }
inline int three_body_neighbor() { return _three_body_neighbor; }
inline void three_body_neighbor(const int i) { _three_body_neighbor = 1; }
inline int need_zero(const int tid) {
if (_need_reduce == 0 && tid > 0) return 1;
return 0;
@ -84,11 +84,11 @@ class FixIntel : public Fix {
}
inline int pppm_table() {
if (force->kspace_match("pppm/intel", 0) ||
force->kspace_match("pppm/disp/intel",0))
force->kspace_match("pppm/disp/intel",0))
return INTEL_P3M_TABLE;
else return 0;
}
protected:
IntelBuffers<float,float> *_single_buffers;
@ -103,17 +103,17 @@ class FixIntel : public Fix {
inline void add_result_array(IntelBuffers<double,double>::vec3_acc_t *f_in,
double *ev_in, const int offload,
const int eatom = 0, const int vatom = 0,
const int rflag = 0);
const int rflag = 0);
inline void add_result_array(IntelBuffers<float,double>::vec3_acc_t *f_in,
double *ev_in, const int offload,
const int eatom = 0, const int vatom = 0,
const int rflag = 0);
const int rflag = 0);
inline void add_result_array(IntelBuffers<float,float>::vec3_acc_t *f_in,
float *ev_in, const int offload,
const int eatom = 0, const int vatom = 0,
const int rflag = 0);
const int rflag = 0);
inline void get_buffern(const int offload, int &nlocal, int &nall,
int &minlocal);
int &minlocal);
#ifdef _LMP_INTEL_OFFLOAD
void post_force(int vflag);
@ -213,13 +213,13 @@ class FixIntel : public Fix {
inline void add_results(const ft * _noalias const f_in,
const acc_t * _noalias const ev_global,
const int eatom, const int vatom,
const int offload);
const int offload);
template <class ft, class acc_t>
inline void add_oresults(const ft * _noalias const f_in,
const acc_t * _noalias const ev_global,
const int eatom, const int vatom,
const int out_offset, const int nall);
const acc_t * _noalias const ev_global,
const int eatom, const int vatom,
const int out_offset, const int nall);
int _offload_affinity_balanced, _offload_threads, _offload_tpc;
#ifdef _LMP_INTEL_OFFLOAD
@ -235,16 +235,16 @@ class FixIntel : public Fix {
/* ---------------------------------------------------------------------- */
void FixIntel::get_buffern(const int offload, int &nlocal, int &nall,
int &minlocal) {
int &minlocal) {
#ifdef _LMP_INTEL_OFFLOAD
if (_separate_buffers) {
if (offload) {
if (neighbor->ago != 0) {
nlocal = _offload_nlocal;
nall = _offload_nall;
nlocal = _offload_nlocal;
nall = _offload_nall;
} else {
nlocal = atom->nlocal;
nall = nlocal + atom->nghost;
nlocal = atom->nlocal;
nall = nlocal + atom->nghost;
}
minlocal = 0;
} else {
@ -253,7 +253,7 @@ void FixIntel::get_buffern(const int offload, int &nlocal, int &nall,
if (force->newton)
minlocal = _host_min_local;
else
minlocal = host_start_pair();
minlocal = host_start_pair();
}
return;
}
@ -271,7 +271,7 @@ void FixIntel::get_buffern(const int offload, int &nlocal, int &nall,
void FixIntel::add_result_array(IntelBuffers<double,double>::vec3_acc_t *f_in,
double *ev_in, const int offload,
const int eatom, const int vatom,
const int rflag) {
const int rflag) {
#ifdef _LMP_INTEL_OFFLOAD
if (offload) {
_off_results_eatom = eatom;
@ -299,7 +299,7 @@ void FixIntel::add_result_array(IntelBuffers<double,double>::vec3_acc_t *f_in,
void FixIntel::add_result_array(IntelBuffers<float,double>::vec3_acc_t *f_in,
double *ev_in, const int offload,
const int eatom, const int vatom,
const int rflag) {
const int rflag) {
#ifdef _LMP_INTEL_OFFLOAD
if (offload) {
_off_results_eatom = eatom;
@ -361,12 +361,12 @@ int FixIntel::offload_end_neighbor() {
if (atom->nlocal < 2)
error->one(FLERR,"Too few atoms for load balancing offload");
double granularity = 1.0 / atom->nlocal;
if (_balance_neighbor < granularity)
if (_balance_neighbor < granularity)
_balance_neighbor = granularity + 1e-10;
else if (_balance_neighbor > 1.0 - granularity)
else if (_balance_neighbor > 1.0 - granularity)
_balance_neighbor = 1.0 - granularity + 1e-10;
}
return _balance_neighbor * atom->nlocal;
return _balance_neighbor * atom->nlocal;
}
int FixIntel::offload_end_pair() {
@ -517,7 +517,7 @@ The newton setting must be the same for both pairwise and bonded forces.
E: Intel styles for bond/angle/dihedral/improper require intel pair style."
You cannot use the USER-INTEL package for bond calculations without a
You cannot use the USER-INTEL package for bond calculations without a
USER-INTEL supported pair style.
E: Intel styles for kspace require intel pair style.

View File

@ -45,7 +45,7 @@ typedef struct { double x,y,z; } dbl3_t;
NVT,NPH,NPT integrators for improved Nose-Hoover equations of motion
---------------------------------------------------------------------- */
FixNHIntel::FixNHIntel(LAMMPS *lmp, int narg, char **arg) :
FixNHIntel::FixNHIntel(LAMMPS *lmp, int narg, char **arg) :
FixNH(lmp, narg, arg)
{
_dtfm = 0;
@ -118,12 +118,12 @@ void FixNHIntel::remap()
#endif
for (int i = 0; i < nlocal; i++) {
if (mask[i] & dilate_group_bit) {
const double d0 = x[i].x - b0;
const double d1 = x[i].y - b1;
const double d2 = x[i].z - b2;
x[i].x = hi0*d0 + hi5*d1 + hi4*d2;
x[i].y = hi1*d1 + hi3*d2;
x[i].z = hi2*d2;
const double d0 = x[i].x - b0;
const double d1 = x[i].y - b1;
const double d2 = x[i].z - b2;
x[i].x = hi0*d0 + hi5*d1 + hi4*d2;
x[i].y = hi1*d1 + hi3*d2;
x[i].z = hi2*d2;
}
}
}
@ -294,9 +294,9 @@ void FixNHIntel::remap()
#endif
for (int i = 0; i < nlocal; i++) {
if (mask[i] & dilate_group_bit) {
x[i].x = h0*x[i].x + h5*x[i].y + h4*x[i].z + nb0;
x[i].y = h1*x[i].y + h3*x[i].z + nb1;
x[i].z = h2*x[i].z + nb2;
x[i].x = h0*x[i].x + h5*x[i].y + h4*x[i].z + nb0;
x[i].y = h1*x[i].y + h3*x[i].z + nb1;
x[i].z = h2*x[i].z + nb2;
}
}
}
@ -318,7 +318,7 @@ void FixNHIntel::reset_dt()
dto = dthalf;
// If using respa, then remap is performed in innermost level
if (strstr(update->integrate_style,"respa"))
dto = 0.5*step_respa[0];
@ -329,7 +329,7 @@ void FixNHIntel::reset_dt()
tdrag_factor = 1.0 - (update->dt * t_freq * drag / nc_tchain);
const int * const mask = atom->mask;
const int nlocal = (igroup == atom->firstgroup) ? atom->nfirst :
const int nlocal = (igroup == atom->firstgroup) ? atom->nfirst :
atom->nlocal;
if (nlocal > _nlocal_max) {
@ -345,9 +345,9 @@ void FixNHIntel::reset_dt()
const double * const rmass = atom->rmass;
int n = 0;
for (int i = 0; i < nlocal; i++) {
_dtfm[n++] = dtf / rmass[i];
_dtfm[n++] = dtf / rmass[i];
_dtfm[n++] = dtf / rmass[i];
_dtfm[n++] = dtf / rmass[i];
_dtfm[n++] = dtf / rmass[i];
_dtfm[n++] = dtf / rmass[i];
}
} else {
const double * const mass = atom->mass;
@ -364,29 +364,29 @@ void FixNHIntel::reset_dt()
const double * const rmass = atom->rmass;
int n = 0;
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
_dtfm[n++] = dtf / rmass[i];
_dtfm[n++] = dtf / rmass[i];
_dtfm[n++] = dtf / rmass[i];
if (mask[i] & groupbit) {
_dtfm[n++] = dtf / rmass[i];
_dtfm[n++] = dtf / rmass[i];
_dtfm[n++] = dtf / rmass[i];
} else {
_dtfm[n++] = 0.0;
_dtfm[n++] = 0.0;
_dtfm[n++] = 0.0;
}
_dtfm[n++] = 0.0;
_dtfm[n++] = 0.0;
_dtfm[n++] = 0.0;
}
} else {
const double * const mass = atom->mass;
const int * const type = atom->type;
int n = 0;
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
_dtfm[n++] = dtf / mass[type[i]];
_dtfm[n++] = dtf / mass[type[i]];
_dtfm[n++] = dtf / mass[type[i]];
if (mask[i] & groupbit) {
_dtfm[n++] = dtf / mass[type[i]];
_dtfm[n++] = dtf / mass[type[i]];
_dtfm[n++] = dtf / mass[type[i]];
} else {
_dtfm[n++] = 0.0;
_dtfm[n++] = 0.0;
_dtfm[n++] = 0.0;
}
_dtfm[n++] = 0.0;
_dtfm[n++] = 0.0;
_dtfm[n++] = 0.0;
}
}
}
}
@ -431,9 +431,9 @@ void FixNHIntel::nh_v_press()
#endif
for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) {
v[i].x *= f0;
v[i].y *= f1;
v[i].z *= f2;
v[i].x *= f0;
v[i].y *= f1;
v[i].z *= f2;
}
}
}
@ -506,7 +506,7 @@ void FixNHIntel::nh_v_temp()
#pragma simd
#endif
for (int i = 0; i < _nlocal3; i++)
v[i] *= factor_eta;
v[i] *= factor_eta;
} else {
#if defined(LMP_SIMD_COMPILER)
#pragma vector aligned
@ -514,12 +514,12 @@ void FixNHIntel::nh_v_temp()
#endif
for (int i = 0; i < _nlocal3; i++) {
if (_dtfm[i] != 0.0)
v[i] *= factor_eta;
v[i] *= factor_eta;
}
}
}
double FixNHIntel::memory_usage()
double FixNHIntel::memory_usage()
{
return FixNH::memory_usage() + _nlocal_max * 3 * sizeof(double);
}

View File

@ -35,7 +35,7 @@ class FixNHIntel : public FixNH {
int _nlocal3, _nlocal_max;
virtual void remap();
virtual void nve_x();
virtual void nve_x();
virtual void nve_v();
virtual void nh_v_press();
virtual void nh_v_temp();

View File

@ -36,7 +36,7 @@ using namespace FixConst;
/* ---------------------------------------------------------------------- */
FixNVEAsphereIntel::FixNVEAsphereIntel(LAMMPS *lmp, int narg, char **arg) :
FixNVE(lmp, narg, arg)
FixNVE(lmp, narg, arg)
{
_dtfm = 0;
_nlocal3 = 0;
@ -129,9 +129,9 @@ void FixNVEAsphereIntel::initial_integrate(int vflag)
#endif
for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) {
double *quat = bonus[ellipsoid[i]].quat;
ME_omega_richardson(dtf, dtq, angmom[i], quat, torque[i], _inertia0[i],
_inertia1[i], _inertia2[i]);
double *quat = bonus[ellipsoid[i]].quat;
ME_omega_richardson(dtf, dtq, angmom[i], quat, torque[i], _inertia0[i],
_inertia1[i], _inertia2[i]);
}
}
}
@ -168,7 +168,7 @@ void FixNVEAsphereIntel::reset_dt() {
dtf = 0.5 * update->dt * force->ftm2v;
const int * const mask = atom->mask;
const int nlocal = (igroup == atom->firstgroup) ? atom->nfirst :
const int nlocal = (igroup == atom->firstgroup) ? atom->nfirst :
atom->nlocal;
if (nlocal > _nlocal_max) {
@ -211,27 +211,27 @@ void FixNVEAsphereIntel::reset_dt() {
for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) {
_dtfm[n++] = dtf / rmass[i];
_dtfm[n++] = dtf / rmass[i];
_dtfm[n++] = dtf / rmass[i];
double *shape = bonus[ellipsoid[i]].shape;
double idot = INERTIA*rmass[i] * (shape[1]*shape[1]+shape[2]*shape[2]);
if (idot != 0.0) idot = 1.0 / idot;
_inertia0[i] = idot;
idot = INERTIA*rmass[i] * (shape[0]*shape[0]+shape[2]*shape[2]);
if (idot != 0.0) idot = 1.0 / idot;
_inertia1[i] = idot;
idot = INERTIA*rmass[i] * (shape[0]*shape[0]+shape[1]*shape[1]);
if (idot != 0.0) idot = 1.0 / idot;
_inertia2[i] = idot;
_dtfm[n++] = dtf / rmass[i];
_dtfm[n++] = dtf / rmass[i];
double *shape = bonus[ellipsoid[i]].shape;
double idot = INERTIA*rmass[i] * (shape[1]*shape[1]+shape[2]*shape[2]);
if (idot != 0.0) idot = 1.0 / idot;
_inertia0[i] = idot;
idot = INERTIA*rmass[i] * (shape[0]*shape[0]+shape[2]*shape[2]);
if (idot != 0.0) idot = 1.0 / idot;
_inertia1[i] = idot;
idot = INERTIA*rmass[i] * (shape[0]*shape[0]+shape[1]*shape[1]);
if (idot != 0.0) idot = 1.0 / idot;
_inertia2[i] = idot;
} else {
_dtfm[n++] = 0.0;
_dtfm[n++] = 0.0;
_dtfm[n++] = 0.0;
_dtfm[n++] = 0.0;
_dtfm[n++] = 0.0;
}
}
}
}
double FixNVEAsphereIntel::memory_usage()
double FixNVEAsphereIntel::memory_usage()
{
return FixNVE::memory_usage() + _nlocal_max * 12 * sizeof(double);
}

View File

@ -29,7 +29,7 @@ using namespace FixConst;
/* ---------------------------------------------------------------------- */
FixNVEIntel::FixNVEIntel(LAMMPS *lmp, int narg, char **arg) :
FixNVE(lmp, narg, arg)
FixNVE(lmp, narg, arg)
{
_dtfm = 0;
_nlocal3 = 0;
@ -91,7 +91,7 @@ void FixNVEIntel::initial_integrate(int vflag)
for (int i = 0; i < _nlocal3; i++) {
if (_dtfm[i] != 0.0) {
v[i] += _dtfm[i] * f[i];
x[i] += dtv * v[i];
x[i] += dtv * v[i];
}
}
}
@ -130,7 +130,7 @@ void FixNVEIntel::reset_dt() {
dtf = 0.5 * update->dt * force->ftm2v;
const int * const mask = atom->mask;
const int nlocal = (igroup == atom->firstgroup) ? atom->nfirst :
const int nlocal = (igroup == atom->firstgroup) ? atom->nfirst :
atom->nlocal;
if (nlocal > _nlocal_max) {
@ -146,9 +146,9 @@ void FixNVEIntel::reset_dt() {
const double * const rmass = atom->rmass;
int n = 0;
for (int i = 0; i < nlocal; i++) {
_dtfm[n++] = dtf / rmass[i];
_dtfm[n++] = dtf / rmass[i];
_dtfm[n++] = dtf / rmass[i];
_dtfm[n++] = dtf / rmass[i];
_dtfm[n++] = dtf / rmass[i];
_dtfm[n++] = dtf / rmass[i];
}
} else {
const double * const mass = atom->mass;
@ -165,34 +165,34 @@ void FixNVEIntel::reset_dt() {
const double * const rmass = atom->rmass;
int n = 0;
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
_dtfm[n++] = dtf / rmass[i];
_dtfm[n++] = dtf / rmass[i];
_dtfm[n++] = dtf / rmass[i];
if (mask[i] & groupbit) {
_dtfm[n++] = dtf / rmass[i];
_dtfm[n++] = dtf / rmass[i];
_dtfm[n++] = dtf / rmass[i];
} else {
_dtfm[n++] = 0.0;
_dtfm[n++] = 0.0;
_dtfm[n++] = 0.0;
}
_dtfm[n++] = 0.0;
_dtfm[n++] = 0.0;
_dtfm[n++] = 0.0;
}
} else {
const double * const mass = atom->mass;
const int * const type = atom->type;
int n = 0;
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
_dtfm[n++] = dtf / mass[type[i]];
_dtfm[n++] = dtf / mass[type[i]];
_dtfm[n++] = dtf / mass[type[i]];
if (mask[i] & groupbit) {
_dtfm[n++] = dtf / mass[type[i]];
_dtfm[n++] = dtf / mass[type[i]];
_dtfm[n++] = dtf / mass[type[i]];
} else {
_dtfm[n++] = 0.0;
_dtfm[n++] = 0.0;
_dtfm[n++] = 0.0;
}
_dtfm[n++] = 0.0;
_dtfm[n++] = 0.0;
_dtfm[n++] = 0.0;
}
}
}
}
double FixNVEIntel::memory_usage()
double FixNVEIntel::memory_usage()
{
return FixNVE::memory_usage() + _nlocal_max * 3 * sizeof(double);
}

View File

@ -42,7 +42,7 @@ typedef struct { int a,b,c,d,t; } int5_t;
/* ---------------------------------------------------------------------- */
ImproperCvffIntel::ImproperCvffIntel(LAMMPS *lmp) :
ImproperCvffIntel::ImproperCvffIntel(LAMMPS *lmp) :
ImproperCvff(lmp)
{
suffix_flag |= Suffix::INTEL;
@ -80,8 +80,8 @@ void ImproperCvffIntel::compute(int eflag, int vflag)
template <class flt_t, class acc_t>
void ImproperCvffIntel::compute(int eflag, int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
{
if (eflag || vflag) ev_setup(eflag,vflag);
else evflag = 0;
@ -89,14 +89,14 @@ void ImproperCvffIntel::compute(int eflag, int vflag,
if (evflag) {
if (vflag && !eflag) {
if (force->newton_bond)
eval<0,1,1>(vflag, buffers, fc);
eval<0,1,1>(vflag, buffers, fc);
else
eval<0,1,0>(vflag, buffers, fc);
eval<0,1,0>(vflag, buffers, fc);
} else {
if (force->newton_bond)
eval<1,1,1>(vflag, buffers, fc);
eval<1,1,1>(vflag, buffers, fc);
else
eval<1,1,0>(vflag, buffers, fc);
eval<1,1,0>(vflag, buffers, fc);
}
} else {
if (force->newton_bond)
@ -109,9 +109,9 @@ void ImproperCvffIntel::compute(int eflag, int vflag,
/* ---------------------------------------------------------------------- */
template <int EFLAG, int VFLAG, int NEWTON_BOND, class flt_t, class acc_t>
void ImproperCvffIntel::eval(const int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
void ImproperCvffIntel::eval(const int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
{
const int inum = neighbor->nimproperlist;
if (inum == 0) return;
@ -153,7 +153,7 @@ void ImproperCvffIntel::eval(const int vflag,
if (fix->need_zero(tid))
memset(f, 0, f_stride * sizeof(FORCE_T));
const int5_t * _noalias const improperlist =
const int5_t * _noalias const improperlist =
(int5_t *) neighbor->improperlist[0];
#ifdef LMP_INTEL_USE_SIMDOFF_FIX
@ -230,22 +230,22 @@ void ImproperCvffIntel::eval(const int vflag,
#ifndef LMP_INTEL_USE_SIMDOFF_FIX
if (c > PTOLERANCE || c < MTOLERANCE) {
int me;
MPI_Comm_rank(world,&me);
if (screen) {
MPI_Comm_rank(world,&me);
if (screen) {
char str[128];
sprintf(str,"Improper problem: %d " BIGINT_FORMAT " "
sprintf(str,"Improper problem: %d " BIGINT_FORMAT " "
TAGINT_FORMAT " " TAGINT_FORMAT " "
TAGINT_FORMAT " " TAGINT_FORMAT,
me,update->ntimestep,
atom->tag[i1],atom->tag[i2],atom->tag[i3],atom->tag[i4]);
error->warning(FLERR,str,0);
fprintf(screen," 1st atom: %d %g %g %g\n",
error->warning(FLERR,str,0);
fprintf(screen," 1st atom: %d %g %g %g\n",
me,x[i1].x,x[i1].y,x[i1].z);
fprintf(screen," 2nd atom: %d %g %g %g\n",
fprintf(screen," 2nd atom: %d %g %g %g\n",
me,x[i2].x,x[i2].y,x[i2].z);
fprintf(screen," 3rd atom: %d %g %g %g\n",
fprintf(screen," 3rd atom: %d %g %g %g\n",
me,x[i3].x,x[i3].y,x[i3].z);
fprintf(screen," 4th atom: %d %g %g %g\n",
fprintf(screen," 4th atom: %d %g %g %g\n",
me,x[i4].x,x[i4].y,x[i4].z);
}
}
@ -268,35 +268,35 @@ void ImproperCvffIntel::eval(const int vflag,
{
if (m == 2) {
p = (flt_t)2.0*c*c;
pd = (flt_t)2.0*c;
pd = (flt_t)2.0*c;
} else if (m == 3) {
const flt_t rc2 = c*c;
p = ((flt_t)4.0*rc2-(flt_t)3.0)*c + (flt_t)1.0;
pd = (flt_t)6.0*rc2 - (flt_t)1.5;
const flt_t rc2 = c*c;
p = ((flt_t)4.0*rc2-(flt_t)3.0)*c + (flt_t)1.0;
pd = (flt_t)6.0*rc2 - (flt_t)1.5;
} else if (m == 4) {
const flt_t rc2 = c*c;
p = (flt_t)8.0*(rc2-1)*rc2 + (flt_t)2.0;
pd = ((flt_t)16.0*rc2-(flt_t)8.0)*c;
p = (flt_t)8.0*(rc2-1)*rc2 + (flt_t)2.0;
pd = ((flt_t)16.0*rc2-(flt_t)8.0)*c;
} else if (m == 6) {
const flt_t rc2 = c*c;
p = (((flt_t)32.0*rc2-(flt_t)48.0)*rc2 + (flt_t)18.0)*rc2;
pd = ((flt_t)96.0*(rc2-(flt_t)1.0)*rc2 + (flt_t)18.0)*c;
p = (((flt_t)32.0*rc2-(flt_t)48.0)*rc2 + (flt_t)18.0)*rc2;
pd = ((flt_t)96.0*(rc2-(flt_t)1.0)*rc2 + (flt_t)18.0)*c;
} else if (m == 1) {
p = c + (flt_t)1.0;
pd = (flt_t)0.5;
p = c + (flt_t)1.0;
pd = (flt_t)0.5;
} else if (m == 5) {
const flt_t rc2 = c*c;
p = (((flt_t)16.0*rc2-(flt_t)20.0)*rc2 + (flt_t)5.0)*c + (flt_t)1.0;
pd = ((flt_t)40.0*rc2-(flt_t)30.0)*rc2 + (flt_t)2.5;
const flt_t rc2 = c*c;
p = (((flt_t)16.0*rc2-(flt_t)20.0)*rc2 + (flt_t)5.0)*c + (flt_t)1.0;
pd = ((flt_t)40.0*rc2-(flt_t)30.0)*rc2 + (flt_t)2.5;
} else if (m == 0) {
p = (flt_t)2.0;
pd = (flt_t)0.0;
pd = (flt_t)0.0;
}
}
if (fc.fc[type].sign == -1) {
p = (flt_t)2.0 - p;
pd = -pd;
p = (flt_t)2.0 - p;
pd = -pd;
}
flt_t eimproper;
@ -340,43 +340,43 @@ void ImproperCvffIntel::eval(const int vflag,
{
if (NEWTON_BOND || i1 < nlocal) {
f[i1].x += f1x;
f[i1].y += f1y;
f[i1].z += f1z;
f[i1].y += f1y;
f[i1].z += f1z;
}
if (NEWTON_BOND || i2 < nlocal) {
f[i2].x += f2x;
f[i2].y += f2y;
f[i2].z += f2z;
f[i2].y += f2y;
f[i2].z += f2z;
}
if (NEWTON_BOND || i3 < nlocal) {
if (NEWTON_BOND || i3 < nlocal) {
f[i3].x += f3x;
f[i3].y += f3y;
f[i3].z += f3z;
f[i3].y += f3y;
f[i3].z += f3z;
}
if (NEWTON_BOND || i4 < nlocal) {
f[i4].x += f4x;
f[i4].y += f4y;
f[i4].z += f4z;
f[i4].y += f4y;
f[i4].z += f4z;
}
}
if (EFLAG || VFLAG) {
#ifdef LMP_INTEL_USE_SIMDOFF_FIX
IP_PRE_ev_tally_dihed(EFLAG, VFLAG, eatom, vflag, eimproper, i1, i2,
i3, i4, f1x, f1y, f1z, f3x, f3y, f3z, f4x, f4y,
f4z, vb1x, vb1y, vb1z, -vb2xm, -vb2ym, -vb2zm,
vb3x, vb3y, vb3z, seimproper, f, NEWTON_BOND,
IP_PRE_ev_tally_dihed(EFLAG, VFLAG, eatom, vflag, eimproper, i1, i2,
i3, i4, f1x, f1y, f1z, f3x, f3y, f3z, f4x, f4y,
f4z, vb1x, vb1y, vb1z, -vb2xm, -vb2ym, -vb2zm,
vb3x, vb3y, vb3z, seimproper, f, NEWTON_BOND,
nlocal, sv0, sv1, sv2, sv3, sv4, sv5);
#else
IP_PRE_ev_tally_dihed(EFLAG, VFLAG, eatom, vflag, eimproper, i1, i2,
i3, i4, f1x, f1y, f1z, f3x, f3y, f3z, f4x, f4y,
f4z, vb1x, vb1y, vb1z, -vb2xm, -vb2ym, -vb2zm,
vb3x, vb3y, vb3z, oeimproper, f, NEWTON_BOND,
#else
IP_PRE_ev_tally_dihed(EFLAG, VFLAG, eatom, vflag, eimproper, i1, i2,
i3, i4, f1x, f1y, f1z, f3x, f3y, f3z, f4x, f4y,
f4z, vb1x, vb1y, vb1z, -vb2xm, -vb2ym, -vb2zm,
vb3x, vb3y, vb3z, oeimproper, f, NEWTON_BOND,
nlocal, ov0, ov1, ov2, ov3, ov4, ov5);
#endif
#endif
}
} // for n
#ifdef LMP_INTEL_USE_SIMDOFF_FIX
@ -390,7 +390,7 @@ void ImproperCvffIntel::eval(const int vflag,
if (EFLAG) energy += oeimproper;
if (VFLAG && vflag) {
virial[0] += ov0; virial[1] += ov1; virial[2] += ov2;
virial[3] += ov3; virial[4] += ov4; virial[5] += ov5;
virial[3] += ov3; virial[4] += ov4; virial[5] += ov5;
}
fix->set_reduce_flag();
@ -428,7 +428,7 @@ void ImproperCvffIntel::init_style()
template <class flt_t, class acc_t>
void ImproperCvffIntel::pack_force_const(ForceConst<flt_t> &fc,
IntelBuffers<flt_t,acc_t> *buffers)
IntelBuffers<flt_t,acc_t> *buffers)
{
const int bp1 = atom->nimpropertypes + 1;
fc.set_ntypes(bp1,memory);
@ -444,11 +444,11 @@ void ImproperCvffIntel::pack_force_const(ForceConst<flt_t> &fc,
template <class flt_t>
void ImproperCvffIntel::ForceConst<flt_t>::set_ntypes(const int nimproper,
Memory *memory) {
Memory *memory) {
if (nimproper != _nimpropertypes) {
if (_nimpropertypes > 0)
_memory->destroy(fc);
if (nimproper > 0)
_memory->create(fc,nimproper,"improperharmonicintel.fc");
}

View File

@ -45,8 +45,8 @@ class ImproperCvffIntel : public ImproperCvff {
void compute(int eflag, int vflag, IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc);
template <int EVFLAG, int EFLAG, int NEWTON_BOND, class flt_t, class acc_t>
void eval(const int vflag, IntelBuffers<flt_t,acc_t> * buffers,
const ForceConst<flt_t> &fc);
void eval(const int vflag, IntelBuffers<flt_t,acc_t> * buffers,
const ForceConst<flt_t> &fc);
template <class flt_t, class acc_t>
void pack_force_const(ForceConst<flt_t> &fc,
IntelBuffers<flt_t, acc_t> *buffers);

View File

@ -43,7 +43,7 @@ typedef struct { int a,b,c,d,t; } int5_t;
/* ---------------------------------------------------------------------- */
ImproperHarmonicIntel::ImproperHarmonicIntel(LAMMPS *lmp) :
ImproperHarmonicIntel::ImproperHarmonicIntel(LAMMPS *lmp) :
ImproperHarmonic(lmp)
{
suffix_flag |= Suffix::INTEL;
@ -81,8 +81,8 @@ void ImproperHarmonicIntel::compute(int eflag, int vflag)
template <class flt_t, class acc_t>
void ImproperHarmonicIntel::compute(int eflag, int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
{
if (eflag || vflag) ev_setup(eflag,vflag);
else evflag = 0;
@ -90,14 +90,14 @@ void ImproperHarmonicIntel::compute(int eflag, int vflag,
if (evflag) {
if (vflag && !eflag) {
if (force->newton_bond)
eval<0,1,1>(vflag, buffers, fc);
eval<0,1,1>(vflag, buffers, fc);
else
eval<0,1,0>(vflag, buffers, fc);
eval<0,1,0>(vflag, buffers, fc);
} else {
if (force->newton_bond)
eval<1,1,1>(vflag, buffers, fc);
eval<1,1,1>(vflag, buffers, fc);
else
eval<1,1,0>(vflag, buffers, fc);
eval<1,1,0>(vflag, buffers, fc);
}
} else {
if (force->newton_bond)
@ -110,9 +110,9 @@ void ImproperHarmonicIntel::compute(int eflag, int vflag,
/* ---------------------------------------------------------------------- */
template <int EFLAG, int VFLAG, int NEWTON_BOND, class flt_t, class acc_t>
void ImproperHarmonicIntel::eval(const int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
void ImproperHarmonicIntel::eval(const int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
{
const int inum = neighbor->nimproperlist;
if (inum == 0) return;
@ -154,7 +154,7 @@ void ImproperHarmonicIntel::eval(const int vflag,
if (fix->need_zero(tid))
memset(f, 0, f_stride * sizeof(FORCE_T));
const int5_t * _noalias const improperlist =
const int5_t * _noalias const improperlist =
(int5_t *) neighbor->improperlist[0];
#ifdef LMP_INTEL_USE_SIMDOFF
@ -221,22 +221,22 @@ void ImproperHarmonicIntel::eval(const int vflag,
#ifndef LMP_INTEL_USE_SIMDOFF
if (c > PTOLERANCE || c < MTOLERANCE) {
int me;
MPI_Comm_rank(world,&me);
if (screen) {
MPI_Comm_rank(world,&me);
if (screen) {
char str[128];
sprintf(str,"Improper problem: %d " BIGINT_FORMAT " "
sprintf(str,"Improper problem: %d " BIGINT_FORMAT " "
TAGINT_FORMAT " " TAGINT_FORMAT " "
TAGINT_FORMAT " " TAGINT_FORMAT,
me,update->ntimestep,
atom->tag[i1],atom->tag[i2],atom->tag[i3],atom->tag[i4]);
error->warning(FLERR,str,0);
fprintf(screen," 1st atom: %d %g %g %g\n",
error->warning(FLERR,str,0);
fprintf(screen," 1st atom: %d %g %g %g\n",
me,x[i1].x,x[i1].y,x[i1].z);
fprintf(screen," 2nd atom: %d %g %g %g\n",
fprintf(screen," 2nd atom: %d %g %g %g\n",
me,x[i2].x,x[i2].y,x[i2].z);
fprintf(screen," 3rd atom: %d %g %g %g\n",
fprintf(screen," 3rd atom: %d %g %g %g\n",
me,x[i3].x,x[i3].y,x[i3].z);
fprintf(screen," 4th atom: %d %g %g %g\n",
fprintf(screen," 4th atom: %d %g %g %g\n",
me,x[i4].x,x[i4].y,x[i4].z);
}
}
@ -296,43 +296,43 @@ void ImproperHarmonicIntel::eval(const int vflag,
{
if (NEWTON_BOND || i1 < nlocal) {
f[i1].x += f1x;
f[i1].y += f1y;
f[i1].z += f1z;
f[i1].y += f1y;
f[i1].z += f1z;
}
if (NEWTON_BOND || i2 < nlocal) {
if (NEWTON_BOND || i2 < nlocal) {
f[i2].x += f2x;
f[i2].y += f2y;
f[i2].z += f2z;
f[i2].y += f2y;
f[i2].z += f2z;
}
if (NEWTON_BOND || i3 < nlocal) {
f[i3].x += f3x;
f[i3].y += f3y;
f[i3].z += f3z;
f[i3].y += f3y;
f[i3].z += f3z;
}
if (NEWTON_BOND || i4 < nlocal) {
f[i4].x += f4x;
f[i4].y += f4y;
f[i4].z += f4z;
f[i4].y += f4y;
f[i4].z += f4z;
}
}
if (EFLAG || VFLAG) {
#ifdef LMP_INTEL_USE_SIMDOFF
IP_PRE_ev_tally_dihed(EFLAG, VFLAG, eatom, vflag, eimproper, i1, i2,
i3, i4, f1x, f1y, f1z, f3x, f3y, f3z, f4x,
i3, i4, f1x, f1y, f1z, f3x, f3y, f3z, f4x,
f4y, f4z, vb1x, vb1y, vb1z, vb2x, vb2y, vb2z,
vb3x, vb3y, vb3z, seimproper, f, NEWTON_BOND,
vb3x, vb3y, vb3z, seimproper, f, NEWTON_BOND,
nlocal, sv0, sv1, sv2, sv3, sv4, sv5);
#else
IP_PRE_ev_tally_dihed(EFLAG, VFLAG, eatom, vflag, eimproper, i1, i2,
i3, i4, f1x, f1y, f1z, f3x, f3y, f3z, f4x,
i3, i4, f1x, f1y, f1z, f3x, f3y, f3z, f4x,
f4y, f4z, vb1x, vb1y, vb1z, vb2x, vb2y, vb2z,
vb3x, vb3y, vb3z, oeimproper, f, NEWTON_BOND,
vb3x, vb3y, vb3z, oeimproper, f, NEWTON_BOND,
nlocal, ov0, ov1, ov2, ov3, ov4, ov5);
#endif
#endif
}
} // for n
#ifdef LMP_INTEL_USE_SIMDOFF
@ -346,7 +346,7 @@ void ImproperHarmonicIntel::eval(const int vflag,
if (EFLAG) energy += oeimproper;
if (VFLAG && vflag) {
virial[0] += ov0; virial[1] += ov1; virial[2] += ov2;
virial[3] += ov3; virial[4] += ov4; virial[5] += ov5;
virial[3] += ov3; virial[4] += ov4; virial[5] += ov5;
}
fix->set_reduce_flag();
@ -384,7 +384,7 @@ void ImproperHarmonicIntel::init_style()
template <class flt_t, class acc_t>
void ImproperHarmonicIntel::pack_force_const(ForceConst<flt_t> &fc,
IntelBuffers<flt_t,acc_t> *buffers)
IntelBuffers<flt_t,acc_t> *buffers)
{
const int bp1 = atom->nimpropertypes + 1;
fc.set_ntypes(bp1,memory);
@ -399,11 +399,11 @@ void ImproperHarmonicIntel::pack_force_const(ForceConst<flt_t> &fc,
template <class flt_t>
void ImproperHarmonicIntel::ForceConst<flt_t>::set_ntypes(const int nimproper,
Memory *memory) {
Memory *memory) {
if (nimproper != _nimpropertypes) {
if (_nimpropertypes > 0)
_memory->destroy(fc);
if (nimproper > 0)
_memory->create(fc,nimproper,"improperharmonicintel.fc");
}

View File

@ -45,8 +45,8 @@ class ImproperHarmonicIntel : public ImproperHarmonic {
void compute(int eflag, int vflag, IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc);
template <int EVFLAG, int EFLAG, int NEWTON_BOND, class flt_t, class acc_t>
void eval(const int vflag, IntelBuffers<flt_t,acc_t> * buffers,
const ForceConst<flt_t> &fc);
void eval(const int vflag, IntelBuffers<flt_t,acc_t> * buffers,
const ForceConst<flt_t> &fc);
template <class flt_t, class acc_t>
void pack_force_const(ForceConst<flt_t> &fc,
IntelBuffers<flt_t, acc_t> *buffers);

View File

@ -71,8 +71,8 @@ void IntelBuffers<flt_t, acc_t>::free_buffers()
if (ev_global != 0) {
#pragma offload_transfer target(mic:_cop) \
nocopy(x:alloc_if(0) free_if(1)) \
nocopy(f_start:alloc_if(0) free_if(1)) \
nocopy(ev_global:alloc_if(0) free_if(1))
nocopy(f_start:alloc_if(0) free_if(1)) \
nocopy(ev_global:alloc_if(0) free_if(1))
}
if (q != 0) {
@ -105,8 +105,8 @@ void IntelBuffers<flt_t, acc_t>::free_buffers()
template <class flt_t, class acc_t>
void IntelBuffers<flt_t, acc_t>::_grow(const int nall, const int nlocal,
const int nthreads,
const int offload_end)
const int nthreads,
const int offload_end)
{
free_buffers();
_buf_size = static_cast<double>(nall) * 1.1 + 1;
@ -151,15 +151,15 @@ void IntelBuffers<flt_t, acc_t>::_grow(const int nall, const int nlocal,
if (x != NULL && q != NULL && f_start != NULL && ev_global != NULL) {
#pragma offload_transfer target(mic:_cop) \
nocopy(x,q:length(_buf_size) alloc_if(1) free_if(0)) \
nocopy(f_start:length(f_stride*fm) alloc_if(1) free_if(0))\
nocopy(ev_global:length(8) alloc_if(1) free_if(0))
nocopy(f_start:length(f_stride*fm) alloc_if(1) free_if(0))\
nocopy(ev_global:length(8) alloc_if(1) free_if(0))
}
} else {
if (x != NULL && f_start != NULL && ev_global != NULL) {
#pragma offload_transfer target(mic:_cop) \
nocopy(x:length(_buf_size) alloc_if(1) free_if(0)) \
nocopy(f_start:length(f_stride*fm) alloc_if(1) free_if(0))\
nocopy(ev_global:length(8) alloc_if(1) free_if(0))
nocopy(ev_global:length(8) alloc_if(1) free_if(0))
}
}
if (lmp->atom->ellipsoid != NULL) {
@ -186,7 +186,7 @@ void IntelBuffers<flt_t, acc_t>::free_nmax()
if (tag != 0 && special != 0 && nspecial !=0) {
#pragma offload_transfer target(mic:_cop) \
nocopy(tag:alloc_if(0) free_if(1)) \
nocopy(special,nspecial:alloc_if(0) free_if(1))
nocopy(special,nspecial:alloc_if(0) free_if(1))
}
_off_map_nmax = 0;
_host_nmax = 0;
@ -261,7 +261,7 @@ void IntelBuffers<flt_t, acc_t>::free_list_local()
template <class flt_t, class acc_t>
void IntelBuffers<flt_t, acc_t>::_grow_list_local(NeighList *list,
const int offload_end)
const int offload_end)
{
free_list_local();
int size = list->get_maxlocal();
@ -276,7 +276,7 @@ void IntelBuffers<flt_t, acc_t>::_grow_list_local(NeighList *list,
if (cnumneigh != 0) {
#pragma offload_transfer target(mic:_cop) \
nocopy(ilist:length(size) alloc_if(1) free_if(0)) \
nocopy(numneigh:length(size) alloc_if(1) free_if(0)) \
nocopy(numneigh:length(size) alloc_if(1) free_if(0)) \
nocopy(cnumneigh:length(size) alloc_if(1) free_if(0))
}
_off_map_ilist = ilist;
@ -309,14 +309,14 @@ void IntelBuffers<flt_t, acc_t>::free_nbor_list()
template <class flt_t, class acc_t>
void IntelBuffers<flt_t, acc_t>::_grow_nbor_list(NeighList *list,
const int nlocal,
const int nthreads,
const int offload_end,
const int pack_width)
const int nthreads,
const int offload_end,
const int pack_width)
{
free_nbor_list();
_list_alloc_atoms = 1.10 * nlocal;
int nt = MAX(nthreads, _off_threads);
int list_alloc_size = (_list_alloc_atoms + nt * 2 + pack_width - 1) *
int list_alloc_size = (_list_alloc_atoms + nt * 2 + pack_width - 1) *
get_max_nbors();
lmp->memory->create(_list_alloc, list_alloc_size, "_list_alloc");
#ifdef _LMP_INTEL_OFFLOAD
@ -380,8 +380,8 @@ void IntelBuffers<flt_t, acc_t>::free_ccache()
template <class flt_t, class acc_t>
void IntelBuffers<flt_t, acc_t>::grow_ccache(const int off_flag,
const int nthreads,
const int width)
const int nthreads,
const int width)
{
#ifdef _LMP_INTEL_OFFLOAD
if (_ccachex && off_flag && _off_ccache == 0)
@ -418,7 +418,7 @@ void IntelBuffers<flt_t, acc_t>::grow_ccache(const int off_flag,
int *ccachej = _ccachej;
if (ccachex != NULL && ccachey !=NULL && ccachez != NULL &&
ccachew != NULL && ccachei != NULL && ccachej !=NULL) {
ccachew != NULL && ccachei != NULL && ccachej !=NULL) {
#pragma offload_transfer target(mic:_cop) \
nocopy(ccachex,ccachey:length(vsize) alloc_if(1) free_if(0)) \
nocopy(ccachez,ccachew:length(vsize) alloc_if(1) free_if(0)) \
@ -471,7 +471,7 @@ void IntelBuffers<flt_t, acc_t>::free_ncache()
template <class flt_t, class acc_t>
void IntelBuffers<flt_t, acc_t>::grow_ncache(const int off_flag,
const int nthreads)
const int nthreads)
{
const int nsize = get_max_nbors() * 3;
int esize = MIN(sizeof(int), sizeof(flt_t));
@ -507,7 +507,7 @@ void IntelBuffers<flt_t, acc_t>::grow_ncache(const int off_flag,
int *ncachejtype = _ncachejtype;
if (ncachex != NULL && ncachey !=NULL && ncachez != NULL &&
ncachej != NULL && ncachejtype != NULL) {
ncachej != NULL && ncachejtype != NULL) {
#pragma offload_transfer target(mic:_cop) \
nocopy(ncachex,ncachey:length(vsize) alloc_if(1) free_if(0)) \
nocopy(ncachez,ncachej:length(vsize) alloc_if(1) free_if(0)) \
@ -522,9 +522,9 @@ void IntelBuffers<flt_t, acc_t>::grow_ncache(const int off_flag,
#ifndef _LMP_INTEL_OFFLOAD
template <class flt_t, class acc_t>
void IntelBuffers<flt_t, acc_t>::fdotr_reduce_l5(const int lf, const int lt,
void IntelBuffers<flt_t, acc_t>::fdotr_reduce_l5(const int lf, const int lt,
const int nthreads, const int f_stride, acc_t &ov0, acc_t &ov1,
acc_t &ov2, acc_t &ov3, acc_t &ov4, acc_t &ov5)
acc_t &ov2, acc_t &ov3, acc_t &ov4, acc_t &ov5)
{
IP_PRE_fdotr_acc_force_l5(lf, lt, 0, nthreads, _f, f_stride, _x, ov0,
ov1, ov2, ov3, ov4, ov5);
@ -535,13 +535,13 @@ void IntelBuffers<flt_t, acc_t>::fdotr_reduce_l5(const int lf, const int lt,
#ifndef _LMP_INTEL_OFFLOAD
template <class flt_t, class acc_t>
void IntelBuffers<flt_t, acc_t>::fdotr_reduce(const int nall,
const int nthreads, const int f_stride, acc_t &ov0, acc_t &ov1,
void IntelBuffers<flt_t, acc_t>::fdotr_reduce(const int nall,
const int nthreads, const int f_stride, acc_t &ov0, acc_t &ov1,
acc_t &ov2, acc_t &ov3, acc_t &ov4, acc_t &ov5)
{
int iifrom, iito, tid;
IP_PRE_fdotr_acc_force(nall, 0, nthreads, _f, f_stride, _x, 0, 2,
ov0, ov1, ov2, ov3, ov4, ov5);
ov0, ov1, ov2, ov3, ov4, ov5);
}
#endif

View File

@ -62,7 +62,7 @@ class IntelBuffers {
void free_buffers();
void free_nmax();
inline void set_bininfo(int *atombin, int *binpacked)
inline void set_bininfo(int *atombin, int *binpacked)
{ _atombin = atombin; _binpacked = binpacked; }
inline void grow(const int nall, const int nlocal, const int nthreads,
const int offload_end) {
@ -126,7 +126,7 @@ class IntelBuffers {
inline void grow_nbor_list(NeighList *list, const int nlocal,
const int nthreads, const int offload_end,
const int pack_width) {
const int pack_width) {
if (nlocal > _list_alloc_atoms)
_grow_nbor_list(list, nlocal, nthreads, offload_end, pack_width);
}
@ -165,7 +165,7 @@ class IntelBuffers {
inline int get_off_threads() { return _off_threads; }
#ifdef _LMP_INTEL_OFFLOAD
inline void set_off_params(const int n, const int cop,
const int separate_buffers)
const int separate_buffers)
{ _off_threads = n; _cop = cop; _separate_buffers = separate_buffers; }
inline vec3_acc_t * get_off_f() { return _off_f; }
#endif
@ -191,17 +191,17 @@ class IntelBuffers {
}
#ifndef _LMP_INTEL_OFFLOAD
void fdotr_reduce_l5(const int lf, const int lt, const int nthreads,
const int f_stride, acc_t &ov0, acc_t &ov1,
acc_t &ov2, acc_t &ov3, acc_t &ov4, acc_t &ov5);
void fdotr_reduce(const int nall, const int nthreads, const int f_stride,
acc_t &ov0, acc_t &ov1, acc_t &ov2, acc_t &ov3,
acc_t &ov4, acc_t &ov5);
void fdotr_reduce_l5(const int lf, const int lt, const int nthreads,
const int f_stride, acc_t &ov0, acc_t &ov1,
acc_t &ov2, acc_t &ov3, acc_t &ov4, acc_t &ov5);
void fdotr_reduce(const int nall, const int nthreads, const int f_stride,
acc_t &ov0, acc_t &ov1, acc_t &ov2, acc_t &ov3,
acc_t &ov4, acc_t &ov5);
#endif
#ifdef _LMP_INTEL_OFFLOAD
inline void thr_pack_cop(const int ifrom, const int ito,
const int offset, const bool dotype = false) {
const int offset, const bool dotype = false) {
double ** x = lmp->atom->x + offset;
if (dotype == false) {
#pragma vector nontemporal
@ -214,16 +214,16 @@ class IntelBuffers {
int *type = lmp->atom->type + offset;
#pragma vector nontemporal
for (int i = ifrom; i < ito; i++) {
_x[i].x = x[i][0];
_x[i].y = x[i][1];
_x[i].z = x[i][2];
_x[i].w = type[i];
_x[i].x = x[i][0];
_x[i].y = x[i][1];
_x[i].z = x[i][2];
_x[i].w = type[i];
}
}
}
inline void thr_pack_host(const int ifrom, const int ito,
const int offset) {
const int offset) {
double ** x = lmp->atom->x + offset;
for (int i = ifrom; i < ito; i++) {
_host_x[i].x = x[i][0];
@ -233,13 +233,13 @@ class IntelBuffers {
}
inline void pack_sep_from_single(const int host_min_local,
const int used_local,
const int host_min_ghost,
const int used_ghost) {
const int used_local,
const int host_min_ghost,
const int used_ghost) {
memcpy(_host_x + host_min_local, _x + host_min_local,
used_local * sizeof(atom_t));
used_local * sizeof(atom_t));
memcpy(_host_x + host_min_local + used_local, _x + host_min_ghost,
used_ghost * sizeof(atom_t));
used_ghost * sizeof(atom_t));
int nall = used_local + used_ghost + host_min_local;
_host_x[nall].x = INTEL_BIGP;
_host_x[nall].y = INTEL_BIGP;
@ -247,9 +247,9 @@ class IntelBuffers {
_host_x[nall].w = 1;
if (lmp->atom->q != NULL) {
memcpy(_host_q + host_min_local, _q + host_min_local,
used_local * sizeof(flt_t));
used_local * sizeof(flt_t));
memcpy(_host_q + host_min_local + used_local, _q + host_min_ghost,
used_ghost * sizeof(flt_t));
used_ghost * sizeof(flt_t));
}
}
@ -310,7 +310,7 @@ class IntelBuffers {
_alignvar(acc_t _ev_global_host[8],64);
void _grow(const int nall, const int nlocal, const int nthreads,
const int offload_end);
const int offload_end);
void _grow_nmax(const int offload_end);
void _grow_list_local(NeighList *list, const int offload_end);
void _grow_nbor_list(NeighList *list, const int nlocal, const int nthreads,

View File

@ -46,23 +46,23 @@ struct lmp_intel_an_fvec {
lmp_intel_an_fvec(const lmp_intel_an_fvec &a) { data[:] = a.data[:]; }
lmp_intel_an_fvec& operator =(const lmp_intel_an_fvec &a) { data[:] = a.data[:]; return *this; }
const lmp_intel_an_fvec operator +(const lmp_intel_an_fvec &b) const {
lmp_intel_an_fvec ret = *this;
ret.data[:] += b.data[:];
lmp_intel_an_fvec ret = *this;
ret.data[:] += b.data[:];
return ret;
}
const lmp_intel_an_fvec operator -(const lmp_intel_an_fvec &b) const {
lmp_intel_an_fvec ret = *this;
ret.data[:] -= b.data[:];
lmp_intel_an_fvec ret = *this;
ret.data[:] -= b.data[:];
return ret;
}
const lmp_intel_an_fvec operator *(const lmp_intel_an_fvec &b) const {
lmp_intel_an_fvec ret = *this;
ret.data[:] *= b.data[:];
lmp_intel_an_fvec ret = *this;
ret.data[:] *= b.data[:];
return ret;
}
const lmp_intel_an_fvec operator /(const lmp_intel_an_fvec &b) const {
lmp_intel_an_fvec ret = *this;
ret.data[:] /= b.data[:];
lmp_intel_an_fvec ret = *this;
ret.data[:] /= b.data[:];
return ret;
}
lmp_intel_an_fvec& operator +=(const lmp_intel_an_fvec &b) {
@ -103,18 +103,18 @@ struct lmp_intel_an_ivec {
explicit lmp_intel_an_ivec(int i) { data[:] = i; }
explicit lmp_intel_an_ivec(const int * a) { data[:] = a[0:VL]; }
const lmp_intel_an_ivec operator &(const lmp_intel_an_ivec &b) {
lmp_intel_an_ivec ret = *this;
ret.data[:] &= b.data[:];
lmp_intel_an_ivec ret = *this;
ret.data[:] &= b.data[:];
return ret;
}
const lmp_intel_an_ivec operator |(const lmp_intel_an_ivec &b) {
lmp_intel_an_ivec ret = *this;
ret.data[:] |= b.data[:];
lmp_intel_an_ivec ret = *this;
ret.data[:] |= b.data[:];
return ret;
}
const lmp_intel_an_ivec operator +(const lmp_intel_an_ivec &b) {
lmp_intel_an_ivec ret = *this;
ret.data[:] += b.data[:];
lmp_intel_an_ivec ret = *this;
ret.data[:] += b.data[:];
return ret;
}
};
@ -171,13 +171,13 @@ enum CalculationMode { KNC, AVX, AVX2, SSE, NONE, AN };
// This is used in the selection logic
template<CalculationMode mode>
struct vector_traits {
static const bool support_integer_and_gather_ops = true;
struct vector_traits {
static const bool support_integer_and_gather_ops = true;
};
template<>
struct vector_traits<AVX> {
static const bool support_integer_and_gather_ops = false;
struct vector_traits<AVX> {
static const bool support_integer_and_gather_ops = false;
};
// This is the base template for all the different architectures
@ -198,10 +198,10 @@ struct ivec32x16 {
}
explicit ivec32x16(int i) { vec = _mm512_set1_epi32(i); }
operator __m512i() const { return vec; }
friend ivec32x16 operator &(const ivec32x16 &a, const ivec32x16 &b) {
friend ivec32x16 operator &(const ivec32x16 &a, const ivec32x16 &b) {
return _mm512_and_epi32(a, b);
}
friend ivec32x16 operator |(const ivec32x16 &a, const ivec32x16 &b) {
friend ivec32x16 operator |(const ivec32x16 &a, const ivec32x16 &b) {
return _mm512_or_epi32(a, b);
}
friend ivec32x16 operator +(const ivec32x16 &a, const ivec32x16 &b) {
@ -326,7 +326,7 @@ struct vector_ops<double, KNC> {
*z = gather<1>(*z, mask, idxs, &base->z);
*w = int_gather<1>(*w, mask, idxs, &base->w);
}
static void gather_8(const ivec &idxs, const bvec &mask, const void *base,
static void gather_8(const ivec &idxs, const bvec &mask, const void *base,
fvec *r0, fvec *r1, fvec *r2, fvec *r3, fvec *r4, fvec *r5, fvec *r6, fvec *r7) {
*r0 = gather<4>(*r0, mask, idxs, reinterpret_cast<const char *>(base) + 0);
*r1 = gather<4>(*r1, mask, idxs, reinterpret_cast<const char *>(base) + 8);
@ -337,7 +337,7 @@ struct vector_ops<double, KNC> {
*r6 = gather<4>(*r6, mask, idxs, reinterpret_cast<const char *>(base) + 48);
*r7 = gather<4>(*r7, mask, idxs, reinterpret_cast<const char *>(base) + 56);
}
static void gather_4(const ivec &idxs, const bvec &mask, const void *base,
static void gather_4(const ivec &idxs, const bvec &mask, const void *base,
fvec *r0, fvec *r1, fvec *r2, fvec *r3) {
*r0 = gather<4>(*r0, mask, idxs, reinterpret_cast<const char *>(base) + 0);
*r1 = gather<4>(*r1, mask, idxs, reinterpret_cast<const char *>(base) + 8);
@ -464,7 +464,7 @@ struct vector_ops<float, KNC> {
*z = gather<1>(*z, mask, idxs, &base->z);
*w = int_gather<1>(*w, mask, idxs, &base->w);
}
static void gather_8(const ivec &idxs, const bvec &mask, const void *base,
static void gather_8(const ivec &idxs, const bvec &mask, const void *base,
fvec *r0, fvec *r1, fvec *r2, fvec *r3, fvec *r4, fvec *r5, fvec *r6, fvec *r7) {
*r0 = gather<4>(*r0, mask, idxs, reinterpret_cast<const char *>(base) + 0);
*r1 = gather<4>(*r1, mask, idxs, reinterpret_cast<const char *>(base) + 4);
@ -475,7 +475,7 @@ struct vector_ops<float, KNC> {
*r6 = gather<4>(*r6, mask, idxs, reinterpret_cast<const char *>(base) + 24);
*r7 = gather<4>(*r7, mask, idxs, reinterpret_cast<const char *>(base) + 28);
}
static void gather_4(const ivec &idxs, const bvec &mask, const void *base,
static void gather_4(const ivec &idxs, const bvec &mask, const void *base,
fvec *r0, fvec *r1, fvec *r2, fvec *r3) {
*r0 = gather<4>(*r0, mask, idxs, reinterpret_cast<const char *>(base) + 0);
*r1 = gather<4>(*r1, mask, idxs, reinterpret_cast<const char *>(base) + 4);
@ -519,10 +519,10 @@ struct ivec32x8 {
}
explicit ivec32x8(int i) { vec = _mm256_set1_epi32(i); }
operator __m256i() const { return vec; }
friend ivec32x8 operator &(const ivec32x8 &a, const ivec32x8 &b) {
friend ivec32x8 operator &(const ivec32x8 &a, const ivec32x8 &b) {
return _mm256_castpd_si256(_mm256_and_pd(_mm256_castsi256_pd(a), _mm256_castsi256_pd(b)));
}
friend ivec32x8 operator |(const ivec32x8 &a, const ivec32x8 &b) {
friend ivec32x8 operator |(const ivec32x8 &a, const ivec32x8 &b) {
return _mm256_castpd_si256(_mm256_or_pd(_mm256_castsi256_pd(a), _mm256_castsi256_pd(b)));
}
friend ivec32x8 operator +(const ivec32x8 &a, const ivec32x8 &b) {
@ -545,10 +545,10 @@ struct avx_bvec {
operator F64vec4() const { return _mm256_castsi256_pd(vec); }
operator F32vec8() const { return _mm256_castsi256_ps(vec); }
operator ivec32x8() const { return vec; }
friend avx_bvec operator &(const avx_bvec &a, const avx_bvec &b) {
friend avx_bvec operator &(const avx_bvec &a, const avx_bvec &b) {
return _mm256_castpd_si256(_mm256_and_pd(_mm256_castsi256_pd(a), _mm256_castsi256_pd(b)));
}
friend avx_bvec operator |(const avx_bvec &a, const avx_bvec &b) {
friend avx_bvec operator |(const avx_bvec &a, const avx_bvec &b) {
return _mm256_castpd_si256(_mm256_or_pd(_mm256_castsi256_pd(a), _mm256_castsi256_pd(b)));
}
friend avx_bvec operator ~(const avx_bvec &a) { return _mm256_castpd_si256(_mm256_andnot_pd(_mm256_castsi256_pd(a), _mm256_castsi256_pd(avx_bvec(0xFFFFFFFF)))); }
@ -582,8 +582,8 @@ struct vector_ops<double, AVX> {
_mm256_store_si256(reinterpret_cast<__m256i*>(idxs), idx);
_mm256_store_pd(reinterpret_cast<double*>(src), from);
for (int i = 0; i < VL; i++) {
result[i] = mask_test_at(mask, i)
? *reinterpret_cast<const double*>(reinterpret_cast<const char*>(base) + scale * idxs[2*i])
result[i] = mask_test_at(mask, i)
? *reinterpret_cast<const double*>(reinterpret_cast<const char*>(base) + scale * idxs[2*i])
: src[i];
}
return _mm256_load_pd(reinterpret_cast<double*>(result));
@ -605,18 +605,18 @@ struct vector_ops<double, AVX> {
__m256d c1 = _mm256_permute2f128_pd(b1, b3, 0x20);
__m256d c2 = _mm256_permute2f128_pd(b0, b2, 0x31);
__m256d c3 = _mm256_permute2f128_pd(b1, b3, 0x31);
*x = blend(mask, *x, c0);
*y = blend(mask, *y, c1);
*z = blend(mask, *z, c2);
*x = blend(mask, *x, c0);
*y = blend(mask, *y, c1);
*z = blend(mask, *z, c2);
*w = int_blend(mask, *w, _mm256_castps_si256(_mm256_permute_ps(_mm256_castpd_ps(c3), 0xA0)));
}
static void gather_8(const ivec &idxs, const bvec &mask, const void *base,
static void gather_8(const ivec &idxs, const bvec &mask, const void *base,
fvec *r0, fvec *r1, fvec *r2, fvec *r3, fvec *r4, fvec *r5, fvec *r6, fvec *r7) {
fvec a = zero(), b = zero(), c = zero(), d = zero();
gather_4(idxs, mask, base, r0, r1, r2, r3);
gather_4(idxs, mask, reinterpret_cast<const char*>(base) + 32, r4, r5, r6, r7);
}
static void gather_4(const ivec &idxs, const bvec &mask, const void *base,
static void gather_4(const ivec &idxs, const bvec &mask, const void *base,
fvec *r0, fvec *r1, fvec *r2, fvec *r3) {
iarr i, m;
_mm256_store_si256(reinterpret_cast<__m256i*>(i), idxs);
@ -642,10 +642,10 @@ struct vector_ops<double, AVX> {
__m256d c1 = _mm256_permute2f128_pd(b1, b3, 0x20);
__m256d c2 = _mm256_permute2f128_pd(b0, b2, 0x31);
__m256d c3 = _mm256_permute2f128_pd(b1, b3, 0x31);
*r0 = blend(mask, *r0, c0);
*r1 = blend(mask, *r1, c1);
*r2 = blend(mask, *r2, c2);
*r3 = blend(mask, *r3, c3);
*r0 = blend(mask, *r0, c0);
*r1 = blend(mask, *r1, c1);
*r2 = blend(mask, *r2, c2);
*r3 = blend(mask, *r3, c3);
}
static fvec blend(const bvec &mask, const fvec &a, const fvec &b) {
return (b & mask) | (a & ~ mask);
@ -809,8 +809,8 @@ struct vector_ops<float, AVX> {
_mm256_store_si256(reinterpret_cast<__m256i*>(idxs), idx);
_mm256_store_ps(reinterpret_cast<float*>(src), from);
for (int i = 0; i < VL; i++) {
result[i] = mask_test_at(mask, i)
? *reinterpret_cast<const float*>(reinterpret_cast<const char*>(base) + scale * idxs[i])
result[i] = mask_test_at(mask, i)
? *reinterpret_cast<const float*>(reinterpret_cast<const char*>(base) + scale * idxs[i])
: src[i];
}
return _mm256_load_ps(reinterpret_cast<float*>(result));
@ -842,18 +842,18 @@ struct vector_ops<float, AVX> {
__m256 c1 = _mm256_shuffle_ps(b0, b2, 0xEE);
__m256 c2 = _mm256_shuffle_ps(b1, b3, 0x44);
__m256 c3 = _mm256_shuffle_ps(b1, b3, 0xEE);
*x = blend(mask, *x, c0);
*y = blend(mask, *y, c1);
*z = blend(mask, *z, c2);
*x = blend(mask, *x, c0);
*y = blend(mask, *y, c1);
*z = blend(mask, *z, c2);
*w = int_blend(mask, *w, _mm256_castps_si256(c3));
}
static void gather_8(const ivec &idxs, const bvec &mask, const void *base,
static void gather_8(const ivec &idxs, const bvec &mask, const void *base,
fvec *r0, fvec *r1, fvec *r2, fvec *r3, fvec *r4, fvec *r5, fvec *r6, fvec *r7) {
fvec a = zero(), b = zero(), c = zero(), d = zero();
gather_4(idxs, mask, base, r0, r1, r2, r3);
gather_4(idxs, mask, reinterpret_cast<const char*>(base) + 16, r4, r5, r6, r7);
}
static void gather_4(const ivec &idxs, const bvec &mask, const void *base,
static void gather_4(const ivec &idxs, const bvec &mask, const void *base,
fvec *r0, fvec *r1, fvec *r2, fvec *r3) {
iarr i, m;
int_store(i, idxs);
@ -880,10 +880,10 @@ struct vector_ops<float, AVX> {
__m256 c1 = _mm256_shuffle_ps(b0, b2, 0xEE);
__m256 c2 = _mm256_shuffle_ps(b1, b3, 0x44);
__m256 c3 = _mm256_shuffle_ps(b1, b3, 0xEE);
*r0 = blend(mask, *r0, c0);
*r1 = blend(mask, *r1, c1);
*r2 = blend(mask, *r2, c2);
*r3 = blend(mask, *r3, c3);
*r0 = blend(mask, *r0, c0);
*r1 = blend(mask, *r1, c1);
*r2 = blend(mask, *r2, c2);
*r3 = blend(mask, *r3, c3);
}
static fvec blend(const bvec &mask, const fvec &a, const fvec &b) {
return (b & mask) | (a & ~ mask);
@ -961,8 +961,8 @@ struct vector_ops<float, AVX> {
_mm256_store_si256(reinterpret_cast<__m256i*>(idxs), idx);
_mm256_store_si256(reinterpret_cast<__m256i*>(src), from);
for (int i = 0; i < VL; i++) {
result[i] = mask_test_at(mask, i)
? *reinterpret_cast<const int*>(reinterpret_cast<const char*>(base) + scale * idxs[i])
result[i] = mask_test_at(mask, i)
? *reinterpret_cast<const int*>(reinterpret_cast<const char*>(base) + scale * idxs[i])
: src[i];
}
return _mm256_load_si256(reinterpret_cast<__m256i*>(result));
@ -1038,10 +1038,10 @@ struct avx2_ivec32 {
}
explicit avx2_ivec32(int i) { vec = _mm256_set1_epi32(i); }
operator __m256i() const { return vec; }
friend avx2_ivec32 operator &(const avx2_ivec32 &a, const avx2_ivec32 &b) {
friend avx2_ivec32 operator &(const avx2_ivec32 &a, const avx2_ivec32 &b) {
return _mm256_and_si256(a, b);
}
friend avx2_ivec32 operator |(const avx2_ivec32 &a, const avx2_ivec32 &b) {
friend avx2_ivec32 operator |(const avx2_ivec32 &a, const avx2_ivec32 &b) {
return _mm256_or_si256(a, b);
}
friend avx2_ivec32 operator +(const avx2_ivec32 &a, const avx2_ivec32 &b) {
@ -1060,14 +1060,14 @@ struct avx2_bvec {
operator F64vec4() const { return _mm256_castsi256_pd(vec); }
operator F32vec8() const { return _mm256_castsi256_ps(vec); }
operator avx2_ivec32() const { return vec; }
friend avx2_bvec operator &(const avx2_bvec &a, const avx2_bvec &b) {
friend avx2_bvec operator &(const avx2_bvec &a, const avx2_bvec &b) {
return _mm256_and_si256(a, b);
}
friend avx2_bvec operator |(const avx2_bvec &a, const avx2_bvec &b) {
friend avx2_bvec operator |(const avx2_bvec &a, const avx2_bvec &b) {
return _mm256_or_si256(a, b);
}
friend avx2_bvec operator ~(const avx2_bvec &a) {
return _mm256_andnot_si256(a, avx2_bvec(0xFFFFFFFF));
return _mm256_andnot_si256(a, avx2_bvec(0xFFFFFFFF));
}
avx2_bvec& operator &=(const avx2_bvec &a) { return *this = _mm256_and_si256(vec,a); }
};
@ -1106,13 +1106,13 @@ struct vector_ops<double, AVX2> {
*z = _mm256_mask_i32gather_pd(*z, &base->z, _mm256_castsi256_si128(idx1), mask, 1);
*w = _mm256_mask_i32gather_epi32(*w, &base->w, idx, mask, 1);
}
static void gather_8(const ivec &idxs, const bvec &mask, const void *base,
static void gather_8(const ivec &idxs, const bvec &mask, const void *base,
fvec *r0, fvec *r1, fvec *r2, fvec *r3, fvec *r4, fvec *r5, fvec *r6, fvec *r7) {
fvec a = zero(), b = zero(), c = zero(), d = zero();
gather_4(idxs, mask, base, r0, r1, r2, r3);
gather_4(idxs, mask, reinterpret_cast<const char*>(base) + 32, r4, r5, r6, r7);
}
static void gather_4(const ivec &idx, const bvec &mask, const void *base,
static void gather_4(const ivec &idx, const bvec &mask, const void *base,
fvec *r0, fvec *r1, fvec *r2, fvec *r3) {
ivec idx0 = _mm256_shuffle_epi32(idx, 0xD8); // 11011000 ->3120
ivec idx1 = _mm256_permute4x64_epi64(idx0, 0xD8);
@ -1253,7 +1253,7 @@ struct vector_ops<float, AVX2> {
*z = _mm256_mask_i32gather_ps(*z, reinterpret_cast<const float*>(base) + 2, idx, mask, 1);
*w = _mm256_mask_i32gather_epi32(*w, reinterpret_cast<const int*>(base) + 3, idx, mask, 1);
}
static void gather_8(const ivec &idxs, const bvec &mask, const void *base,
static void gather_8(const ivec &idxs, const bvec &mask, const void *base,
fvec *r0, fvec *r1, fvec *r2, fvec *r3, fvec *r4, fvec *r5, fvec *r6, fvec *r7) {
*r0 = gather<4>(*r0, mask, idxs, reinterpret_cast<const char *>(base) + 0);
*r1 = gather<4>(*r1, mask, idxs, reinterpret_cast<const char *>(base) + 4);
@ -1264,7 +1264,7 @@ struct vector_ops<float, AVX2> {
*r6 = gather<4>(*r6, mask, idxs, reinterpret_cast<const char *>(base) + 24);
*r7 = gather<4>(*r7, mask, idxs, reinterpret_cast<const char *>(base) + 28);
}
static void gather_4(const ivec &idxs, const bvec &mask, const void *base,
static void gather_4(const ivec &idxs, const bvec &mask, const void *base,
fvec *r0, fvec *r1, fvec *r2, fvec *r3) {
*r0 = gather<4>(*r0, mask, idxs, reinterpret_cast<const char *>(base) + 0);
*r1 = gather<4>(*r1, mask, idxs, reinterpret_cast<const char *>(base) + 4);
@ -1401,10 +1401,10 @@ struct ivec32x4 {
}
explicit ivec32x4(int i) { vec = _mm_set1_epi32(i); }
operator __m128i() const { return vec; }
friend ivec32x4 operator &(const ivec32x4 &a, const ivec32x4 &b) {
friend ivec32x4 operator &(const ivec32x4 &a, const ivec32x4 &b) {
return _mm_castpd_si128(_mm_and_pd(_mm_castsi128_pd(a), _mm_castsi128_pd(b)));
}
friend ivec32x4 operator |(const ivec32x4 &a, const ivec32x4 &b) {
friend ivec32x4 operator |(const ivec32x4 &a, const ivec32x4 &b) {
return _mm_castpd_si128(_mm_or_pd(_mm_castsi128_pd(a), _mm_castsi128_pd(b)));
}
friend ivec32x4 operator +(const ivec32x4 &a, const ivec32x4 &b) {
@ -1420,10 +1420,10 @@ struct sse_bvecx4 {
operator __m128i() const { return vec; }
operator F64vec2() const { return _mm_castsi128_pd(vec); }
operator ivec32x4() const { return vec; }
friend sse_bvecx4 operator &(const sse_bvecx4 &a, const sse_bvecx4 &b) {
friend sse_bvecx4 operator &(const sse_bvecx4 &a, const sse_bvecx4 &b) {
return _mm_castpd_si128(_mm_and_pd(_mm_castsi128_pd(a), _mm_castsi128_pd(b)));
}
friend sse_bvecx4 operator |(const sse_bvecx4 &a, const sse_bvecx4 &b) {
friend sse_bvecx4 operator |(const sse_bvecx4 &a, const sse_bvecx4 &b) {
return _mm_castpd_si128(_mm_or_pd(_mm_castsi128_pd(a), _mm_castsi128_pd(b)));
}
friend sse_bvecx4 operator ~(const sse_bvecx4 &a) { return _mm_castpd_si128(_mm_andnot_pd(_mm_castsi128_pd(a), _mm_castsi128_pd(sse_bvecx4(0xFFFFFFFF)))); }
@ -1477,18 +1477,18 @@ struct vector_ops<double, SSE> {
__m128d c1 = _mm_unpackhi_pd(a0lo, a1lo);
__m128d c2 = _mm_unpacklo_pd(a0hi, a1hi);
__m128d c3 = _mm_unpackhi_pd(a0hi, a1hi);
*x = blend(mask, *x, c0);
*y = blend(mask, *y, c1);
*z = blend(mask, *z, c2);
*x = blend(mask, *x, c0);
*y = blend(mask, *y, c1);
*z = blend(mask, *z, c2);
*w = int_blend(mask, *w, _mm_shuffle_epi32(_mm_castpd_si128(c3), 0xA0));
}
static void gather_8(const ivec &idxs, const bvec &mask, const void *base,
static void gather_8(const ivec &idxs, const bvec &mask, const void *base,
fvec *r0, fvec *r1, fvec *r2, fvec *r3, fvec *r4, fvec *r5, fvec *r6, fvec *r7) {
fvec a = zero(), b = zero(), c = zero(), d = zero();
gather_4(idxs, mask, base, r0, r1, r2, r3);
gather_4(idxs, mask, reinterpret_cast<const char*>(base) + 32, r4, r5, r6, r7);
}
static void gather_4(const ivec &idxs, const bvec &mask, const void *base,
static void gather_4(const ivec &idxs, const bvec &mask, const void *base,
fvec *r0, fvec *r1, fvec *r2, fvec *r3) {
*r0 = gather<4>(*r0, mask, idxs, reinterpret_cast<const char*>(base) + 0);
*r1 = gather<4>(*r1, mask, idxs, reinterpret_cast<const char*>(base) + 8);
@ -1634,8 +1634,8 @@ struct vector_ops<float, SSE> {
_mm_store_si128(reinterpret_cast<__m128i*>(idxs), idx);
_mm_store_ps(reinterpret_cast<float*>(src), from);
for (int i = 0; i < VL; i++) {
result[i] = m[i]
? *reinterpret_cast<const float*>(reinterpret_cast<const char*>(base) + scale * idxs[i])
result[i] = m[i]
? *reinterpret_cast<const float*>(reinterpret_cast<const char*>(base) + scale * idxs[i])
: src[i];
}
return _mm_load_ps(reinterpret_cast<float*>(result));
@ -1647,13 +1647,13 @@ struct vector_ops<float, SSE> {
*z = gather<1>(*z, mask, idxs, &base->z);
*w = int_gather<1>(*w, mask, idxs, &base->w);
}
static void gather_8(const ivec &idxs, const bvec &mask, const void *base,
static void gather_8(const ivec &idxs, const bvec &mask, const void *base,
fvec *r0, fvec *r1, fvec *r2, fvec *r3, fvec *r4, fvec *r5, fvec *r6, fvec *r7) {
fvec a = zero(), b = zero(), c = zero(), d = zero();
gather_4(idxs, mask, base, r0, r1, r2, r3);
gather_4(idxs, mask, reinterpret_cast<const char*>(base) + 16, r4, r5, r6, r7);
}
static void gather_4(const ivec &idxs, const bvec &mask, const void *base,
static void gather_4(const ivec &idxs, const bvec &mask, const void *base,
fvec *r0, fvec *r1, fvec *r2, fvec *r3) {
*r0 = gather<4>(*r0, mask, idxs, reinterpret_cast<const char*>(base) + 0);
*r1 = gather<4>(*r1, mask, idxs, reinterpret_cast<const char*>(base) + 4);
@ -1816,13 +1816,13 @@ struct vector_ops<flt_t, NONE> {
*z = gather<1>(*z, mask, idxs, &base->z);
*w = int_gather<1>(*w, mask, idxs, &base->w);
}
static void gather_8(const ivec &idxs, const bvec &mask, const void *base,
static void gather_8(const ivec &idxs, const bvec &mask, const void *base,
fvec *r0, fvec *r1, fvec *r2, fvec *r3, fvec *r4, fvec *r5, fvec *r6, fvec *r7) {
fvec a = zero(), b = zero(), c = zero(), d = zero();
gather_4(idxs, mask, base, r0, r1, r2, r3);
gather_4(idxs, mask, reinterpret_cast<const char*>(base) + 4 * sizeof(fscal), r4, r5, r6, r7);
}
static void gather_4(const ivec &idxs, const bvec &mask, const void *base,
static void gather_4(const ivec &idxs, const bvec &mask, const void *base,
fvec *r0, fvec *r1, fvec *r2, fvec *r3) {
*r0 = gather<4>(*r0, mask, idxs, reinterpret_cast<const char*>(base) + 0 * sizeof(fscal));
*r1 = gather<4>(*r1, mask, idxs, reinterpret_cast<const char*>(base) + 1 * sizeof(fscal));
@ -1946,13 +1946,13 @@ struct vector_ops<flt_t, AN> {
*z = gather<1>(*z, mask, idxs, &base->z);
*w = int_gather<1>(*w, mask, idxs, &base->w);
}
static void gather_8(const ivec &idxs, const bvec &mask, const void *base,
static void gather_8(const ivec &idxs, const bvec &mask, const void *base,
fvec *r0, fvec *r1, fvec *r2, fvec *r3, fvec *r4, fvec *r5, fvec *r6, fvec *r7) {
fvec a = zero(), b = zero(), c = zero(), d = zero();
gather_4(idxs, mask, base, r0, r1, r2, r3);
gather_4(idxs, mask, reinterpret_cast<const char*>(base) + 4 * sizeof(fscal), r4, r5, r6, r7);
}
static void gather_4(const ivec &idxs, const bvec &mask, const void *base,
static void gather_4(const ivec &idxs, const bvec &mask, const void *base,
fvec *r0, fvec *r1, fvec *r2, fvec *r3) {
*r0 = gather<4>(*r0, mask, idxs, reinterpret_cast<const char*>(base) + 0 * sizeof(fscal));
*r1 = gather<4>(*r1, mask, idxs, reinterpret_cast<const char*>(base) + 1 * sizeof(fscal));
@ -2113,7 +2113,7 @@ struct AccumulatorTwiceMixin {
typedef avec_t avec;
typedef typename HIGH::fscal aarr[BASE::VL] __attribute__((aligned(BASE::ALIGN)));
static avec acc_mask_add(const avec &src, const typename BASE::bvec &m, const avec &a, const typename BASE::fvec &b) {
typename HIGH::fvec blo = BASE::cvtup_lo(b);
typename HIGH::fvec bhi = BASE::cvtup_hi(b);
@ -2121,7 +2121,7 @@ struct AccumulatorTwiceMixin {
BASE::mask_cvtup(m, &mlo, &mhi);
return avec(HIGH::mask_add(src.lo, mlo, a.lo, blo), HIGH::mask_add(src.hi, mhi, a.hi, bhi));
}
static typename HIGH::fscal acc_reduce_add(const avec &a) {
return HIGH::reduce_add(a.lo + a.hi);
}
@ -2143,13 +2143,13 @@ template<class BASE_flt_t, class HIGH_flt_t, CalculationMode mic>
struct AccumulatorTwiceMixinNone {
typedef vector_ops<BASE_flt_t, mic> BASE;
typedef vector_ops<HIGH_flt_t, mic> HIGH;
typedef typename HIGH::fvec avec;
typedef typename HIGH::fscal aarr[BASE::VL];
static avec acc_mask_add(const avec &src, const typename BASE::bvec &m, const avec &a, const typename BASE::fvec &b) {
return HIGH::mask_add(src, m, a, static_cast<typename HIGH::fvec>(b));
}
}
static typename HIGH::fscal acc_reduce_add(const avec &a) {
return HIGH::reduce_add(a);
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -18,110 +18,110 @@
#ifndef LMP_MATH_EXTRA_INTEL_H
#define LMP_MATH_EXTRA_INTEL_H
#define ME_quat_to_mat_trans(quat, mat) \
{ \
flt_t quat_w = quat.w; \
flt_t quat_i = quat.i; \
flt_t quat_j = quat.j; \
flt_t quat_k = quat.k; \
flt_t w2 = quat_w * quat_w; \
flt_t i2 = quat_i * quat_i; \
flt_t j2 = quat_j * quat_j; \
flt_t k2 = quat_k * quat_k; \
flt_t twoij = (flt_t)2.0 * quat_i * quat_j; \
flt_t twoik = (flt_t)2.0 * quat_i * quat_k; \
flt_t twojk = (flt_t)2.0 * quat_j * quat_k; \
flt_t twoiw = (flt_t)2.0 * quat_i * quat_w; \
flt_t twojw = (flt_t)2.0 * quat_j * quat_w; \
flt_t twokw = (flt_t)2.0 * quat_k * quat_w; \
\
mat##_0 = w2 + i2 - j2 - k2; \
mat##_3 = twoij - twokw; \
mat##_6 = twojw + twoik; \
\
mat##_1 = twoij + twokw; \
mat##_4 = w2 - i2 + j2 - k2; \
mat##_7 = twojk - twoiw; \
\
mat##_2 = twoik - twojw; \
mat##_5 = twojk + twoiw; \
mat##_8 = w2 - i2 - j2 + k2; \
#define ME_quat_to_mat_trans(quat, mat) \
{ \
flt_t quat_w = quat.w; \
flt_t quat_i = quat.i; \
flt_t quat_j = quat.j; \
flt_t quat_k = quat.k; \
flt_t w2 = quat_w * quat_w; \
flt_t i2 = quat_i * quat_i; \
flt_t j2 = quat_j * quat_j; \
flt_t k2 = quat_k * quat_k; \
flt_t twoij = (flt_t)2.0 * quat_i * quat_j; \
flt_t twoik = (flt_t)2.0 * quat_i * quat_k; \
flt_t twojk = (flt_t)2.0 * quat_j * quat_k; \
flt_t twoiw = (flt_t)2.0 * quat_i * quat_w; \
flt_t twojw = (flt_t)2.0 * quat_j * quat_w; \
flt_t twokw = (flt_t)2.0 * quat_k * quat_w; \
\
mat##_0 = w2 + i2 - j2 - k2; \
mat##_3 = twoij - twokw; \
mat##_6 = twojw + twoik; \
\
mat##_1 = twoij + twokw; \
mat##_4 = w2 - i2 + j2 - k2; \
mat##_7 = twojk - twoiw; \
\
mat##_2 = twoik - twojw; \
mat##_5 = twojk + twoiw; \
mat##_8 = w2 - i2 - j2 + k2; \
}
/* ----------------------------------------------------------------------
diagonal matrix times a full matrix
------------------------------------------------------------------------- */
#define ME_diag_times3(d, m, ans) \
{ \
ans##_0 = d[0] * m##_0; \
ans##_1 = d[0] * m##_1; \
ans##_2 = d[0] * m##_2; \
ans##_3 = d[1] * m##_3; \
ans##_4 = d[1] * m##_4; \
ans##_5 = d[1] * m##_5; \
ans##_6 = d[2] * m##_6; \
ans##_7 = d[2] * m##_7; \
ans##_8 = d[2] * m##_8; \
#define ME_diag_times3(d, m, ans) \
{ \
ans##_0 = d[0] * m##_0; \
ans##_1 = d[0] * m##_1; \
ans##_2 = d[0] * m##_2; \
ans##_3 = d[1] * m##_3; \
ans##_4 = d[1] * m##_4; \
ans##_5 = d[1] * m##_5; \
ans##_6 = d[2] * m##_6; \
ans##_7 = d[2] * m##_7; \
ans##_8 = d[2] * m##_8; \
}
#define ME_diag_times3a(d, m, ans) \
{ \
ans##_0 = d##_0 * m##_0; \
ans##_1 = d##_0 * m##_1; \
ans##_2 = d##_0 * m##_2; \
ans##_3 = d##_1 * m##_3; \
ans##_4 = d##_1 * m##_4; \
ans##_5 = d##_1 * m##_5; \
ans##_6 = d##_2 * m##_6; \
ans##_7 = d##_2 * m##_7; \
ans##_8 = d##_2 * m##_8; \
#define ME_diag_times3a(d, m, ans) \
{ \
ans##_0 = d##_0 * m##_0; \
ans##_1 = d##_0 * m##_1; \
ans##_2 = d##_0 * m##_2; \
ans##_3 = d##_1 * m##_3; \
ans##_4 = d##_1 * m##_4; \
ans##_5 = d##_1 * m##_5; \
ans##_6 = d##_2 * m##_6; \
ans##_7 = d##_2 * m##_7; \
ans##_8 = d##_2 * m##_8; \
}
/* ----------------------------------------------------------------------
multiply the transpose of mat1 times mat2
------------------------------------------------------------------------- */
#define ME_transpose_times3(m1, m2, ans) \
{ \
ans##_0 = m1##_0*m2##_0 + m1##_3*m2##_3 + m1##_6*m2##_6; \
ans##_1 = m1##_0*m2##_1 + m1##_3*m2##_4 + m1##_6*m2##_7; \
ans##_2 = m1##_0*m2##_2 + m1##_3*m2##_5 + m1##_6*m2##_8; \
ans##_3 = m1##_1*m2##_0 + m1##_4*m2##_3 + m1##_7*m2##_6; \
ans##_4 = m1##_1*m2##_1 + m1##_4*m2##_4 + m1##_7*m2##_7; \
ans##_5 = m1##_1*m2##_2 + m1##_4*m2##_5 + m1##_7*m2##_8; \
ans##_6 = m1##_2*m2##_0 + m1##_5*m2##_3 + m1##_8*m2##_6; \
ans##_7 = m1##_2*m2##_1 + m1##_5*m2##_4 + m1##_8*m2##_7; \
ans##_8 = m1##_2*m2##_2 + m1##_5*m2##_5 + m1##_8*m2##_8; \
#define ME_transpose_times3(m1, m2, ans) \
{ \
ans##_0 = m1##_0*m2##_0 + m1##_3*m2##_3 + m1##_6*m2##_6; \
ans##_1 = m1##_0*m2##_1 + m1##_3*m2##_4 + m1##_6*m2##_7; \
ans##_2 = m1##_0*m2##_2 + m1##_3*m2##_5 + m1##_6*m2##_8; \
ans##_3 = m1##_1*m2##_0 + m1##_4*m2##_3 + m1##_7*m2##_6; \
ans##_4 = m1##_1*m2##_1 + m1##_4*m2##_4 + m1##_7*m2##_7; \
ans##_5 = m1##_1*m2##_2 + m1##_4*m2##_5 + m1##_7*m2##_8; \
ans##_6 = m1##_2*m2##_0 + m1##_5*m2##_3 + m1##_8*m2##_6; \
ans##_7 = m1##_2*m2##_1 + m1##_5*m2##_4 + m1##_8*m2##_7; \
ans##_8 = m1##_2*m2##_2 + m1##_5*m2##_5 + m1##_8*m2##_8; \
}
/* ----------------------------------------------------------------------
normalize a vector, return in ans
------------------------------------------------------------------------- */
#define ME_normalize3(v0, v1, v2, ans) \
{ \
flt_t scale = (flt_t)1.0 / sqrt(v0*v0+v1*v1+v2*v2); \
ans##_0 = v0 * scale; \
ans##_1 = v1 * scale; \
ans##_2 = v2 * scale; \
#define ME_normalize3(v0, v1, v2, ans) \
{ \
flt_t scale = (flt_t)1.0 / sqrt(v0*v0+v1*v1+v2*v2); \
ans##_0 = v0 * scale; \
ans##_1 = v1 * scale; \
ans##_2 = v2 * scale; \
}
/* ----------------------------------------------------------------------
add two matrices
------------------------------------------------------------------------- */
#define ME_plus3(m1, m2, ans) \
{ \
ans##_0 = m1##_0 + m2##_0; \
ans##_1 = m1##_1 + m2##_1; \
ans##_2 = m1##_2 + m2##_2; \
ans##_3 = m1##_3 + m2##_3; \
ans##_4 = m1##_4 + m2##_4; \
ans##_5 = m1##_5 + m2##_5; \
ans##_6 = m1##_6 + m2##_6; \
ans##_7 = m1##_7 + m2##_7; \
ans##_8 = m1##_8 + m2##_8; \
#define ME_plus3(m1, m2, ans) \
{ \
ans##_0 = m1##_0 + m2##_0; \
ans##_1 = m1##_1 + m2##_1; \
ans##_2 = m1##_2 + m2##_2; \
ans##_3 = m1##_3 + m2##_3; \
ans##_4 = m1##_4 + m2##_4; \
ans##_5 = m1##_5 + m2##_5; \
ans##_6 = m1##_6 + m2##_6; \
ans##_7 = m1##_7 + m2##_7; \
ans##_8 = m1##_8 + m2##_8; \
}
/* ----------------------------------------------------------------------
@ -135,7 +135,7 @@
determinant of a matrix
------------------------------------------------------------------------- */
#define ME_det3(m) \
#define ME_det3(m) \
( m##_0 * m##_4 * m##_8 - m##_0 * m##_5 * m##_7 - \
m##_3 * m##_1 * m##_8 + m##_3 * m##_2 * m##_7 + \
m##_6 * m##_1 * m##_5 - m##_6 * m##_2 * m##_4 )
@ -144,8 +144,8 @@
row vector times matrix
------------------------------------------------------------------------- */
#define ME_vecmat(v, m, ans) \
{ \
#define ME_vecmat(v, m, ans) \
{ \
ans##_0 = v##_0 * m##_0 + v##_1 * m##_3 + v##_2 * m##_6; \
ans##_1 = v##_0 * m##_1 + v##_1 * m##_4 + v##_2 * m##_7; \
ans##_2 = v##_0 * m##_2 + v##_1 * m##_5 + v##_2 * m##_8; \
@ -155,214 +155,214 @@
cross product of 2 vectors
------------------------------------------------------------------------- */
#define ME_cross3(v1, v2, ans) \
{ \
ans##_0 = v1##_1 * v2##_2 - v1##_2 * v2##_1; \
ans##_1 = v1##_2 * v2##_0 - v1##_0 * v2##_2; \
ans##_2 = v1##_0 * v2##_1 - v1##_1 * v2##_0; \
#define ME_cross3(v1, v2, ans) \
{ \
ans##_0 = v1##_1 * v2##_2 - v1##_2 * v2##_1; \
ans##_1 = v1##_2 * v2##_0 - v1##_0 * v2##_2; \
ans##_2 = v1##_0 * v2##_1 - v1##_1 * v2##_0; \
}
/* ----------------------------------------------------------------------
cross product of 2 vectors
------------------------------------------------------------------------- */
#define ME_mv0_cross3(m1, v2, ans) \
{ \
ans##_0 = m1##_1 * v2##_2 - m1##_2 * v2##_1; \
ans##_1 = m1##_2 * v2##_0 - m1##_0 * v2##_2; \
ans##_2 = m1##_0 * v2##_1 - m1##_1 * v2##_0; \
#define ME_mv0_cross3(m1, v2, ans) \
{ \
ans##_0 = m1##_1 * v2##_2 - m1##_2 * v2##_1; \
ans##_1 = m1##_2 * v2##_0 - m1##_0 * v2##_2; \
ans##_2 = m1##_0 * v2##_1 - m1##_1 * v2##_0; \
}
#define ME_mv1_cross3(m1, v2, ans) \
{ \
ans##_0 = m1##_4 * v2##_2 - m1##_5 * v2##_1; \
ans##_1 = m1##_5 * v2##_0 - m1##_3 * v2##_2; \
ans##_2 = m1##_3 * v2##_1 - m1##_4 * v2##_0; \
#define ME_mv1_cross3(m1, v2, ans) \
{ \
ans##_0 = m1##_4 * v2##_2 - m1##_5 * v2##_1; \
ans##_1 = m1##_5 * v2##_0 - m1##_3 * v2##_2; \
ans##_2 = m1##_3 * v2##_1 - m1##_4 * v2##_0; \
}
#define ME_mv2_cross3(m1, v2, ans) \
{ \
ans##_0 = m1##_7 * v2##_2 - m1##_8 * v2##_1; \
ans##_1 = m1##_8 * v2##_0 - m1##_6 * v2##_2; \
ans##_2 = m1##_6 * v2##_1 - m1##_7 * v2##_0; \
#define ME_mv2_cross3(m1, v2, ans) \
{ \
ans##_0 = m1##_7 * v2##_2 - m1##_8 * v2##_1; \
ans##_1 = m1##_8 * v2##_0 - m1##_6 * v2##_2; \
ans##_2 = m1##_6 * v2##_1 - m1##_7 * v2##_0; \
}
#define ME_compute_eta_torque(m1, m2, s1, ans) \
{ \
flt_t den = m1##_3*m1##_2*m1##_7-m1##_0*m1##_5*m1##_7- \
m1##_2*m1##_6*m1##_4+m1##_1*m1##_6*m1##_5- \
m1##_3*m1##_1*m1##_8+m1##_0*m1##_4*m1##_8; \
den = (flt_t)1.0 / den; \
\
{ \
flt_t den = m1##_3*m1##_2*m1##_7-m1##_0*m1##_5*m1##_7- \
m1##_2*m1##_6*m1##_4+m1##_1*m1##_6*m1##_5- \
m1##_3*m1##_1*m1##_8+m1##_0*m1##_4*m1##_8; \
den = (flt_t)1.0 / den; \
\
ans##_0 = s1##_0*(m1##_5*m1##_1*m2##_2+(flt_t)2.0*m1##_4*m1##_8*m2##_0- \
m1##_4*m2##_2*m1##_2-(flt_t)2.0*m1##_5*m2##_0*m1##_7+ \
m2##_1*m1##_2*m1##_7-m2##_1*m1##_1*m1##_8- \
m1##_3*m1##_8*m2##_1+m1##_6*m1##_5*m2##_1+ \
m1##_3*m2##_2*m1##_7-m2##_2*m1##_6*m1##_4)*den; \
\
ans##_1 = s1##_0*(m1##_2*m2##_0*m1##_7-m1##_8*m2##_0*m1##_1+ \
(flt_t)2.0*m1##_0*m1##_8*m2##_1-m1##_0*m2##_2*m1##_5- \
(flt_t)2.0*m1##_6*m1##_2*m2##_1+m2##_2*m1##_3*m1##_2- \
m1##_8*m1##_3*m2##_0+m1##_6*m2##_0*m1##_5+ \
m1##_6*m2##_2*m1##_1-m2##_2*m1##_0*m1##_7)*den; \
\
m1##_4*m2##_2*m1##_2-(flt_t)2.0*m1##_5*m2##_0*m1##_7+ \
m2##_1*m1##_2*m1##_7-m2##_1*m1##_1*m1##_8- \
m1##_3*m1##_8*m2##_1+m1##_6*m1##_5*m2##_1+ \
m1##_3*m2##_2*m1##_7-m2##_2*m1##_6*m1##_4)*den; \
\
ans##_1 = s1##_0*(m1##_2*m2##_0*m1##_7-m1##_8*m2##_0*m1##_1+ \
(flt_t)2.0*m1##_0*m1##_8*m2##_1-m1##_0*m2##_2*m1##_5- \
(flt_t)2.0*m1##_6*m1##_2*m2##_1+m2##_2*m1##_3*m1##_2- \
m1##_8*m1##_3*m2##_0+m1##_6*m2##_0*m1##_5+ \
m1##_6*m2##_2*m1##_1-m2##_2*m1##_0*m1##_7)*den; \
\
ans##_2 = s1##_0*(m1##_1*m1##_5*m2##_0-m1##_2*m2##_0*m1##_4- \
m1##_0*m1##_5*m2##_1+m1##_3*m1##_2*m2##_1- \
m2##_1*m1##_0*m1##_7-m1##_6*m1##_4*m2##_0+ \
(flt_t)2.0*m1##_4*m1##_0*m2##_2- \
(flt_t)2.0*m1##_3*m2##_2*m1##_1+ \
m1##_3*m1##_7*m2##_0+m1##_6*m2##_1*m1##_1)*den; \
\
m1##_0*m1##_5*m2##_1+m1##_3*m1##_2*m2##_1- \
m2##_1*m1##_0*m1##_7-m1##_6*m1##_4*m2##_0+ \
(flt_t)2.0*m1##_4*m1##_0*m2##_2- \
(flt_t)2.0*m1##_3*m2##_2*m1##_1+ \
m1##_3*m1##_7*m2##_0+m1##_6*m2##_1*m1##_1)*den; \
\
ans##_3 = s1##_1*(-m1##_4*m2##_5*m1##_2+(flt_t)2.0*m1##_4*m1##_8*m2##_3+ \
m1##_5*m1##_1*m2##_5-(flt_t)2.0*m1##_5*m2##_3*m1##_7+ \
m2##_4*m1##_2*m1##_7-m2##_4*m1##_1*m1##_8- \
m1##_3*m1##_8*m2##_4+m1##_6*m1##_5*m2##_4- \
m2##_5*m1##_6*m1##_4+m1##_3*m2##_5*m1##_7)*den; \
\
ans##_4 = s1##_1*(m1##_2*m2##_3*m1##_7-m1##_1*m1##_8*m2##_3+ \
(flt_t)2.0*m1##_8*m1##_0*m2##_4-m2##_5*m1##_0*m1##_5- \
(flt_t)2.0*m1##_6*m2##_4*m1##_2-m1##_3*m1##_8*m2##_3+ \
m1##_6*m1##_5*m2##_3+m1##_3*m2##_5*m1##_2- \
m1##_0*m2##_5*m1##_7+m2##_5*m1##_1*m1##_6)*den; \
\
ans##_5 = s1##_1*(m1##_1*m1##_5*m2##_3-m1##_2*m2##_3*m1##_4- \
m1##_0*m1##_5*m2##_4+m1##_3*m1##_2*m2##_4+ \
(flt_t)2.0*m1##_4*m1##_0*m2##_5-m1##_0*m2##_4*m1##_7+ \
m1##_1*m1##_6*m2##_4-m2##_3*m1##_6*m1##_4- \
(flt_t)2.0*m1##_3*m1##_1*m2##_5+m1##_3*m2##_3*m1##_7)* \
den; \
\
ans##_6 = s1##_2*(-m1##_4*m1##_2*m2##_8+m1##_1*m1##_5*m2##_8+ \
(flt_t)2.0*m1##_4*m2##_6*m1##_8-m1##_1*m2##_7*m1##_8+ \
m1##_2*m1##_7*m2##_7-(flt_t)2.0*m2##_6*m1##_7*m1##_5- \
m1##_3*m2##_7*m1##_8+m1##_5*m1##_6*m2##_7- \
m1##_4*m1##_6*m2##_8+m1##_7*m1##_3*m2##_8)*den; \
\
ans##_7 = s1##_2*-(m1##_1*m1##_8*m2##_6-m1##_2*m2##_6*m1##_7- \
(flt_t)2.0*m2##_7*m1##_0*m1##_8+m1##_5*m2##_8*m1##_0+ \
(flt_t)2.0*m2##_7*m1##_2*m1##_6+m1##_3*m2##_6*m1##_8- \
m1##_3*m1##_2*m2##_8-m1##_5*m1##_6*m2##_6+ \
m1##_0*m2##_8*m1##_7-m2##_8*m1##_1*m1##_6)*den; \
\
ans##_8 = s1##_2*(m1##_1*m1##_5*m2##_6-m1##_2*m2##_6*m1##_4- \
m1##_0*m1##_5*m2##_7+m1##_3*m1##_2*m2##_7- \
m1##_4*m1##_6*m2##_6-m1##_7*m2##_7*m1##_0+ \
(flt_t)2.0*m1##_4*m2##_8*m1##_0+m1##_7*m1##_3*m2##_6+ \
m1##_5*m1##_1*m2##_5-(flt_t)2.0*m1##_5*m2##_3*m1##_7+ \
m2##_4*m1##_2*m1##_7-m2##_4*m1##_1*m1##_8- \
m1##_3*m1##_8*m2##_4+m1##_6*m1##_5*m2##_4- \
m2##_5*m1##_6*m1##_4+m1##_3*m2##_5*m1##_7)*den; \
\
ans##_4 = s1##_1*(m1##_2*m2##_3*m1##_7-m1##_1*m1##_8*m2##_3+ \
(flt_t)2.0*m1##_8*m1##_0*m2##_4-m2##_5*m1##_0*m1##_5- \
(flt_t)2.0*m1##_6*m2##_4*m1##_2-m1##_3*m1##_8*m2##_3+ \
m1##_6*m1##_5*m2##_3+m1##_3*m2##_5*m1##_2- \
m1##_0*m2##_5*m1##_7+m2##_5*m1##_1*m1##_6)*den; \
\
ans##_5 = s1##_1*(m1##_1*m1##_5*m2##_3-m1##_2*m2##_3*m1##_4- \
m1##_0*m1##_5*m2##_4+m1##_3*m1##_2*m2##_4+ \
(flt_t)2.0*m1##_4*m1##_0*m2##_5-m1##_0*m2##_4*m1##_7+ \
m1##_1*m1##_6*m2##_4-m2##_3*m1##_6*m1##_4- \
(flt_t)2.0*m1##_3*m1##_1*m2##_5+m1##_3*m2##_3*m1##_7)* \
den; \
\
ans##_6 = s1##_2*(-m1##_4*m1##_2*m2##_8+m1##_1*m1##_5*m2##_8+ \
(flt_t)2.0*m1##_4*m2##_6*m1##_8-m1##_1*m2##_7*m1##_8+ \
m1##_2*m1##_7*m2##_7-(flt_t)2.0*m2##_6*m1##_7*m1##_5- \
m1##_3*m2##_7*m1##_8+m1##_5*m1##_6*m2##_7- \
m1##_4*m1##_6*m2##_8+m1##_7*m1##_3*m2##_8)*den; \
\
ans##_7 = s1##_2*-(m1##_1*m1##_8*m2##_6-m1##_2*m2##_6*m1##_7- \
(flt_t)2.0*m2##_7*m1##_0*m1##_8+m1##_5*m2##_8*m1##_0+ \
(flt_t)2.0*m2##_7*m1##_2*m1##_6+m1##_3*m2##_6*m1##_8- \
m1##_3*m1##_2*m2##_8-m1##_5*m1##_6*m2##_6+ \
m1##_0*m2##_8*m1##_7-m2##_8*m1##_1*m1##_6)*den; \
\
ans##_8 = s1##_2*(m1##_1*m1##_5*m2##_6-m1##_2*m2##_6*m1##_4- \
m1##_0*m1##_5*m2##_7+m1##_3*m1##_2*m2##_7- \
m1##_4*m1##_6*m2##_6-m1##_7*m2##_7*m1##_0+ \
(flt_t)2.0*m1##_4*m2##_8*m1##_0+m1##_7*m1##_3*m2##_6+ \
m1##_6*m1##_1*m2##_7-(flt_t)2.0*m2##_8*m1##_3*m1##_1)* \
den; \
den; \
}
#define ME_vcopy4(dst,src) \
dst##_0 = src##_0; \
dst##_1 = src##_1; \
dst##_2 = src##_2; \
#define ME_vcopy4(dst,src) \
dst##_0 = src##_0; \
dst##_1 = src##_1; \
dst##_2 = src##_2; \
dst##_3 = src##_3;
#define ME_mldivide3(m1, v_0, v_1, v_2, ans, error) \
{ \
flt_t aug_0, aug_1, aug_2, aug_3, aug_4, aug_5; \
flt_t aug_6, aug_7, aug_8, aug_9, aug_10, aug_11, t; \
\
aug_3 = v_0; \
aug_0 = m1##_0; \
aug_1 = m1##_1; \
aug_2 = m1##_2; \
aug_7 = v_1; \
aug_4 = m1##_3; \
aug_5 = m1##_4; \
aug_6 = m1##_5; \
aug_11 = v_2; \
aug_8 = m1##_6; \
aug_9 = m1##_7; \
aug_10 = m1##_8; \
\
if (fabs(aug_4) > fabs(aug_0)) { \
flt_t swapt; \
swapt = aug_0; aug_0 = aug_4; aug_4 = swapt; \
swapt = aug_1; aug_1 = aug_5; aug_5 = swapt; \
swapt = aug_2; aug_2 = aug_6; aug_6 = swapt; \
swapt = aug_3; aug_3 = aug_7; aug_7 = swapt; \
} \
if (fabs(aug_8) > fabs(aug_0)) { \
flt_t swapt; \
swapt = aug_0; aug_0 = aug_8; aug_8 = swapt; \
#define ME_mldivide3(m1, v_0, v_1, v_2, ans, error) \
{ \
flt_t aug_0, aug_1, aug_2, aug_3, aug_4, aug_5; \
flt_t aug_6, aug_7, aug_8, aug_9, aug_10, aug_11, t; \
\
aug_3 = v_0; \
aug_0 = m1##_0; \
aug_1 = m1##_1; \
aug_2 = m1##_2; \
aug_7 = v_1; \
aug_4 = m1##_3; \
aug_5 = m1##_4; \
aug_6 = m1##_5; \
aug_11 = v_2; \
aug_8 = m1##_6; \
aug_9 = m1##_7; \
aug_10 = m1##_8; \
\
if (fabs(aug_4) > fabs(aug_0)) { \
flt_t swapt; \
swapt = aug_0; aug_0 = aug_4; aug_4 = swapt; \
swapt = aug_1; aug_1 = aug_5; aug_5 = swapt; \
swapt = aug_2; aug_2 = aug_6; aug_6 = swapt; \
swapt = aug_3; aug_3 = aug_7; aug_7 = swapt; \
} \
if (fabs(aug_8) > fabs(aug_0)) { \
flt_t swapt; \
swapt = aug_0; aug_0 = aug_8; aug_8 = swapt; \
swapt = aug_1; aug_1 = aug_9; aug_9 = swapt; \
swapt = aug_2; aug_2 = aug_10; aug_10 = swapt; \
swapt = aug_3; aug_3 = aug_11; aug_11 = swapt; \
} \
\
if (aug_0 != (flt_t)0.0) { \
} else if (aug_4 != (flt_t)0.0) { \
flt_t swapt; \
swapt = aug_0; aug_0 = aug_4; aug_4 = swapt; \
swapt = aug_1; aug_1 = aug_5; aug_5 = swapt; \
swapt = aug_2; aug_2 = aug_6; aug_6 = swapt; \
swapt = aug_3; aug_3 = aug_7; aug_7 = swapt; \
} else if (aug_8 != (flt_t)0.0) { \
flt_t swapt; \
swapt = aug_0; aug_0 = aug_8; aug_8 = swapt; \
swapt = aug_1; aug_1 = aug_9; aug_9 = swapt; \
swapt = aug_2; aug_2 = aug_10; aug_10 = swapt; \
swapt = aug_3; aug_3 = aug_11; aug_11 = swapt; \
} else \
error = 1; \
\
t = aug_4 / aug_0; \
aug_5 -= t * aug_1; \
aug_6 -= t * aug_2; \
aug_7 -= t * aug_3; \
t = aug_8 / aug_0; \
aug_9 -= t * aug_1; \
aug_10 -= t * aug_2; \
aug_11 -= t * aug_3; \
\
if (fabs(aug_9) > fabs(aug_5)) { \
flt_t swapt; \
swapt = aug_4; aug_4 = aug_8; aug_8 = swapt; \
swapt = aug_5; aug_5 = aug_9; aug_9 = swapt; \
swapt = aug_6; aug_6 = aug_10; aug_10 = swapt; \
swapt = aug_7; aug_7 = aug_11; aug_11 = swapt; \
} \
\
if (aug_5 != (flt_t)0.0) { \
} else if (aug_9 != (flt_t)0.0) { \
flt_t swapt; \
} \
\
if (aug_0 != (flt_t)0.0) { \
} else if (aug_4 != (flt_t)0.0) { \
flt_t swapt; \
swapt = aug_0; aug_0 = aug_4; aug_4 = swapt; \
swapt = aug_1; aug_1 = aug_5; aug_5 = swapt; \
swapt = aug_2; aug_2 = aug_6; aug_6 = swapt; \
swapt = aug_3; aug_3 = aug_7; aug_7 = swapt; \
} else if (aug_8 != (flt_t)0.0) { \
flt_t swapt; \
swapt = aug_0; aug_0 = aug_8; aug_8 = swapt; \
swapt = aug_1; aug_1 = aug_9; aug_9 = swapt; \
swapt = aug_2; aug_2 = aug_10; aug_10 = swapt; \
swapt = aug_3; aug_3 = aug_11; aug_11 = swapt; \
} else \
error = 1; \
\
t = aug_4 / aug_0; \
aug_5 -= t * aug_1; \
aug_6 -= t * aug_2; \
aug_7 -= t * aug_3; \
t = aug_8 / aug_0; \
aug_9 -= t * aug_1; \
aug_10 -= t * aug_2; \
aug_11 -= t * aug_3; \
\
if (fabs(aug_9) > fabs(aug_5)) { \
flt_t swapt; \
swapt = aug_4; aug_4 = aug_8; aug_8 = swapt; \
swapt = aug_5; aug_5 = aug_9; aug_9 = swapt; \
swapt = aug_6; aug_6 = aug_10; aug_10 = swapt; \
swapt = aug_7; aug_7 = aug_11; aug_11 = swapt; \
} \
\
t = aug_9 / aug_5; \
aug_10 -= t * aug_6; \
aug_11 -= t * aug_7; \
\
if (aug_10 == (flt_t)0.0) \
error = 1; \
\
ans##_2 = aug_11/aug_10; \
t = (flt_t)0.0; \
t += aug_6 * ans##_2; \
ans##_1 = (aug_7-t) / aug_5; \
t = (flt_t)0.0; \
t += aug_1 * ans##_1; \
t += aug_2 * ans##_2; \
ans##_0 = (aug_3 - t) / aug_0; \
swapt = aug_5; aug_5 = aug_9; aug_9 = swapt; \
swapt = aug_6; aug_6 = aug_10; aug_10 = swapt; \
swapt = aug_7; aug_7 = aug_11; aug_11 = swapt; \
} \
\
if (aug_5 != (flt_t)0.0) { \
} else if (aug_9 != (flt_t)0.0) { \
flt_t swapt; \
swapt = aug_4; aug_4 = aug_8; aug_8 = swapt; \
swapt = aug_5; aug_5 = aug_9; aug_9 = swapt; \
swapt = aug_6; aug_6 = aug_10; aug_10 = swapt; \
swapt = aug_7; aug_7 = aug_11; aug_11 = swapt; \
} \
\
t = aug_9 / aug_5; \
aug_10 -= t * aug_6; \
aug_11 -= t * aug_7; \
\
if (aug_10 == (flt_t)0.0) \
error = 1; \
\
ans##_2 = aug_11/aug_10; \
t = (flt_t)0.0; \
t += aug_6 * ans##_2; \
ans##_1 = (aug_7-t) / aug_5; \
t = (flt_t)0.0; \
t += aug_1 * ans##_1; \
t += aug_2 * ans##_2; \
ans##_0 = (aug_3 - t) / aug_0; \
}
/* ----------------------------------------------------------------------
normalize a quaternion
------------------------------------------------------------------------- */
#define ME_qnormalize(q) \
{ \
double norm = 1.0 / \
sqrt(q##_w*q##_w + q##_i*q##_i + q##_j*q##_j + q##_k*q##_k); \
q##_w *= norm; \
q##_i *= norm; \
q##_j *= norm; \
q##_k *= norm; \
#define ME_qnormalize(q) \
{ \
double norm = 1.0 / \
sqrt(q##_w*q##_w + q##_i*q##_i + q##_j*q##_j + q##_k*q##_k); \
q##_w *= norm; \
q##_i *= norm; \
q##_j *= norm; \
q##_k *= norm; \
}
/* ----------------------------------------------------------------------
@ -373,106 +373,106 @@
and divide by principal moments
------------------------------------------------------------------------- */
#define ME_mq_to_omega(m, quat, moments_0, moments_1, moments_2, w) \
{ \
double wbody_0, wbody_1, wbody_2; \
double rot_0, rot_1, rot_2, rot_3, rot_4, rot_5, rot_6, rot_7, rot_8; \
\
double w2 = quat##_w * quat##_w; \
double i2 = quat##_i * quat##_i; \
double j2 = quat##_j * quat##_j; \
double k2 = quat##_k * quat##_k; \
double twoij = 2.0 * quat##_i * quat##_j; \
double twoik = 2.0 * quat##_i * quat##_k; \
double twojk = 2.0 * quat##_j * quat##_k; \
double twoiw = 2.0 * quat##_i * quat##_w; \
double twojw = 2.0 * quat##_j * quat##_w; \
double twokw = 2.0 * quat##_k * quat##_w; \
\
rot##_0 = w2 + i2 - j2 - k2; \
rot##_1 = twoij - twokw; \
rot##_2 = twojw + twoik; \
\
rot##_3 = twoij + twokw; \
rot##_4 = w2 - i2 + j2 - k2; \
rot##_5 = twojk - twoiw; \
\
rot##_6 = twoik - twojw; \
rot##_7 = twojk + twoiw; \
rot##_8 = w2 - i2 - j2 + k2; \
\
#define ME_mq_to_omega(m, quat, moments_0, moments_1, moments_2, w) \
{ \
double wbody_0, wbody_1, wbody_2; \
double rot_0, rot_1, rot_2, rot_3, rot_4, rot_5, rot_6, rot_7, rot_8; \
\
double w2 = quat##_w * quat##_w; \
double i2 = quat##_i * quat##_i; \
double j2 = quat##_j * quat##_j; \
double k2 = quat##_k * quat##_k; \
double twoij = 2.0 * quat##_i * quat##_j; \
double twoik = 2.0 * quat##_i * quat##_k; \
double twojk = 2.0 * quat##_j * quat##_k; \
double twoiw = 2.0 * quat##_i * quat##_w; \
double twojw = 2.0 * quat##_j * quat##_w; \
double twokw = 2.0 * quat##_k * quat##_w; \
\
rot##_0 = w2 + i2 - j2 - k2; \
rot##_1 = twoij - twokw; \
rot##_2 = twojw + twoik; \
\
rot##_3 = twoij + twokw; \
rot##_4 = w2 - i2 + j2 - k2; \
rot##_5 = twojk - twoiw; \
\
rot##_6 = twoik - twojw; \
rot##_7 = twojk + twoiw; \
rot##_8 = w2 - i2 - j2 + k2; \
\
wbody_0 = rot##_0*m##_0 + rot##_3*m##_1 + rot##_6*m##_2; \
wbody_1 = rot##_1*m##_0 + rot##_4*m##_1 + rot##_7*m##_2; \
wbody_2 = rot##_2*m##_0 + rot##_5*m##_1 + rot##_8*m##_2; \
\
wbody_0 *= moments_0; \
wbody_1 *= moments_1; \
wbody_2 *= moments_2; \
\
\
wbody_0 *= moments_0; \
wbody_1 *= moments_1; \
wbody_2 *= moments_2; \
\
w##_0 = rot##_0*wbody_0 + rot##_1*wbody_1 + rot##_2*wbody_2; \
w##_1 = rot##_3*wbody_0 + rot##_4*wbody_1 + rot##_5*wbody_2; \
w##_2 = rot##_6*wbody_0 + rot##_7*wbody_1 + rot##_8*wbody_2; \
}
#define ME_omega_richardson(dtf,dtq,angmomin,quatin,torque,i0,i1,i2) \
{ \
angmomin[0] += dtf * torque[0]; \
double angmom_0 = angmomin[0]; \
angmomin[1] += dtf * torque[1]; \
double angmom_1 = angmomin[1]; \
angmomin[2] += dtf * torque[2]; \
double angmom_2 = angmomin[2]; \
\
double quat_w = quatin[0]; \
double quat_i = quatin[1]; \
double quat_j = quatin[2]; \
double quat_k = quatin[3]; \
\
double omega_0, omega_1, omega_2; \
ME_mq_to_omega(angmom,quat,i0,i1,i2,omega); \
\
double wq_0, wq_1, wq_2, wq_3; \
wq_0 = -omega_0*quat_i - omega_1*quat_j - omega_2*quat_k; \
wq_1 = quat_w*omega_0 + omega_1*quat_k - omega_2*quat_j; \
wq_2 = quat_w*omega_1 + omega_2*quat_i - omega_0*quat_k; \
wq_3 = quat_w*omega_2 + omega_0*quat_j - omega_1*quat_i; \
\
double qfull_w, qfull_i, qfull_j, qfull_k; \
qfull_w = quat_w + dtq * wq_0; \
qfull_i = quat_i + dtq * wq_1; \
qfull_j = quat_j + dtq * wq_2; \
qfull_k = quat_k + dtq * wq_3; \
ME_qnormalize(qfull); \
\
double qhalf_w, qhalf_i, qhalf_j, qhalf_k; \
qhalf_w = quat_w + 0.5*dtq * wq_0; \
qhalf_i = quat_i + 0.5*dtq * wq_1; \
qhalf_j = quat_j + 0.5*dtq * wq_2; \
qhalf_k = quat_k + 0.5*dtq * wq_3; \
ME_qnormalize(qhalf); \
\
ME_mq_to_omega(angmom,qhalf,i0,i1,i2,omega); \
wq_0 = -omega_0*qhalf_i - omega_1*qhalf_j - omega_2*qhalf_k; \
wq_1 = qhalf_w*omega_0 + omega_1*qhalf_k - omega_2*qhalf_j; \
wq_2 = qhalf_w*omega_1 + omega_2*qhalf_i - omega_0*qhalf_k; \
wq_3 = qhalf_w*omega_2 + omega_0*qhalf_j - omega_1*qhalf_i; \
\
qhalf_w += 0.5*dtq * wq_0; \
qhalf_i += 0.5*dtq * wq_1; \
qhalf_j += 0.5*dtq * wq_2; \
qhalf_k += 0.5*dtq * wq_3; \
ME_qnormalize(qhalf); \
\
quat_w = 2.0*qhalf_w - qfull_w; \
quat_i = 2.0*qhalf_i - qfull_i; \
quat_j = 2.0*qhalf_j - qfull_j; \
quat_k = 2.0*qhalf_k - qfull_k; \
ME_qnormalize(quat); \
\
quatin[0] = quat_w; \
quatin[1] = quat_i; \
quatin[2] = quat_j; \
quatin[3] = quat_k; \
#define ME_omega_richardson(dtf,dtq,angmomin,quatin,torque,i0,i1,i2) \
{ \
angmomin[0] += dtf * torque[0]; \
double angmom_0 = angmomin[0]; \
angmomin[1] += dtf * torque[1]; \
double angmom_1 = angmomin[1]; \
angmomin[2] += dtf * torque[2]; \
double angmom_2 = angmomin[2]; \
\
double quat_w = quatin[0]; \
double quat_i = quatin[1]; \
double quat_j = quatin[2]; \
double quat_k = quatin[3]; \
\
double omega_0, omega_1, omega_2; \
ME_mq_to_omega(angmom,quat,i0,i1,i2,omega); \
\
double wq_0, wq_1, wq_2, wq_3; \
wq_0 = -omega_0*quat_i - omega_1*quat_j - omega_2*quat_k; \
wq_1 = quat_w*omega_0 + omega_1*quat_k - omega_2*quat_j; \
wq_2 = quat_w*omega_1 + omega_2*quat_i - omega_0*quat_k; \
wq_3 = quat_w*omega_2 + omega_0*quat_j - omega_1*quat_i; \
\
double qfull_w, qfull_i, qfull_j, qfull_k; \
qfull_w = quat_w + dtq * wq_0; \
qfull_i = quat_i + dtq * wq_1; \
qfull_j = quat_j + dtq * wq_2; \
qfull_k = quat_k + dtq * wq_3; \
ME_qnormalize(qfull); \
\
double qhalf_w, qhalf_i, qhalf_j, qhalf_k; \
qhalf_w = quat_w + 0.5*dtq * wq_0; \
qhalf_i = quat_i + 0.5*dtq * wq_1; \
qhalf_j = quat_j + 0.5*dtq * wq_2; \
qhalf_k = quat_k + 0.5*dtq * wq_3; \
ME_qnormalize(qhalf); \
\
ME_mq_to_omega(angmom,qhalf,i0,i1,i2,omega); \
wq_0 = -omega_0*qhalf_i - omega_1*qhalf_j - omega_2*qhalf_k; \
wq_1 = qhalf_w*omega_0 + omega_1*qhalf_k - omega_2*qhalf_j; \
wq_2 = qhalf_w*omega_1 + omega_2*qhalf_i - omega_0*qhalf_k; \
wq_3 = qhalf_w*omega_2 + omega_0*qhalf_j - omega_1*qhalf_i; \
\
qhalf_w += 0.5*dtq * wq_0; \
qhalf_i += 0.5*dtq * wq_1; \
qhalf_j += 0.5*dtq * wq_2; \
qhalf_k += 0.5*dtq * wq_3; \
ME_qnormalize(qhalf); \
\
quat_w = 2.0*qhalf_w - qfull_w; \
quat_i = 2.0*qhalf_i - qfull_i; \
quat_j = 2.0*qhalf_j - qfull_j; \
quat_k = 2.0*qhalf_k - qfull_k; \
ME_qnormalize(quat); \
\
quatin[0] = quat_w; \
quatin[1] = quat_i; \
quatin[2] = quat_j; \
quatin[3] = quat_k; \
}
#endif

View File

@ -51,11 +51,11 @@ NBinIntel::~NBinIntel() {
const int * bins = this->bins;
const int * _atombin = this->_atombin;
const int * _binpacked = this->_binpacked;
#pragma offload_transfer target(mic:_cop) \
#pragma offload_transfer target(mic:_cop) \
nocopy(binhead,bins,_atombin,_binpacked:alloc_if(0) free_if(1))
}
#endif
}
}
/* ----------------------------------------------------------------------
setup for bin_atoms()
@ -70,8 +70,8 @@ void NBinIntel::bin_atoms_setup(int nall)
#ifdef _LMP_INTEL_OFFLOAD
if (_offload_alloc) {
const int * binhead = this->binhead;
#pragma offload_transfer target(mic:_cop) \
nocopy(binhead:alloc_if(0) free_if(1))
#pragma offload_transfer target(mic:_cop) \
nocopy(binhead:alloc_if(0) free_if(1))
}
#endif
@ -98,8 +98,8 @@ void NBinIntel::bin_atoms_setup(int nall)
const int * bins = this->bins;
const int * _atombin = this->_atombin;
const int * _binpacked = this->_binpacked;
#pragma offload_transfer target(mic:_cop) \
nocopy(bins,_atombin,_binpacked:alloc_if(0) free_if(1))
#pragma offload_transfer target(mic:_cop) \
nocopy(bins,_atombin,_binpacked:alloc_if(0) free_if(1))
}
#endif
memory->destroy(bins);
@ -157,10 +157,10 @@ void NBinIntel::bin_atoms(IntelBuffers<flt_t,acc_t> * buffers) {
const flt_t dx = (INTEL_BIGP - bboxhi[0]);
const flt_t dy = (INTEL_BIGP - bboxhi[1]);
const flt_t dz = (INTEL_BIGP - bboxhi[2]);
if (dx * dx + dy * dy + dz * dz <
static_cast<flt_t>(neighbor->cutneighmaxsq))
if (dx * dx + dy * dy + dz * dz <
static_cast<flt_t>(neighbor->cutneighmaxsq))
error->one(FLERR,
"Intel package expects no atoms within cutoff of {1e15,1e15,1e15}.");
"Intel package expects no atoms within cutoff of {1e15,1e15,1e15}.");
}
// ---------- Grow and cast/pack buffers -------------
@ -183,7 +183,7 @@ void NBinIntel::bin_atoms(IntelBuffers<flt_t,acc_t> * buffers) {
{
int ifrom, ito, tid;
IP_PRE_omp_range_id_align(ifrom, ito, tid, nall, nthreads,
sizeof(ATOM_T));
sizeof(ATOM_T));
buffers->thr_pack(ifrom, ito, 0);
}
_fix->stop_watch(TIME_PACK);

View File

@ -70,48 +70,48 @@ fbi(NeighList *list, IntelBuffers<flt_t,acc_t> *buffers) {
#endif
buffers->grow_list(list, atom->nlocal, comm->nthreads, off_end,
_fix->nbor_pack_width());
_fix->nbor_pack_width());
int need_ic = 0;
if (atom->molecular)
dminimum_image_check(need_ic, neighbor->cutneighmax, neighbor->cutneighmax,
neighbor->cutneighmax);
neighbor->cutneighmax);
#ifdef _LMP_INTEL_OFFLOAD
if (_fix->three_body_neighbor()) {
if (need_ic) {
if (offload_noghost) {
bin_newton<flt_t,acc_t,1,1,1,0,1>(1, list, buffers, 0, off_end);
bin_newton<flt_t,acc_t,1,1,1,0,1>(0, list, buffers, host_start, nlocal, off_end);
bin_newton<flt_t,acc_t,1,1,1,0,1>(1, list, buffers, 0, off_end);
bin_newton<flt_t,acc_t,1,1,1,0,1>(0, list, buffers, host_start, nlocal, off_end);
} else {
bin_newton<flt_t,acc_t,0,1,1,0,1>(1, list, buffers, 0, off_end);
bin_newton<flt_t,acc_t,0,1,1,0,1>(0, list, buffers, host_start, nlocal);
bin_newton<flt_t,acc_t,0,1,1,0,1>(1, list, buffers, 0, off_end);
bin_newton<flt_t,acc_t,0,1,1,0,1>(0, list, buffers, host_start, nlocal);
}
} else {
if (offload_noghost) {
bin_newton<flt_t,acc_t,1,0,1,0,1>(1, list, buffers, 0, off_end);
bin_newton<flt_t,acc_t,1,0,1,0,1>(0, list, buffers, host_start, nlocal, off_end);
bin_newton<flt_t,acc_t,1,0,1,0,1>(1, list, buffers, 0, off_end);
bin_newton<flt_t,acc_t,1,0,1,0,1>(0, list, buffers, host_start, nlocal, off_end);
} else {
bin_newton<flt_t,acc_t,0,0,1,0,1>(1, list, buffers, 0, off_end);
bin_newton<flt_t,acc_t,0,0,1,0,1>(0, list, buffers, host_start, nlocal);
bin_newton<flt_t,acc_t,0,0,1,0,1>(1, list, buffers, 0, off_end);
bin_newton<flt_t,acc_t,0,0,1,0,1>(0, list, buffers, host_start, nlocal);
}
}
} else {
if (need_ic) {
if (offload_noghost) {
bin_newton<flt_t,acc_t,1,1,1,0,0>(1, list, buffers, 0, off_end);
bin_newton<flt_t,acc_t,1,1,1,0,0>(0, list, buffers, host_start, nlocal, off_end);
bin_newton<flt_t,acc_t,1,1,1,0,0>(1, list, buffers, 0, off_end);
bin_newton<flt_t,acc_t,1,1,1,0,0>(0, list, buffers, host_start, nlocal, off_end);
} else {
bin_newton<flt_t,acc_t,0,1,1,0,0>(1, list, buffers, 0, off_end);
bin_newton<flt_t,acc_t,0,1,1,0,0>(0, list, buffers, host_start, nlocal);
bin_newton<flt_t,acc_t,0,1,1,0,0>(1, list, buffers, 0, off_end);
bin_newton<flt_t,acc_t,0,1,1,0,0>(0, list, buffers, host_start, nlocal);
}
} else {
if (offload_noghost) {
bin_newton<flt_t,acc_t,1,0,1,0,0>(1, list, buffers, 0, off_end);
bin_newton<flt_t,acc_t,1,0,1,0,0>(0, list, buffers, host_start, nlocal, off_end);
bin_newton<flt_t,acc_t,1,0,1,0,0>(1, list, buffers, 0, off_end);
bin_newton<flt_t,acc_t,1,0,1,0,0>(0, list, buffers, host_start, nlocal, off_end);
} else {
bin_newton<flt_t,acc_t,0,0,1,0,0>(1, list, buffers, 0, off_end);
bin_newton<flt_t,acc_t,0,0,1,0,0>(0, list, buffers, host_start, nlocal);
bin_newton<flt_t,acc_t,0,0,1,0,0>(1, list, buffers, 0, off_end);
bin_newton<flt_t,acc_t,0,0,1,0,0>(0, list, buffers, host_start, nlocal);
}
}
}

View File

@ -15,7 +15,7 @@
NPairStyle(full/bin/intel,
NPairFullBinIntel,
NP_FULL | NP_BIN | NP_NEWTON | NP_NEWTOFF | NP_ORTHO | NP_TRI |
NP_FULL | NP_BIN | NP_NEWTON | NP_NEWTOFF | NP_ORTHO | NP_TRI |
NP_INTEL)
#else

View File

@ -26,7 +26,7 @@ using namespace LAMMPS_NS;
/* ---------------------------------------------------------------------- */
NPairHalfBinNewtonIntel::NPairHalfBinNewtonIntel(LAMMPS *lmp) :
NPairHalfBinNewtonIntel::NPairHalfBinNewtonIntel(LAMMPS *lmp) :
NPairIntel(lmp) {}
/* ----------------------------------------------------------------------
@ -75,14 +75,14 @@ hbni(NeighList *list, IntelBuffers<flt_t,acc_t> *buffers) {
int need_ic = 0;
if (atom->molecular)
dminimum_image_check(need_ic, neighbor->cutneighmax, neighbor->cutneighmax,
neighbor->cutneighmax);
neighbor->cutneighmax);
#ifdef _LMP_INTEL_OFFLOAD
if (need_ic) {
if (offload_noghost) {
bin_newton<flt_t,acc_t,1,1,0,0,0>(1, list, buffers, 0, off_end);
bin_newton<flt_t,acc_t,1,1,0,0,0>(0, list, buffers, host_start, nlocal,
off_end);
bin_newton<flt_t,acc_t,1,1,0,0,0>(0, list, buffers, host_start, nlocal,
off_end);
} else {
bin_newton<flt_t,acc_t,0,1,0,0,0>(1, list, buffers, 0, off_end);
bin_newton<flt_t,acc_t,0,1,0,0,0>(0, list, buffers, host_start, nlocal);
@ -90,7 +90,7 @@ hbni(NeighList *list, IntelBuffers<flt_t,acc_t> *buffers) {
} else {
if (offload_noghost) {
bin_newton<flt_t,acc_t,1,0,0,0,0>(1, list, buffers, 0, off_end);
bin_newton<flt_t,acc_t,1,0,0,0,0>(0, list, buffers, host_start, nlocal,
bin_newton<flt_t,acc_t,1,0,0,0,0>(0, list, buffers, host_start, nlocal,
off_end);
} else {
bin_newton<flt_t,acc_t,0,0,0,0,0>(1, list, buffers, 0, off_end);
@ -98,7 +98,7 @@ hbni(NeighList *list, IntelBuffers<flt_t,acc_t> *buffers) {
}
}
#else
if (need_ic)
if (need_ic)
bin_newton<flt_t,acc_t,0,1,0,0,0>(0, list, buffers, host_start, nlocal);
else
bin_newton<flt_t,acc_t,0,0,0,0,0>(0, list, buffers, host_start, nlocal);

View File

@ -26,7 +26,7 @@ using namespace LAMMPS_NS;
/* ---------------------------------------------------------------------- */
NPairHalfBinNewtonTriIntel::NPairHalfBinNewtonTriIntel(LAMMPS *lmp) :
NPairHalfBinNewtonTriIntel::NPairHalfBinNewtonTriIntel(LAMMPS *lmp) :
NPairIntel(lmp) {}
/* ----------------------------------------------------------------------
@ -75,14 +75,14 @@ hbnti(NeighList *list, IntelBuffers<flt_t,acc_t> *buffers) {
int need_ic = 0;
if (atom->molecular)
dminimum_image_check(need_ic, neighbor->cutneighmax, neighbor->cutneighmax,
neighbor->cutneighmax);
neighbor->cutneighmax);
#ifdef _LMP_INTEL_OFFLOAD
if (need_ic) {
if (offload_noghost) {
bin_newton<flt_t,acc_t,1,1,0,1,0>(1, list, buffers, 0, off_end);
bin_newton<flt_t,acc_t,1,1,0,1,0>(0, list, buffers, host_start, nlocal,
off_end);
bin_newton<flt_t,acc_t,1,1,0,1,0>(0, list, buffers, host_start, nlocal,
off_end);
} else {
bin_newton<flt_t,acc_t,0,1,0,1,0>(1, list, buffers, 0, off_end);
bin_newton<flt_t,acc_t,0,1,0,1,0>(0, list, buffers, host_start, nlocal);
@ -90,8 +90,8 @@ hbnti(NeighList *list, IntelBuffers<flt_t,acc_t> *buffers) {
} else {
if (offload_noghost) {
bin_newton<flt_t,acc_t,1,0,0,1,0>(1, list, buffers, 0, off_end);
bin_newton<flt_t,acc_t,1,0,0,1,0>(0, list, buffers, host_start, nlocal,
off_end);
bin_newton<flt_t,acc_t,1,0,0,1,0>(0, list, buffers, host_start, nlocal,
off_end);
} else {
bin_newton<flt_t,acc_t,0,0,0,1,0>(1, list, buffers, 0, off_end);
bin_newton<flt_t,acc_t,0,0,0,1,0>(0, list, buffers, host_start, nlocal);

View File

@ -40,7 +40,7 @@ NPairIntel::~NPairIntel() {
#ifdef _LMP_INTEL_OFFLOAD
if (_off_map_stencil) {
const int * stencil = this->stencil;
#pragma offload_transfer target(mic:_cop) \
#pragma offload_transfer target(mic:_cop) \
nocopy(stencil:alloc_if(0) free_if(1))
}
#endif
@ -49,10 +49,10 @@ NPairIntel::~NPairIntel() {
/* ---------------------------------------------------------------------- */
template <class flt_t, class acc_t, int offload_noghost, int need_ic,
int FULL, int TRI, int THREE>
void NPairIntel::bin_newton(const int offload, NeighList *list,
IntelBuffers<flt_t,acc_t> *buffers,
const int astart, const int aend,
int FULL, int TRI, int THREE>
void NPairIntel::bin_newton(const int offload, NeighList *list,
IntelBuffers<flt_t,acc_t> *buffers,
const int astart, const int aend,
const int offload_end) {
if (aend-astart == 0) return;
@ -66,7 +66,7 @@ void NPairIntel::bin_newton(const int offload, NeighList *list,
if (THREE == 0 && offload) {
if (INTEL_MIC_NBOR_PAD > 1)
pad = INTEL_MIC_NBOR_PAD * sizeof(float) / sizeof(flt_t);
} else
} else
#endif
if (THREE == 0 && INTEL_NBOR_PAD > 1)
pad = INTEL_NBOR_PAD * sizeof(float) / sizeof(flt_t);
@ -120,7 +120,7 @@ void NPairIntel::bin_newton(const int offload, NeighList *list,
overflow = _fix->get_off_overflow_flag();
_fix->stop_watch(TIME_HOST_NEIGHBOR);
_fix->start_watch(TIME_OFFLOAD_LATENCY);
} else
} else
#endif
{
tnum = comm->nthreads;
@ -193,8 +193,8 @@ void NPairIntel::bin_newton(const int offload, NeighList *list,
int end = stencil[k] + 1;
for (int kk = k + 1; kk < nstencil; kk++) {
if (stencil[kk-1]+1 == stencil[kk]) {
end++;
k++;
end++;
k++;
} else break;
}
binend[nstencilp] = end;
@ -214,16 +214,16 @@ void NPairIntel::bin_newton(const int offload, NeighList *list,
int tid, ifrom, ito;
if (THREE) {
IP_PRE_omp_range_id_vec(ifrom, ito, tid, num, nthreads, pack_width);
IP_PRE_omp_range_id_vec(ifrom, ito, tid, num, nthreads, pack_width);
} else {
IP_PRE_omp_range_id(ifrom, ito, tid, num, nthreads);
IP_PRE_omp_range_id(ifrom, ito, tid, num, nthreads);
}
ifrom += astart;
ito += astart;
int e_ito = ito;
if (THREE && ito == num) {
int imod = ito % pack_width;
if (imod) e_ito += pack_width - imod;
int imod = ito % pack_width;
if (imod) e_ito += pack_width - imod;
}
const int list_size = (e_ito + tid * 2 + 2) * maxnbors;
@ -251,313 +251,313 @@ void NPairIntel::bin_newton(const int offload, NeighList *list,
// loop over all atoms in other bins in stencil, store every pair
int istart, icount, ncount, oldbin = -9999999, lane, max_chunk;
if (THREE) {
lane = 0;
max_chunk = 0;
lane = 0;
max_chunk = 0;
}
for (int i = ifrom; i < ito; i++) {
const flt_t xtmp = x[i].x;
const flt_t ytmp = x[i].y;
const flt_t ztmp = x[i].z;
const int itype = x[i].w;
tagint itag;
if (THREE) itag = tag[i];
tagint itag;
if (THREE) itag = tag[i];
const int ioffset = ntypes * itype;
const int ibin = atombin[i];
if (ibin != oldbin) {
oldbin = ibin;
ncount = 0;
for (int k = 0; k < nstencilp; k++) {
const int bstart = binhead[ibin + binstart[k]];
const int bend = binhead[ibin + binend[k]];
if (ibin != oldbin) {
oldbin = ibin;
ncount = 0;
for (int k = 0; k < nstencilp; k++) {
const int bstart = binhead[ibin + binstart[k]];
const int bend = binhead[ibin + binend[k]];
#if defined(LMP_SIMD_COMPILER)
#pragma vector aligned
#pragma simd
#endif
for (int jj = bstart; jj < bend; jj++)
tj[ncount++] = binpacked[jj];
}
#pragma vector aligned
#pragma simd
#endif
for (int jj = bstart; jj < bend; jj++)
tj[ncount++] = binpacked[jj];
}
#if defined(LMP_SIMD_COMPILER)
#pragma vector aligned
#pragma simd
#endif
for (int u = 0; u < ncount; u++) {
const int j = tj[u];
tx[u] = x[j].x;
ty[u] = x[j].y;
tz[u] = x[j].z;
tjtype[u] = x[j].w;
}
#pragma simd
#endif
for (int u = 0; u < ncount; u++) {
const int j = tj[u];
tx[u] = x[j].x;
ty[u] = x[j].y;
tz[u] = x[j].z;
tjtype[u] = x[j].w;
}
if (FULL == 0 || TRI == 1) {
icount = 0;
istart = ncount;
const int alignb = INTEL_DATA_ALIGN / sizeof(int);
int nedge = istart % alignb;
if (nedge) istart + (alignb - nedge);
itx = tx + istart;
ity = ty + istart;
itz = tz + istart;
itj = tj + istart;
itjtype = tjtype + istart;
if (FULL == 0 || TRI == 1) {
icount = 0;
istart = ncount;
const int alignb = INTEL_DATA_ALIGN / sizeof(int);
int nedge = istart % alignb;
if (nedge) istart + (alignb - nedge);
itx = tx + istart;
ity = ty + istart;
itz = tz + istart;
itj = tj + istart;
itjtype = tjtype + istart;
const int bstart = binhead[ibin];
const int bend = binhead[ibin + 1];
const int bend = binhead[ibin + 1];
#if defined(LMP_SIMD_COMPILER)
#pragma vector aligned
#pragma simd
#endif
for (int jj = bstart; jj < bend; jj++) {
const int j = binpacked[jj];
itj[icount] = j;
itx[icount] = x[j].x;
ity[icount] = x[j].y;
itz[icount] = x[j].z;
itjtype[icount] = x[j].w;
icount++;
}
if (icount + istart > obound) *overflow = 1;
} else
if (ncount > obound) *overflow = 1;
}
#pragma vector aligned
#pragma simd
#endif
for (int jj = bstart; jj < bend; jj++) {
const int j = binpacked[jj];
itj[icount] = j;
itx[icount] = x[j].x;
ity[icount] = x[j].y;
itz[icount] = x[j].z;
itjtype[icount] = x[j].w;
icount++;
}
if (icount + istart > obound) *overflow = 1;
} else
if (ncount > obound) *overflow = 1;
}
// ---------------------- Loop over i bin
// ---------------------- Loop over i bin
int n = 0;
if (FULL == 0 || TRI == 1) {
if (FULL == 0 || TRI == 1) {
#if defined(LMP_SIMD_COMPILER)
#pragma vector aligned
#pragma ivdep
#endif
for (int u = 0; u < icount; u++) {
int addme = 1;
int j = itj[u];
#pragma ivdep
#endif
for (int u = 0; u < icount; u++) {
int addme = 1;
int j = itj[u];
// Cutoff Check
const flt_t delx = xtmp - itx[u];
const flt_t dely = ytmp - ity[u];
const flt_t delz = ztmp - itz[u];
const int jtype = itjtype[u];
const flt_t rsq = delx * delx + dely * dely + delz * delz;
if (rsq > cutneighsq[ioffset + jtype]) addme = 0;
// i bin (half) check and offload ghost check
if (j < nlocal) {
const int ijmod = (i + j) % 2;
if (i > j) {
if (ijmod == 0) addme = 0;
} else if (i < j) {
if (ijmod == 1) addme = 0;
} else
addme = 0;
// Cutoff Check
const flt_t delx = xtmp - itx[u];
const flt_t dely = ytmp - ity[u];
const flt_t delz = ztmp - itz[u];
const int jtype = itjtype[u];
const flt_t rsq = delx * delx + dely * dely + delz * delz;
if (rsq > cutneighsq[ioffset + jtype]) addme = 0;
// i bin (half) check and offload ghost check
if (j < nlocal) {
const int ijmod = (i + j) % 2;
if (i > j) {
if (ijmod == 0) addme = 0;
} else if (i < j) {
if (ijmod == 1) addme = 0;
} else
addme = 0;
#ifdef _LMP_INTEL_OFFLOAD
if (offload_noghost && i < offload_end) addme = 0;
#endif
} else {
if (offload_noghost && i < offload_end) addme = 0;
#endif
} else {
#ifdef _LMP_INTEL_OFFLOAD
if (offload_noghost && offload) addme = 0;
#endif
if (itz[u] < ztmp) addme = 0;
if (itz[u] == ztmp) {
if (offload_noghost && offload) addme = 0;
#endif
if (itz[u] < ztmp) addme = 0;
if (itz[u] == ztmp) {
if (ity[u] < ytmp) addme = 0;
if (ity[u] == ytmp && itx[u] < xtmp) addme = 0;
}
}
}
if (need_ic) {
int no_special;
ominimum_image_check(no_special, delx, dely, delz);
if (no_special)
j = -j - 1;
}
if (need_ic) {
int no_special;
ominimum_image_check(no_special, delx, dely, delz);
if (no_special)
j = -j - 1;
}
if (addme)
neighptr[n++] = j;
}
} // if FULL==0
if (addme)
neighptr[n++] = j;
}
} // if FULL==0
// ---------------------- Loop over other bins
// ---------------------- Loop over other bins
int n2, *neighptr2;
if (THREE) {
n = pack_offset;
n2 = pack_offset + maxnbors;
neighptr2 = neighptr;
}
#if defined(LMP_SIMD_COMPILER)
int n2, *neighptr2;
if (THREE) {
n = pack_offset;
n2 = pack_offset + maxnbors;
neighptr2 = neighptr;
}
#if defined(LMP_SIMD_COMPILER)
#pragma vector aligned
#pragma ivdep
#endif
for (int u = 0; u < ncount; u++) {
int addme = 1;
#endif
for (int u = 0; u < ncount; u++) {
int addme = 1;
int j = tj[u];
if (FULL)
if (i == j) addme = 0;
if (FULL)
if (i == j) addme = 0;
// Cutoff Check
// Cutoff Check
const flt_t delx = xtmp - tx[u];
const flt_t dely = ytmp - ty[u];
const flt_t delz = ztmp - tz[u];
const int jtype = tjtype[u];
const int jtype = tjtype[u];
const flt_t rsq = delx * delx + dely * dely + delz * delz;
if (rsq > cutneighsq[ioffset + jtype]) addme = 0;
// Triclinic
if (TRI) {
if (tz[u] < ztmp) addme = 0;
if (tz[u] == ztmp) {
if (ty[u] < ytmp) addme = 0;
if (ty[u] == ytmp) {
if (tx[u] < xtmp) addme = 0;
// Triclinic
if (TRI) {
if (tz[u] < ztmp) addme = 0;
if (tz[u] == ztmp) {
if (ty[u] < ytmp) addme = 0;
if (ty[u] == ytmp) {
if (tx[u] < xtmp) addme = 0;
if (tx[u] == xtmp && j <= i) addme = 0;
}
}
}
}
}
// offload ghost check
// offload ghost check
#ifdef _LMP_INTEL_OFFLOAD
if (offload_noghost) {
if (j < nlocal) {
if (i < offload_end) addme = 0;
if (offload_noghost) {
if (j < nlocal) {
if (i < offload_end) addme = 0;
} else if (offload) addme = 0;
}
#endif
}
#endif
int pj;
if (THREE) pj = j;
if (need_ic) {
int no_special;
ominimum_image_check(no_special, delx, dely, delz);
if (no_special)
j = -j - 1;
}
int pj;
if (THREE) pj = j;
if (need_ic) {
int no_special;
ominimum_image_check(no_special, delx, dely, delz);
if (no_special)
j = -j - 1;
}
if (THREE) {
const int jtag = tag[pj];
int flist = 0;
if (itag > jtag) {
if ((itag+jtag) % 2 == 0) flist = 1;
} else if (itag < jtag) {
if ((itag+jtag) % 2 == 1) flist = 1;
} else {
if (tz[u] < ztmp) flist = 1;
else if (tz[u] == ztmp && ty[u] < ytmp) flist = 1;
else if (tz[u] == ztmp && ty[u] == ytmp && tx[u] < xtmp)
flist = 1;
}
if (addme) {
if (flist)
neighptr2[n2++] = j;
else
neighptr[n++] = j;
}
} else {
if (addme)
neighptr[n++] = j;
}
} // for u
if (THREE) {
const int jtag = tag[pj];
int flist = 0;
if (itag > jtag) {
if ((itag+jtag) % 2 == 0) flist = 1;
} else if (itag < jtag) {
if ((itag+jtag) % 2 == 1) flist = 1;
} else {
if (tz[u] < ztmp) flist = 1;
else if (tz[u] == ztmp && ty[u] < ytmp) flist = 1;
else if (tz[u] == ztmp && ty[u] == ytmp && tx[u] < xtmp)
flist = 1;
}
if (addme) {
if (flist)
neighptr2[n2++] = j;
else
neighptr[n++] = j;
}
} else {
if (addme)
neighptr[n++] = j;
}
} // for u
#ifndef _LMP_INTEL_OFFLOAD
if (exclude) {
int alln = n;
if (THREE) n = pack_offset;
else n = 0;
for (int u = pack_offset; u < alln; u++) {
const int j = neighptr[u];
int pj = j;
if (need_ic)
if (pj < 0) pj = -j - 1;
const int jtype = x[pj].w;
if (exclusion(i,pj,itype,jtype,mask,molecule)) continue;
neighptr[n++] = j;
if (exclude) {
int alln = n;
if (THREE) n = pack_offset;
else n = 0;
for (int u = pack_offset; u < alln; u++) {
const int j = neighptr[u];
int pj = j;
if (need_ic)
if (pj < 0) pj = -j - 1;
const int jtype = x[pj].w;
if (exclusion(i,pj,itype,jtype,mask,molecule)) continue;
neighptr[n++] = j;
}
if (THREE) {
alln = n2;
n2 = pack_offset + maxnbors;
for (int u = pack_offset + maxnbors; u < alln; u++) {
const int j = neighptr[u];
int pj = j;
if (need_ic)
if (pj < 0) pj = -j - 1;
const int jtype = x[pj].w;
if (exclusion(i,pj,itype,jtype,mask,molecule)) continue;
neighptr[n2++] = j;
}
}
if (THREE) {
alln = n2;
n2 = pack_offset + maxnbors;
for (int u = pack_offset + maxnbors; u < alln; u++) {
const int j = neighptr[u];
int pj = j;
if (need_ic)
if (pj < 0) pj = -j - 1;
const int jtype = x[pj].w;
if (exclusion(i,pj,itype,jtype,mask,molecule)) continue;
neighptr[n2++] = j;
}
}
}
#endif
int ns;
if (THREE) {
int alln = n;
ns = n - pack_offset;
atombin[i] = ns;
n = lane;
for (int u = pack_offset; u < alln; u++) {
neighptr[n] = neighptr[u];
n += pack_width;
}
ns += n2 - pack_offset - maxnbors;
for (int u = pack_offset + maxnbors; u < n2; u++) {
neighptr[n] = neighptr[u];
n += pack_width;
}
if (ns > maxnbors) *overflow = 1;
} else
if (n > maxnbors) *overflow = 1;
#endif
int ns;
if (THREE) {
int alln = n;
ns = n - pack_offset;
atombin[i] = ns;
n = lane;
for (int u = pack_offset; u < alln; u++) {
neighptr[n] = neighptr[u];
n += pack_width;
}
ns += n2 - pack_offset - maxnbors;
for (int u = pack_offset + maxnbors; u < n2; u++) {
neighptr[n] = neighptr[u];
n += pack_width;
}
if (ns > maxnbors) *overflow = 1;
} else
if (n > maxnbors) *overflow = 1;
ilist[i] = i;
cnumneigh[i] = ct;
if (THREE) {
cnumneigh[i] += lane;
numneigh[i] = ns;
} else {
int edge = (n % pad_width);
if (edge) {
const int pad_end = n + (pad_width - edge);
if (THREE) {
cnumneigh[i] += lane;
numneigh[i] = ns;
} else {
int edge = (n % pad_width);
if (edge) {
const int pad_end = n + (pad_width - edge);
#if defined(LMP_SIMD_COMPILER)
#pragma vector aligned
#pragma vector aligned
#pragma loop_count min=1, max=INTEL_COMPILE_WIDTH-1, \
avg=INTEL_COMPILE_WIDTH/2
avg=INTEL_COMPILE_WIDTH/2
#endif
for ( ; n < pad_end; n++)
neighptr[n] = e_nall;
}
numneigh[i] = n;
}
numneigh[i] = n;
}
if (THREE) {
if (ns > max_chunk) max_chunk = ns;
lane++;
if (lane == pack_width) {
ct += max_chunk * pack_width;
const int alignb = (INTEL_DATA_ALIGN / sizeof(int));
const int edge = (ct % alignb);
if (edge) ct += alignb - edge;
neighptr = firstneigh + ct;
max_chunk = 0;
pack_offset = maxnbors * pack_width;
lane = 0;
if (ct + obound > list_size) {
if (i < ito - 1) {
*overflow = 1;
ct = (ifrom + tid * 2) * maxnbors;
}
}
}
} else {
ct += n;
const int alignb = (INTEL_DATA_ALIGN / sizeof(int));
const int edge = (ct % alignb);
if (edge) ct += alignb - edge;
neighptr = firstneigh + ct;
if (ct + obound > list_size) {
if (i < ito - 1) {
*overflow = 1;
ct = (ifrom + tid * 2) * maxnbors;
}
}
}
if (THREE) {
if (ns > max_chunk) max_chunk = ns;
lane++;
if (lane == pack_width) {
ct += max_chunk * pack_width;
const int alignb = (INTEL_DATA_ALIGN / sizeof(int));
const int edge = (ct % alignb);
if (edge) ct += alignb - edge;
neighptr = firstneigh + ct;
max_chunk = 0;
pack_offset = maxnbors * pack_width;
lane = 0;
if (ct + obound > list_size) {
if (i < ito - 1) {
*overflow = 1;
ct = (ifrom + tid * 2) * maxnbors;
}
}
}
} else {
ct += n;
const int alignb = (INTEL_DATA_ALIGN / sizeof(int));
const int edge = (ct % alignb);
if (edge) ct += alignb - edge;
neighptr = firstneigh + ct;
if (ct + obound > list_size) {
if (i < ito - 1) {
*overflow = 1;
ct = (ifrom + tid * 2) * maxnbors;
}
}
}
}
if (*overflow == 1)
@ -568,16 +568,16 @@ void NPairIntel::bin_newton(const int offload, NeighList *list,
int vlmin = lmin, vlmax = lmax, vgmin = gmin, vgmax = gmax;
int ghost_offset = 0, nall_offset = e_nall;
if (separate_buffers) {
for (int i = ifrom; i < ito; ++i) {
for (int i = ifrom; i < ito; ++i) {
int * _noalias jlist = firstneigh + cnumneigh[i];
const int jnum = numneigh[i];
#if __INTEL_COMPILER+0 > 1499
#pragma vector aligned
#if __INTEL_COMPILER+0 > 1499
#pragma vector aligned
#pragma simd reduction(max:vlmax,vgmax) reduction(min:vlmin, vgmin)
#endif
for (int jj = 0; jj < jnum; jj++) {
int j = jlist[jj];
if (need_ic && j < 0) j = -j - 1;
#endif
for (int jj = 0; jj < jnum; jj++) {
int j = jlist[jj];
if (need_ic && j < 0) j = -j - 1;
if (j < nlocal) {
if (j < vlmin) vlmin = j;
if (j > vlmax) vlmax = j;
@ -585,33 +585,33 @@ void NPairIntel::bin_newton(const int offload, NeighList *list,
if (j < vgmin) vgmin = j;
if (j > vgmax) vgmax = j;
}
}
}
lmin = MIN(lmin,vlmin);
gmin = MIN(gmin,vgmin);
lmax = MAX(lmax,vlmax);
gmax = MAX(gmax,vgmax);
}
}
lmin = MIN(lmin,vlmin);
gmin = MIN(gmin,vgmin);
lmax = MAX(lmax,vlmax);
gmax = MAX(gmax,vgmax);
#if defined(_OPENMP)
#pragma omp critical
#endif
{
if (lmin < overflow[LMP_LOCAL_MIN]) overflow[LMP_LOCAL_MIN] = lmin;
if (lmax > overflow[LMP_LOCAL_MAX]) overflow[LMP_LOCAL_MAX] = lmax;
if (gmin < overflow[LMP_GHOST_MIN]) overflow[LMP_GHOST_MIN] = gmin;
if (gmax > overflow[LMP_GHOST_MAX]) overflow[LMP_GHOST_MAX] = gmax;
if (lmin < overflow[LMP_LOCAL_MIN]) overflow[LMP_LOCAL_MIN] = lmin;
if (lmax > overflow[LMP_LOCAL_MAX]) overflow[LMP_LOCAL_MAX] = lmax;
if (gmin < overflow[LMP_GHOST_MIN]) overflow[LMP_GHOST_MIN] = gmin;
if (gmax > overflow[LMP_GHOST_MAX]) overflow[LMP_GHOST_MAX] = gmax;
}
#pragma omp barrier
int nghost = overflow[LMP_GHOST_MAX] + 1 - overflow[LMP_GHOST_MIN];
if (nghost < 0) nghost = 0;
if (offload) {
ghost_offset = overflow[LMP_GHOST_MIN] - overflow[LMP_LOCAL_MAX] - 1;
nall_offset = overflow[LMP_LOCAL_MAX] + 1 + nghost;
} else {
ghost_offset = overflow[LMP_GHOST_MIN] - nlocal;
nall_offset = nlocal + nghost;
}
#pragma omp barrier
int nghost = overflow[LMP_GHOST_MAX] + 1 - overflow[LMP_GHOST_MIN];
if (nghost < 0) nghost = 0;
if (offload) {
ghost_offset = overflow[LMP_GHOST_MIN] - overflow[LMP_LOCAL_MAX] - 1;
nall_offset = overflow[LMP_LOCAL_MAX] + 1 + nghost;
} else {
ghost_offset = overflow[LMP_GHOST_MIN] - nlocal;
nall_offset = nlocal + nghost;
}
} // if separate_buffers
#endif
@ -620,67 +620,67 @@ void NPairIntel::bin_newton(const int offload, NeighList *list,
int * _noalias jlist = firstneigh + cnumneigh[i];
const int jnum = numneigh[i];
if (THREE) {
const int trip = jnum * pack_width;
if (THREE) {
const int trip = jnum * pack_width;
for (int jj = 0; jj < trip; jj+=pack_width) {
const int j = jlist[jj];
if (need_ic && j < 0) {
which = 0;
jlist[jj] = -j - 1;
if (need_ic && j < 0) {
which = 0;
jlist[jj] = -j - 1;
} else
ofind_special(which, special, nspecial, i, tag[j]);
#ifdef _LMP_INTEL_OFFLOAD
if (j >= nlocal) {
if (j == e_nall)
jlist[jj] = nall_offset;
else if (which)
jlist[jj] = (j-ghost_offset) ^ (which << SBBITS);
else jlist[jj]-=ghost_offset;
#ifdef _LMP_INTEL_OFFLOAD
if (j >= nlocal) {
if (j == e_nall)
jlist[jj] = nall_offset;
else if (which)
jlist[jj] = (j-ghost_offset) ^ (which << SBBITS);
else jlist[jj]-=ghost_offset;
} else
#endif
if (which) jlist[jj] = j ^ (which << SBBITS);
}
} else {
#if defined(LMP_SIMD_COMPILER)
#pragma vector aligned
#pragma simd
#endif
for (int jj = 0; jj < jnum; jj++) {
const int j = jlist[jj];
if (need_ic && j < 0) {
which = 0;
jlist[jj] = -j - 1;
} else
ofind_special(which, special, nspecial, i, tag[j]);
#ifdef _LMP_INTEL_OFFLOAD
if (j >= nlocal) {
if (j == e_nall)
jlist[jj] = nall_offset;
else if (which)
jlist[jj] = (j-ghost_offset) ^ (which << SBBITS);
else jlist[jj]-=ghost_offset;
} else
#endif
#endif
if (which) jlist[jj] = j ^ (which << SBBITS);
}
}
} // for i
} else {
#if defined(LMP_SIMD_COMPILER)
#pragma vector aligned
#pragma simd
#endif
for (int jj = 0; jj < jnum; jj++) {
const int j = jlist[jj];
if (need_ic && j < 0) {
which = 0;
jlist[jj] = -j - 1;
} else
ofind_special(which, special, nspecial, i, tag[j]);
#ifdef _LMP_INTEL_OFFLOAD
if (j >= nlocal) {
if (j == e_nall)
jlist[jj] = nall_offset;
else if (which)
jlist[jj] = (j-ghost_offset) ^ (which << SBBITS);
else jlist[jj]-=ghost_offset;
} else
#endif
if (which) jlist[jj] = j ^ (which << SBBITS);
}
}
} // for i
} // if molecular
#ifdef _LMP_INTEL_OFFLOAD
else if (separate_buffers) {
for (int i = ifrom; i < ito; ++i) {
for (int i = ifrom; i < ito; ++i) {
int * _noalias jlist = firstneigh + cnumneigh[i];
const int jnum = numneigh[i];
int jj = 0;
#pragma vector aligned
#pragma simd
for (jj = 0; jj < jnum; jj++) {
if (jlist[jj] >= nlocal) {
if (jlist[jj] == e_nall) jlist[jj] = nall_offset;
else jlist[jj] -= ghost_offset;
}
}
}
int jj = 0;
#pragma vector aligned
#pragma simd
for (jj = 0; jj < jnum; jj++) {
if (jlist[jj] >= nlocal) {
if (jlist[jj] == e_nall) jlist[jj] = nall_offset;
else jlist[jj] -= ghost_offset;
}
}
}
}
#endif
} // end omp
@ -704,9 +704,9 @@ void NPairIntel::bin_newton(const int offload, NeighList *list,
_fix->start_watch(TIME_PACK);
_fix->set_neighbor_host_sizes();
buffers->pack_sep_from_single(_fix->host_min_local(),
_fix->host_used_local(),
_fix->host_min_ghost(),
_fix->host_used_ghost());
_fix->host_used_local(),
_fix->host_min_ghost(),
_fix->host_used_ghost());
_fix->stop_watch(TIME_PACK);
}
}
@ -732,9 +732,9 @@ void NPairIntel::grow_stencil()
_off_map_stencil = stencil;
const int * stencil = _off_map_stencil;
const int maxstencil = ns->get_maxstencil();
#pragma offload_transfer target(mic:_cop) \
#pragma offload_transfer target(mic:_cop) \
in(stencil:length(maxstencil) alloc_if(1) free_if(0))
}
}
}
#endif

View File

@ -84,8 +84,8 @@ class NPairIntel : public NPair {
FixIntel *_fix;
template <class flt_t, class acc_t, int, int, int, int, int>
void bin_newton(const int, NeighList *, IntelBuffers<flt_t,acc_t> *,
const int, const int, const int offload_end = 0);
void bin_newton(const int, NeighList *, IntelBuffers<flt_t,acc_t> *,
const int, const int, const int offload_end = 0);
#ifdef _LMP_INTEL_OFFLOAD
int _cop;

View File

@ -55,7 +55,7 @@ PairBuckCoulCutIntel::~PairBuckCoulCutIntel()
void PairBuckCoulCutIntel::compute(int eflag, int vflag)
{
if (fix->precision()==FixIntel::PREC_MODE_MIXED)
compute<float,double>(eflag, vflag, fix->get_mixed_buffers(),
compute<float,double>(eflag, vflag, fix->get_mixed_buffers(),
force_const_single);
else if (fix->precision()==FixIntel::PREC_MODE_DOUBLE)
compute<double,double>(eflag, vflag, fix->get_double_buffers(),
@ -70,8 +70,8 @@ void PairBuckCoulCutIntel::compute(int eflag, int vflag)
template <class flt_t, class acc_t>
void PairBuckCoulCutIntel::compute(int eflag, int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
{
if (eflag || vflag) {
ev_setup(eflag,vflag);
@ -94,13 +94,13 @@ void PairBuckCoulCutIntel::compute(int eflag, int vflag,
#endif
{
int ifrom, ito, tid;
IP_PRE_omp_range_id_align(ifrom, ito, tid, atom->nlocal + atom->nghost,
packthreads, sizeof(ATOM_T));
IP_PRE_omp_range_id_align(ifrom, ito, tid, atom->nlocal + atom->nghost,
packthreads, sizeof(ATOM_T));
buffers->thr_pack(ifrom,ito,ago);
}
fix->stop_watch(TIME_PACK);
}
int ovflag = 0;
if (vflag_fdotr) ovflag = 2;
else if (vflag) ovflag = 1;
@ -127,9 +127,9 @@ void PairBuckCoulCutIntel::compute(int eflag, int vflag,
template <int EFLAG, int NEWTON_PAIR, class flt_t, class acc_t>
void PairBuckCoulCutIntel::eval(const int offload, const int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc,
const int astart, const int aend)
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc,
const int astart, const int aend)
{
const int inum = aend - astart;
if (inum == 0) return;
@ -160,8 +160,8 @@ void PairBuckCoulCutIntel::eval(const int offload, const int vflag,
// Determine how much data to transfer
int x_size, q_size, f_stride, ev_size, separate_flag;
IP_PRE_get_transfern(ago, NEWTON_PAIR, EFLAG, vflag,
buffers, offload, fix, separate_flag,
x_size, q_size, ev_size, f_stride);
buffers, offload, fix, separate_flag,
x_size, q_size, ev_size, f_stride);
int tc;
FORCE_T * _noalias f_start;
@ -198,8 +198,8 @@ void PairBuckCoulCutIntel::eval(const int offload, const int vflag,
*timer_compute = MIC_Wtime();
#endif
IP_PRE_repack_for_offload(NEWTON_PAIR, separate_flag, nlocal, nall,
f_stride, x, q);
IP_PRE_repack_for_offload(NEWTON_PAIR, separate_flag, nlocal, nall,
f_stride, x, q);
acc_t oevdwl, oecoul, ov0, ov1, ov2, ov3, ov4, ov5;
if (EFLAG) oevdwl = oecoul = (acc_t)0;
@ -233,20 +233,20 @@ void PairBuckCoulCutIntel::eval(const int offload, const int vflag,
acc_t fxtmp,fytmp,fztmp,fwtmp;
acc_t sevdwl, secoul, sv0, sv1, sv2, sv3, sv4, sv5;
const flt_t xtmp = x[i].x;
const flt_t ytmp = x[i].y;
const flt_t ztmp = x[i].z;
const flt_t qtmp = q[i];
fxtmp = fytmp = fztmp = (acc_t)0;
if (EFLAG) fwtmp = sevdwl = secoul = (acc_t)0;
if (EFLAG) fwtmp = sevdwl = secoul = (acc_t)0;
if (NEWTON_PAIR == 0)
if (vflag==1) sv0 = sv1 = sv2 = sv3 = sv4 = sv5 = (acc_t)0;
if (vflag==1) sv0 = sv1 = sv2 = sv3 = sv4 = sv5 = (acc_t)0;
#if defined(LMP_SIMD_COMPILER)
#pragma vector aligned
#pragma simd reduction(+:fxtmp, fytmp, fztmp, fwtmp, sevdwl, \
sv0, sv1, sv2, sv3, sv4, sv5)
#pragma simd reduction(+:fxtmp, fytmp, fztmp, fwtmp, sevdwl, \
sv0, sv1, sv2, sv3, sv4, sv5)
#endif
for (int jj = 0; jj < jnum; jj++) {
flt_t forcecoul, forcebuck, evdwl, ecoul;
@ -262,19 +262,19 @@ void PairBuckCoulCutIntel::eval(const int offload, const int vflag,
const flt_t rsq = delx * delx + dely * dely + delz * delz;
const flt_t r = sqrt(rsq);
const flt_t r2inv = (flt_t)1.0 / rsq;
#ifdef INTEL_VMASK
#ifdef INTEL_VMASK
if (rsq < c_cuti[jtype].cut_coulsq) {
#endif
forcecoul = qqrd2e * qtmp*q[j]/r;
if (EFLAG)
if (EFLAG)
ecoul = forcecoul;
if (sbindex){
const flt_t factor_coul = special_coul[sbindex];
forcecoul *= factor_coul;
if(EFLAG)
ecoul *= factor_coul;
}
#ifdef INTEL_VMASK
}
@ -282,7 +282,7 @@ void PairBuckCoulCutIntel::eval(const int offload, const int vflag,
if (rsq >= c_cuti[jtype].cut_coulsq)
{ forcecoul = (flt_t)0.0; ecoul = (flt_t)0.0; }
#endif
#ifdef INTEL_VMASK
if (rsq < c_cuti[jtype].cut_ljsq) {
#endif
@ -290,14 +290,14 @@ void PairBuckCoulCutIntel::eval(const int offload, const int vflag,
flt_t rexp = exp(-r * c_forcei[jtype].rhoinv);
forcebuck = r * rexp * c_forcei[jtype].buck1 -
r6inv * c_forcei[jtype].buck2;
if (EFLAG)
if (EFLAG)
evdwl = rexp * c_energyi[jtype].a -
r6inv * c_energyi[jtype].c -
c_energyi[jtype].offset;
if (sbindex) {
const flt_t factor_lj = special_lj[sbindex];
forcebuck *= factor_lj;
if (EFLAG)
if (EFLAG)
evdwl *= factor_lj;
}
#ifdef INTEL_VMASK
@ -311,51 +311,51 @@ void PairBuckCoulCutIntel::eval(const int offload, const int vflag,
if (rsq < c_cuti[jtype].cutsq) {
#endif
const flt_t fpair = (forcecoul + forcebuck) * r2inv;
const flt_t fpx = fpair * delx;
fxtmp += fpx;
if (NEWTON_PAIR) f[j].x -= fpx;
const flt_t fpy = fpair * dely;
fytmp += fpy;
if (NEWTON_PAIR) f[j].y -= fpy;
const flt_t fpz = fpair * delz;
fztmp += fpz;
if (NEWTON_PAIR) f[j].z -= fpz;
const flt_t fpx = fpair * delx;
fxtmp += fpx;
if (NEWTON_PAIR) f[j].x -= fpx;
const flt_t fpy = fpair * dely;
fytmp += fpy;
if (NEWTON_PAIR) f[j].y -= fpy;
const flt_t fpz = fpair * delz;
fztmp += fpz;
if (NEWTON_PAIR) f[j].z -= fpz;
if (EFLAG) {
sevdwl += evdwl;
secoul += ecoul;
if (eatom) {
fwtmp += (flt_t)0.5 * evdwl + (flt_t)0.5 * ecoul;
if (NEWTON_PAIR)
f[j].w += (flt_t)0.5 * evdwl + (flt_t)0.5 * ecoul;
if (EFLAG) {
sevdwl += evdwl;
secoul += ecoul;
if (eatom) {
fwtmp += (flt_t)0.5 * evdwl + (flt_t)0.5 * ecoul;
if (NEWTON_PAIR)
f[j].w += (flt_t)0.5 * evdwl + (flt_t)0.5 * ecoul;
}
}
if (NEWTON_PAIR == 0)
}
if (NEWTON_PAIR == 0)
IP_PRE_ev_tally_nborv(vflag, delx, dely, delz, fpx, fpy, fpz);
#ifdef INTEL_VMASK
}
#endif
} // for jj
if (NEWTON_PAIR) {
f[i].x += fxtmp;
f[i].y += fytmp;
f[i].z += fztmp;
} else {
f[i].x = fxtmp;
f[i].y = fytmp;
f[i].z = fztmp;
}
f[i].x += fxtmp;
f[i].y += fytmp;
f[i].z += fztmp;
} else {
f[i].x = fxtmp;
f[i].y = fytmp;
f[i].z = fztmp;
}
IP_PRE_ev_tally_atomq(NEWTON_PAIR, EFLAG, vflag, f, fwtmp);
} // for ii
IP_PRE_fdotr_reduce_omp(NEWTON_PAIR, nall, minlocal, nthreads, f_start,
f_stride, x, offload, vflag, ov0, ov1, ov2, ov3,
ov4, ov5);
f_stride, x, offload, vflag, ov0, ov1, ov2, ov3,
ov4, ov5);
} // end of omp parallel region
IP_PRE_fdotr_reduce(NEWTON_PAIR, nall, nthreads, f_stride, vflag,
ov0, ov1, ov2, ov3, ov4, ov5);
ov0, ov1, ov2, ov3, ov4, ov5);
if (EFLAG) {
if (NEWTON_PAIR == 0) oevdwl *= (acc_t)0.5;
@ -364,12 +364,12 @@ void PairBuckCoulCutIntel::eval(const int offload, const int vflag,
}
if (vflag) {
if (NEWTON_PAIR == 0) {
ov0 *= (acc_t)0.5;
ov1 *= (acc_t)0.5;
ov2 *= (acc_t)0.5;
ov3 *= (acc_t)0.5;
ov4 *= (acc_t)0.5;
ov5 *= (acc_t)0.5;
ov0 *= (acc_t)0.5;
ov1 *= (acc_t)0.5;
ov2 *= (acc_t)0.5;
ov3 *= (acc_t)0.5;
ov4 *= (acc_t)0.5;
ov5 *= (acc_t)0.5;
}
ev_global[2] = ov0;
ev_global[3] = ov1;
@ -410,7 +410,7 @@ void PairBuckCoulCutIntel::init_style()
error->all(FLERR,
"The 'package intel' command is required for /intel styles");
fix = static_cast<FixIntel *>(modify->fix[ifix]);
fix->pair_init_check();
#ifdef _LMP_INTEL_OFFLOAD
_cop = fix->coprocessor_number();
@ -492,9 +492,9 @@ void PairBuckCoulCutIntel::pack_force_const(ForceConst<flt_t> &fc,
template <class flt_t>
void PairBuckCoulCutIntel::ForceConst<flt_t>::set_ntypes(const int ntypes,
const int ntable,
Memory *memory,
const int cop) {
const int ntable,
Memory *memory,
const int cop) {
if ( (ntypes != _ntypes || ntable != _ntable) ) {
if (_ntypes > 0) {
#ifdef _LMP_INTEL_OFFLOAD
@ -505,12 +505,12 @@ void PairBuckCoulCutIntel::ForceConst<flt_t>::set_ntypes(const int ntypes,
c_cut_t * oc_cut = c_cut[0];
if (ospecial_lj != NULL && oc_force != NULL && oc_cut != NULL &&
oc_energy != NULL && ospecial_coul != NULL &&
oc_energy != NULL && ospecial_coul != NULL &&
_cop >= 0) {
#pragma offload_transfer target(mic:cop) \
nocopy(ospecial_lj, ospecial_coul: alloc_if(0) free_if(1)) \
nocopy(oc_force, oc_energy: alloc_if(0) free_if(1)) \
nocopy(oc_cut: alloc_if(0) free_if(1))
nocopy(oc_cut: alloc_if(0) free_if(1))
}
#endif
@ -534,7 +534,7 @@ void PairBuckCoulCutIntel::ForceConst<flt_t>::set_ntypes(const int ntypes,
c_cut_t * oc_cut = c_cut[0];
int tp1sq = ntypes*ntypes;
if (ospecial_lj != NULL && oc_force != NULL && oc_cut != NULL &&
oc_energy != NULL && ospecial_coul != NULL &&
oc_energy != NULL && ospecial_coul != NULL &&
cop >= 0) {
#pragma offload_transfer target(mic:cop) \
nocopy(ospecial_lj: length(4) alloc_if(1) free_if(0)) \

View File

@ -51,8 +51,8 @@ class PairBuckCoulCutIntel : public PairBuckCoulCut {
template <int EFLAG, int NEWTON_PAIR, class flt_t, class acc_t>
void eval(const int offload, const int vflag,
IntelBuffers<flt_t,acc_t> * buffers,
const ForceConst<flt_t> &fc, const int astart, const int aend);
IntelBuffers<flt_t,acc_t> * buffers,
const ForceConst<flt_t> &fc, const int astart, const int aend);
template <class flt_t, class acc_t>
void pack_force_const(ForceConst<flt_t> &fc,
@ -75,7 +75,7 @@ class PairBuckCoulCutIntel : public PairBuckCoulCut {
~ForceConst() { set_ntypes(0,0,NULL,_cop); }
void set_ntypes(const int ntypes, const int ntable, Memory *memory,
const int cop);
const int cop);
private:
int _ntypes, _ntable, _cop;

View File

@ -55,7 +55,7 @@ PairBuckCoulLongIntel::~PairBuckCoulLongIntel()
void PairBuckCoulLongIntel::compute(int eflag, int vflag)
{
if (fix->precision()==FixIntel::PREC_MODE_MIXED)
compute<float,double>(eflag, vflag, fix->get_mixed_buffers(),
compute<float,double>(eflag, vflag, fix->get_mixed_buffers(),
force_const_single);
else if (fix->precision()==FixIntel::PREC_MODE_DOUBLE)
compute<double,double>(eflag, vflag, fix->get_double_buffers(),
@ -70,8 +70,8 @@ void PairBuckCoulLongIntel::compute(int eflag, int vflag)
template <class flt_t, class acc_t>
void PairBuckCoulLongIntel::compute(int eflag, int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
{
if (eflag || vflag) {
ev_setup(eflag,vflag);
@ -85,7 +85,7 @@ void PairBuckCoulLongIntel::compute(int eflag, int vflag,
if (_lrt == 0 && ago != 0 && fix->separate_buffers() == 0) {
fix->start_watch(TIME_PACK);
int packthreads;
if (nthreads > INTEL_HTHREADS) packthreads = nthreads;
else packthreads = 1;
@ -94,13 +94,13 @@ void PairBuckCoulLongIntel::compute(int eflag, int vflag,
#endif
{
int ifrom, ito, tid;
IP_PRE_omp_range_id_align(ifrom, ito, tid, atom->nlocal + atom->nghost,
packthreads, sizeof(ATOM_T));
IP_PRE_omp_range_id_align(ifrom, ito, tid, atom->nlocal + atom->nghost,
packthreads, sizeof(ATOM_T));
buffers->thr_pack(ifrom,ito,ago);
}
fix->stop_watch(TIME_PACK);
}
int ovflag = 0;
if (vflag_fdotr) ovflag = 2;
else if (vflag) ovflag = 1;
@ -127,9 +127,9 @@ void PairBuckCoulLongIntel::compute(int eflag, int vflag,
template <int EFLAG, int NEWTON_PAIR, class flt_t, class acc_t>
void PairBuckCoulLongIntel::eval(const int offload, const int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc,
const int astart, const int aend)
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc,
const int astart, const int aend)
{
const int inum = aend - astart;
if (inum == 0) return;
@ -175,8 +175,8 @@ void PairBuckCoulLongIntel::eval(const int offload, const int vflag,
// Determine how much data to transfer
int x_size, q_size, f_stride, ev_size, separate_flag;
IP_PRE_get_transfern(ago, NEWTON_PAIR, EFLAG, vflag,
buffers, offload, fix, separate_flag,
x_size, q_size, ev_size, f_stride);
buffers, offload, fix, separate_flag,
x_size, q_size, ev_size, f_stride);
int tc;
FORCE_T * _noalias f_start;
@ -213,7 +213,7 @@ void PairBuckCoulLongIntel::eval(const int offload, const int vflag,
in(ccachex,ccachey,ccachez,ccachew:length(0) alloc_if(0) free_if(0)) \
in(ccachei,ccachej:length(0) alloc_if(0) free_if(0)) \
in(astart,nthreads,qqrd2e,g_ewald,inum,nall,ntypes,vflag,eatom) \
in(ccache_stride,f_stride,nlocal,minlocal,separate_flag,offload) \
in(ccache_stride,f_stride,nlocal,minlocal,separate_flag,offload) \
out(f_start:length(f_stride) alloc_if(0) free_if(0)) \
out(ev_global:length(ev_size) alloc_if(0) free_if(0)) \
out(timer_compute:length(1) alloc_if(0) free_if(0)) \
@ -224,8 +224,8 @@ void PairBuckCoulLongIntel::eval(const int offload, const int vflag,
*timer_compute = MIC_Wtime();
#endif
IP_PRE_repack_for_offload(NEWTON_PAIR, separate_flag, nlocal, nall,
f_stride, x, q);
IP_PRE_repack_for_offload(NEWTON_PAIR, separate_flag, nlocal, nall,
f_stride, x, q);
acc_t oevdwl, oecoul, ov0, ov1, ov2, ov3, ov4, ov5;
if (EFLAG) oevdwl = oecoul = (acc_t)0;
@ -260,24 +260,24 @@ void PairBuckCoulLongIntel::eval(const int offload, const int vflag,
const int ptr_off = itype * ntypes;
const C_FORCE_T * _noalias const c_forcei = c_force + ptr_off;
const C_ENERGY_T * _noalias const c_energyi = c_energy + ptr_off;
const flt_t * _noalias const rho_invi = rho_inv + ptr_off;
const flt_t * _noalias const rho_invi = rho_inv + ptr_off;
const int * _noalias const jlist = firstneigh + cnumneigh[i];
const int jnum = numneigh[i];
acc_t fxtmp,fytmp,fztmp,fwtmp;
acc_t sevdwl, secoul, sv0, sv1, sv2, sv3, sv4, sv5;
acc_t sevdwl, secoul, sv0, sv1, sv2, sv3, sv4, sv5;
const flt_t xtmp = x[i].x;
const flt_t ytmp = x[i].y;
const flt_t ztmp = x[i].z;
const flt_t qtmp = q[i];
fxtmp = fytmp = fztmp = (acc_t)0;
if (EFLAG) fwtmp = sevdwl = secoul = (acc_t)0;
if (NEWTON_PAIR == 0)
if (vflag == 1) sv0 = sv1 = sv2 = sv3 = sv4 = sv5 = (acc_t)0;
if (EFLAG) fwtmp = sevdwl = secoul = (acc_t)0;
if (NEWTON_PAIR == 0)
if (vflag == 1) sv0 = sv1 = sv2 = sv3 = sv4 = sv5 = (acc_t)0;
int ej = 0;
int ej = 0;
#if defined(LMP_SIMD_COMPILER)
#pragma vector aligned
#pragma ivdep
@ -287,33 +287,33 @@ void PairBuckCoulLongIntel::eval(const int offload, const int vflag,
const flt_t delx = xtmp - x[j].x;
const flt_t dely = ytmp - x[j].y;
const flt_t delz = ztmp - x[j].z;
const int jtype = x[j].w;
const int jtype = x[j].w;
const flt_t rsq = delx * delx + dely * dely + delz * delz;
if (rsq < c_forcei[jtype].cutsq) {
trsq[ej]=rsq;
tdelx[ej]=delx;
tdely[ej]=dely;
tdelz[ej]=delz;
tjtype[ej]=jtype;
tj[ej]=jlist[jj];
ej++;
}
}
trsq[ej]=rsq;
tdelx[ej]=delx;
tdely[ej]=dely;
tdelz[ej]=delz;
tjtype[ej]=jtype;
tj[ej]=jlist[jj];
ej++;
}
}
#if defined(LMP_SIMD_COMPILER)
#pragma vector aligned
#pragma simd reduction(+:fxtmp, fytmp, fztmp, fwtmp, sevdwl, secoul, \
sv0, sv1, sv2, sv3, sv4, sv5)
sv0, sv1, sv2, sv3, sv4, sv5)
#endif
for (int jj = 0; jj < ej; jj++) {
flt_t forcecoul, forcebuck, evdwl, ecoul;
forcecoul = forcebuck = evdwl = ecoul = (flt_t)0.0;
const int j = tj[jj] & NEIGHMASK;
const int j = tj[jj] & NEIGHMASK;
const int sbindex = tj[jj] >> SBBITS & 3;
const int jtype = tjtype[jj];
const flt_t rsq = trsq[jj];
const int jtype = tjtype[jj];
const flt_t rsq = trsq[jj];
const flt_t r2inv = (flt_t)1.0 / rsq;
const flt_t r = (flt_t)1.0 / sqrt(r2inv);
@ -321,52 +321,52 @@ void PairBuckCoulLongIntel::eval(const int offload, const int vflag,
if (!ncoultablebits || rsq <= tabinnersq) {
#endif
const flt_t A1 = 0.254829592;
const flt_t A2 = -0.284496736;
const flt_t A3 = 1.421413741;
const flt_t A4 = -1.453152027;
const flt_t A5 = 1.061405429;
const flt_t EWALD_F = 1.12837917;
const flt_t INV_EWALD_P = 1.0 / 0.3275911;
const flt_t grij = g_ewald * r;
const flt_t expm2 = exp(-grij * grij);
const flt_t t = INV_EWALD_P / (INV_EWALD_P + grij);
const flt_t erfc = t * (A1+t*(A2+t*(A3+t*(A4+t*A5)))) * expm2;
const flt_t prefactor = qqrd2e * qtmp * q[j] / r;
forcecoul = prefactor * (erfc + EWALD_F * grij * expm2);
if (EFLAG) ecoul = prefactor * erfc;
const flt_t A2 = -0.284496736;
const flt_t A3 = 1.421413741;
const flt_t A4 = -1.453152027;
const flt_t A5 = 1.061405429;
const flt_t EWALD_F = 1.12837917;
const flt_t INV_EWALD_P = 1.0 / 0.3275911;
const flt_t grij = g_ewald * r;
const flt_t expm2 = exp(-grij * grij);
const flt_t t = INV_EWALD_P / (INV_EWALD_P + grij);
const flt_t erfc = t * (A1+t*(A2+t*(A3+t*(A4+t*A5)))) * expm2;
const flt_t prefactor = qqrd2e * qtmp * q[j] / r;
forcecoul = prefactor * (erfc + EWALD_F * grij * expm2);
if (EFLAG) ecoul = prefactor * erfc;
const flt_t adjust = ((flt_t)1.0 - special_coul[sbindex])*
prefactor;
forcecoul -= adjust;
if (EFLAG) ecoul -= adjust;
const flt_t adjust = ((flt_t)1.0 - special_coul[sbindex])*
prefactor;
forcecoul -= adjust;
if (EFLAG) ecoul -= adjust;
#ifdef INTEL_ALLOW_TABLE
} else {
float rsq_lookup = rsq;
const int itable = (__intel_castf32_u32(rsq_lookup) &
ncoulmask) >> ncoulshiftbits;
const flt_t fraction = (rsq_lookup - table[itable].r) *
table[itable].dr;
const flt_t tablet = table[itable].f +
fraction * table[itable].df;
forcecoul = qtmp * q[j] * tablet;
if (EFLAG) ecoul = qtmp * q[j] * (etable[itable] +
fraction * detable[itable]);
if (sbindex) {
const flt_t table2 = ctable[itable] +
fraction * dctable[itable];
const flt_t prefactor = qtmp * q[j] * table2;
const flt_t adjust = ((flt_t)1.0 - special_coul[sbindex]) *
prefactor;
forcecoul -= adjust;
if (EFLAG) ecoul -= adjust;
float rsq_lookup = rsq;
const int itable = (__intel_castf32_u32(rsq_lookup) &
ncoulmask) >> ncoulshiftbits;
const flt_t fraction = (rsq_lookup - table[itable].r) *
table[itable].dr;
const flt_t tablet = table[itable].f +
fraction * table[itable].df;
forcecoul = qtmp * q[j] * tablet;
if (EFLAG) ecoul = qtmp * q[j] * (etable[itable] +
fraction * detable[itable]);
if (sbindex) {
const flt_t table2 = ctable[itable] +
fraction * dctable[itable];
const flt_t prefactor = qtmp * q[j] * table2;
const flt_t adjust = ((flt_t)1.0 - special_coul[sbindex]) *
prefactor;
forcecoul -= adjust;
if (EFLAG) ecoul -= adjust;
}
}
#endif
#ifdef INTEL_VMASK
#ifdef INTEL_VMASK
if (rsq < c_forcei[jtype].cut_ljsq) {
#endif
flt_t r6inv = r2inv * r2inv * r2inv;
@ -389,7 +389,7 @@ void PairBuckCoulLongIntel::eval(const int offload, const int vflag,
{ forcebuck = (flt_t)0.0; evdwl = (flt_t)0.0; }
#endif
const flt_t fpair = (forcecoul + forcebuck) * r2inv;
const flt_t fpair = (forcecoul + forcebuck) * r2inv;
const flt_t fpx = fpair * tdelx[jj];
fxtmp += fpx;
if (NEWTON_PAIR) f[j].x -= fpx;
@ -400,38 +400,38 @@ void PairBuckCoulLongIntel::eval(const int offload, const int vflag,
fztmp += fpz;
if (NEWTON_PAIR) f[j].z -= fpz;
if (EFLAG) {
if (EFLAG) {
sevdwl += evdwl;
secoul += ecoul;
if (eatom) {
fwtmp += (flt_t)0.5 * evdwl + (flt_t)0.5 * ecoul;
if (NEWTON_PAIR)
f[j].w += (flt_t)0.5 * evdwl + (flt_t)0.5 * ecoul;
secoul += ecoul;
if (eatom) {
fwtmp += (flt_t)0.5 * evdwl + (flt_t)0.5 * ecoul;
if (NEWTON_PAIR)
f[j].w += (flt_t)0.5 * evdwl + (flt_t)0.5 * ecoul;
}
}
if (NEWTON_PAIR == 0)
IP_PRE_ev_tally_nborv(vflag, tdelx[jj], tdely[jj], tdelz[jj],
fpx, fpy, fpz);
}
if (NEWTON_PAIR == 0)
IP_PRE_ev_tally_nborv(vflag, tdelx[jj], tdely[jj], tdelz[jj],
fpx, fpy, fpz);
} // for jj
if (NEWTON_PAIR) {
f[i].x += fxtmp;
f[i].y += fytmp;
f[i].z += fztmp;
} else {
f[i].x = fxtmp;
f[i].y = fytmp;
f[i].z = fztmp;
}
IP_PRE_ev_tally_atomq(NEWTON_PAIR, EFLAG, vflag, f, fwtmp);
if (NEWTON_PAIR) {
f[i].x += fxtmp;
f[i].y += fytmp;
f[i].z += fztmp;
} else {
f[i].x = fxtmp;
f[i].y = fytmp;
f[i].z = fztmp;
}
IP_PRE_ev_tally_atomq(NEWTON_PAIR, EFLAG, vflag, f, fwtmp);
} // for ii
IP_PRE_fdotr_reduce_omp(NEWTON_PAIR, nall, minlocal, nthreads, f_start,
f_stride, x, offload, vflag, ov0, ov1, ov2, ov3,
ov4, ov5);
f_stride, x, offload, vflag, ov0, ov1, ov2, ov3,
ov4, ov5);
} // end of omp parallel region
IP_PRE_fdotr_reduce(NEWTON_PAIR, nall, nthreads, f_stride, vflag,
ov0, ov1, ov2, ov3, ov4, ov5);
ov0, ov1, ov2, ov3, ov4, ov5);
if (EFLAG) {
if (NEWTON_PAIR == 0) oevdwl *= (acc_t)0.5;
@ -440,12 +440,12 @@ void PairBuckCoulLongIntel::eval(const int offload, const int vflag,
}
if (vflag) {
if (NEWTON_PAIR == 0) {
ov0 *= (acc_t)0.5;
ov1 *= (acc_t)0.5;
ov2 *= (acc_t)0.5;
ov3 *= (acc_t)0.5;
ov4 *= (acc_t)0.5;
ov5 *= (acc_t)0.5;
ov0 *= (acc_t)0.5;
ov1 *= (acc_t)0.5;
ov2 *= (acc_t)0.5;
ov3 *= (acc_t)0.5;
ov4 *= (acc_t)0.5;
ov5 *= (acc_t)0.5;
}
ev_global[2] = ov0;
ev_global[3] = ov1;
@ -486,7 +486,7 @@ void PairBuckCoulLongIntel::init_style()
error->all(FLERR,
"The 'package intel' command is required for /intel styles");
fix = static_cast<FixIntel *>(modify->fix[ifix]);
fix->pair_init_check();
#ifdef _LMP_INTEL_OFFLOAD
_cop = fix->coprocessor_number();
@ -549,7 +549,7 @@ void PairBuckCoulLongIntel::pack_force_const(ForceConst<flt_t> &fc,
for (int j = 0; j < tp1; j++) {
if (cutsq[i][j] < cut_ljsq[i][j])
error->all(FLERR,
"Intel variant of lj/buck/coul/long expects lj cutoff<=coulombic");
"Intel variant of lj/buck/coul/long expects lj cutoff<=coulombic");
fc.c_force[i][j].cutsq = cutsq[i][j];
fc.c_force[i][j].cut_ljsq = cut_ljsq[i][j];
fc.c_force[i][j].buck1 = buck1[i][j];
@ -603,9 +603,9 @@ void PairBuckCoulLongIntel::pack_force_const(ForceConst<flt_t> &fc,
template <class flt_t>
void PairBuckCoulLongIntel::ForceConst<flt_t>::set_ntypes(const int ntypes,
const int ntable,
Memory *memory,
const int cop) {
const int ntable,
Memory *memory,
const int cop) {
if ( (ntypes != _ntypes || ntable != _ntable) ) {
if (_ntypes > 0) {
#ifdef _LMP_INTEL_OFFLOAD
@ -625,10 +625,10 @@ void PairBuckCoulLongIntel::ForceConst<flt_t>::set_ntypes(const int ntypes,
ospecial_coul != NULL && _cop >= 0) {
#pragma offload_transfer target(mic:cop) \
nocopy(ospecial_lj, ospecial_coul: alloc_if(0) free_if(1)) \
nocopy(oc_force, oc_energy: alloc_if(0) free_if(1)) \
nocopy(orho_inv: alloc_if(0) free_if(1)) \
nocopy(otable: alloc_if(0) free_if(1)) \
nocopy(oetable, odetable, octable, odctable: alloc_if(0) free_if(1))
nocopy(oc_force, oc_energy: alloc_if(0) free_if(1)) \
nocopy(orho_inv: alloc_if(0) free_if(1)) \
nocopy(otable: alloc_if(0) free_if(1)) \
nocopy(oetable, odetable, octable, odctable: alloc_if(0) free_if(1))
}
#endif

View File

@ -50,8 +50,8 @@ class PairBuckCoulLongIntel : public PairBuckCoulLong {
template <int EFLAG, int NEWTON_PAIR, class flt_t, class acc_t>
void eval(const int offload, const int vflag,
IntelBuffers<flt_t,acc_t> * buffers,
const ForceConst<flt_t> &fc, const int astart, const int aend);
IntelBuffers<flt_t,acc_t> * buffers,
const ForceConst<flt_t> &fc, const int astart, const int aend);
template <class flt_t, class acc_t>
void pack_force_const(ForceConst<flt_t> &fc,
@ -76,7 +76,7 @@ class PairBuckCoulLongIntel : public PairBuckCoulLong {
~ForceConst() { set_ntypes(0,0,NULL,_cop); }
void set_ntypes(const int ntypes, const int ntable, Memory *memory,
const int cop);
const int cop);
private:
int _ntypes, _ntable, _cop;

View File

@ -48,7 +48,7 @@ PairBuckIntel::~PairBuckIntel()
void PairBuckIntel::compute(int eflag, int vflag)
{
if (fix->precision()==FixIntel::PREC_MODE_MIXED)
compute<float,double>(eflag, vflag, fix->get_mixed_buffers(),
compute<float,double>(eflag, vflag, fix->get_mixed_buffers(),
force_const_single);
else if (fix->precision()==FixIntel::PREC_MODE_DOUBLE)
compute<double,double>(eflag, vflag, fix->get_double_buffers(),
@ -63,8 +63,8 @@ void PairBuckIntel::compute(int eflag, int vflag)
template <class flt_t, class acc_t>
void PairBuckIntel::compute(int eflag, int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
{
if (eflag || vflag) {
ev_setup(eflag,vflag);
@ -87,13 +87,13 @@ void PairBuckIntel::compute(int eflag, int vflag,
#endif
{
int ifrom, ito, tid;
IP_PRE_omp_range_id_align(ifrom, ito, tid, atom->nlocal + atom->nghost,
packthreads, sizeof(ATOM_T));
IP_PRE_omp_range_id_align(ifrom, ito, tid, atom->nlocal + atom->nghost,
packthreads, sizeof(ATOM_T));
buffers->thr_pack(ifrom,ito,ago);
}
fix->stop_watch(TIME_PACK);
}
int ovflag = 0;
if (vflag_fdotr) ovflag = 2;
else if (vflag) ovflag = 1;
@ -120,9 +120,9 @@ void PairBuckIntel::compute(int eflag, int vflag,
template <int EFLAG, int NEWTON_PAIR, class flt_t, class acc_t>
void PairBuckIntel::eval(const int offload, const int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc,
const int astart, const int aend)
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc,
const int astart, const int aend)
{
const int inum = aend - astart;
if (inum == 0) return;
@ -147,8 +147,8 @@ void PairBuckIntel::eval(const int offload, const int vflag,
// Determine how much data to transfer
int x_size, q_size, f_stride, ev_size, separate_flag;
IP_PRE_get_transfern(ago, NEWTON_PAIR, EFLAG, vflag,
buffers, offload, fix, separate_flag,
x_size, q_size, ev_size, f_stride);
buffers, offload, fix, separate_flag,
x_size, q_size, ev_size, f_stride);
int tc;
FORCE_T * _noalias f_start;
@ -160,7 +160,7 @@ void PairBuckIntel::eval(const int offload, const int vflag,
int *overflow = fix->get_off_overflow_flag();
double *timer_compute = fix->off_watch_pair();
// Redeclare as local variables for offload
if (offload) fix->start_watch(TIME_OFFLOAD_LATENCY);
#pragma offload target(mic:_cop) if(offload) \
in(special_lj:length(0) alloc_if(0) free_if(0)) \
@ -182,8 +182,8 @@ void PairBuckIntel::eval(const int offload, const int vflag,
*timer_compute = MIC_Wtime();
#endif
IP_PRE_repack_for_offload(NEWTON_PAIR, separate_flag, nlocal, nall,
f_stride, x, 0);
IP_PRE_repack_for_offload(NEWTON_PAIR, separate_flag, nlocal, nall,
f_stride, x, 0);
acc_t oevdwl, ov0, ov1, ov2, ov3, ov4, ov5;
if (EFLAG) oevdwl = (acc_t)0;
@ -215,23 +215,23 @@ void PairBuckIntel::eval(const int offload, const int vflag,
const int jnum = numneigh[i];
acc_t fxtmp,fytmp,fztmp,fwtmp;
acc_t sevdwl, sv0, sv1, sv2, sv3, sv4, sv5;
acc_t sevdwl, sv0, sv1, sv2, sv3, sv4, sv5;
const flt_t xtmp = x[i].x;
const flt_t ytmp = x[i].y;
const flt_t ztmp = x[i].z;
fxtmp = fytmp = fztmp = (acc_t)0;
if (EFLAG) fwtmp = sevdwl = (acc_t)0;
if (NEWTON_PAIR == 0)
if (EFLAG) fwtmp = sevdwl = (acc_t)0;
if (NEWTON_PAIR == 0)
if (vflag==1) sv0 = sv1 = sv2 = sv3 = sv4 = sv5 = (acc_t)0;
#if defined(LMP_SIMD_COMPILER)
#pragma vector aligned
#pragma simd reduction(+:fxtmp, fytmp, fztmp, fwtmp, sevdwl, \
sv0, sv1, sv2, sv3, sv4, sv5)
#pragma simd reduction(+:fxtmp, fytmp, fztmp, fwtmp, sevdwl, \
sv0, sv1, sv2, sv3, sv4, sv5)
#endif
for (int jj = 0; jj < jnum; jj++) {
flt_t forcebuck, evdwl;
forcebuck = evdwl = (flt_t)0.0;
@ -245,7 +245,7 @@ void PairBuckIntel::eval(const int offload, const int vflag,
const flt_t rsq = delx * delx + dely * dely + delz * delz;
const flt_t r = sqrt(rsq);
const flt_t r2inv = (flt_t)1.0 / rsq;
#ifdef INTEL_VMASK
if (rsq < c_forcei[jtype].cutsq) {
#endif
@ -257,7 +257,7 @@ void PairBuckIntel::eval(const int offload, const int vflag,
#ifndef INTEL_VMASK
if (rsq > c_forcei[jtype].cutsq)
forcebuck =(flt_t)0.0;
#endif
#endif
if (EFLAG) {
evdwl = rexp * c_energyi[jtype].a -
r6inv * c_energyi[jtype].c -
@ -272,67 +272,67 @@ void PairBuckIntel::eval(const int offload, const int vflag,
if (sbindex) {
const flt_t factor_lj = special_lj[sbindex];
forcebuck *= factor_lj;
if (EFLAG)
if (EFLAG)
evdwl *= factor_lj;
}
const flt_t fpair = forcebuck * r2inv;
const flt_t fpx = fpair * delx;
fxtmp += fpx;
if (NEWTON_PAIR) f[j].x -= fpx;
const flt_t fpy = fpair * dely;
fytmp += fpy;
if (NEWTON_PAIR) f[j].y -= fpy;
const flt_t fpz = fpair * delz;
fztmp += fpz;
if (NEWTON_PAIR) f[j].z -= fpz;
const flt_t fpx = fpair * delx;
fxtmp += fpx;
if (NEWTON_PAIR) f[j].x -= fpx;
const flt_t fpy = fpair * dely;
fytmp += fpy;
if (NEWTON_PAIR) f[j].y -= fpy;
const flt_t fpz = fpair * delz;
fztmp += fpz;
if (NEWTON_PAIR) f[j].z -= fpz;
if (EFLAG) {
sevdwl += evdwl;
if (eatom) {
fwtmp += (flt_t)0.5 * evdwl;
if (NEWTON_PAIR)
f[j].w += (flt_t)0.5 * evdwl;
}
}
if (NEWTON_PAIR == 0)
IP_PRE_ev_tally_nborv(vflag, delx, dely, delz, fpx, fpy, fpz);
if (EFLAG) {
sevdwl += evdwl;
if (eatom) {
fwtmp += (flt_t)0.5 * evdwl;
if (NEWTON_PAIR)
f[j].w += (flt_t)0.5 * evdwl;
}
}
if (NEWTON_PAIR == 0)
IP_PRE_ev_tally_nborv(vflag, delx, dely, delz, fpx, fpy, fpz);
#ifdef INTEL_VMASK
}
#endif
} // for jj
if (NEWTON_PAIR) {
f[i].x += fxtmp;
f[i].y += fytmp;
f[i].z += fztmp;
} else {
f[i].x = fxtmp;
f[i].y = fytmp;
f[i].z = fztmp;
}
if (NEWTON_PAIR) {
f[i].x += fxtmp;
f[i].y += fytmp;
f[i].z += fztmp;
} else {
f[i].x = fxtmp;
f[i].y = fytmp;
f[i].z = fztmp;
}
IP_PRE_ev_tally_atom(NEWTON_PAIR, EFLAG, vflag, f, fwtmp);
} // for ii
IP_PRE_fdotr_reduce_omp(NEWTON_PAIR, nall, minlocal, nthreads, f_start,
f_stride, x, offload, vflag, ov0, ov1, ov2, ov3,
ov4, ov5);
f_stride, x, offload, vflag, ov0, ov1, ov2, ov3,
ov4, ov5);
} // end of omp parallel region
IP_PRE_fdotr_reduce(NEWTON_PAIR, nall, nthreads, f_stride, vflag,
ov0, ov1, ov2, ov3, ov4, ov5);
ov0, ov1, ov2, ov3, ov4, ov5);
if (EFLAG) {
if (NEWTON_PAIR == 0) oevdwl *= (acc_t)0.5;
if (NEWTON_PAIR == 0) oevdwl *= (acc_t)0.5;
ev_global[0] = oevdwl;
ev_global[1] = (acc_t)0;
}
if (vflag) {
if (NEWTON_PAIR == 0) {
ov0 *= (acc_t)0.5;
ov1 *= (acc_t)0.5;
ov2 *= (acc_t)0.5;
ov3 *= (acc_t)0.5;
ov4 *= (acc_t)0.5;
ov5 *= (acc_t)0.5;
ov0 *= (acc_t)0.5;
ov1 *= (acc_t)0.5;
ov2 *= (acc_t)0.5;
ov3 *= (acc_t)0.5;
ov4 *= (acc_t)0.5;
ov5 *= (acc_t)0.5;
}
ev_global[2] = ov0;
ev_global[3] = ov1;
@ -371,7 +371,7 @@ void PairBuckIntel::init_style()
error->all(FLERR,
"The 'package intel' command is required for /intel styles");
fix = static_cast<FixIntel *>(modify->fix[ifix]);
fix->pair_init_check();
#ifdef _LMP_INTEL_OFFLOAD
_cop = fix->coprocessor_number();
@ -442,7 +442,7 @@ void PairBuckIntel::pack_force_const(ForceConst<flt_t> &fc,
/* ---------------------------------------------------------------------- */
template <class flt_t>
void PairBuckIntel::ForceConst<flt_t>::set_ntypes(const int ntypes,
void PairBuckIntel::ForceConst<flt_t>::set_ntypes(const int ntypes,
Memory *memory,
const int cop) {
if ( (ntypes != _ntypes ) ) {
@ -452,8 +452,8 @@ void PairBuckIntel::ForceConst<flt_t>::set_ntypes(const int ntypes,
c_force_t * oc_force = c_force[0];
c_energy_t * oc_energy = c_energy[0];
if (ospecial_lj != NULL && oc_force != NULL &&
oc_energy != NULL &&
if (ospecial_lj != NULL && oc_force != NULL &&
oc_energy != NULL &&
_cop >= 0) {
#pragma offload_transfer target(mic:cop) \
nocopy(ospecial_lj: alloc_if(0) free_if(1)) \
@ -476,8 +476,8 @@ void PairBuckIntel::ForceConst<flt_t>::set_ntypes(const int ntypes,
c_force_t * oc_force = c_force[0];
c_energy_t * oc_energy = c_energy[0];
int tp1sq = ntypes*ntypes;
if (ospecial_lj != NULL && oc_force != NULL &&
oc_energy != NULL &&
if (ospecial_lj != NULL && oc_force != NULL &&
oc_energy != NULL &&
cop >= 0) {
#pragma offload_transfer target(mic:cop) \
nocopy(ospecial_lj: length(4) alloc_if(1) free_if(0)) \

View File

@ -50,8 +50,8 @@ private:
template <int EFLAG, int NEWTON_PAIR, class flt_t, class acc_t>
void eval(const int offload, const int vflag,
IntelBuffers<flt_t,acc_t> * buffers,
const ForceConst<flt_t> &fc, const int astart, const int aend);
IntelBuffers<flt_t,acc_t> * buffers,
const ForceConst<flt_t> &fc, const int astart, const int aend);
template <class flt_t, class acc_t>
void pack_force_const(ForceConst<flt_t> &fc,
@ -59,7 +59,7 @@ private:
template <class flt_t>
class ForceConst {
public:
typedef struct { flt_t buck1, buck2, rhoinv, cutsq; } c_force_t;
typedef struct { flt_t a, c, offset, pad; } c_energy_t;
@ -78,7 +78,7 @@ private:
int _ntypes, _cop;
Memory *_memory;
};
ForceConst<float> force_const_single;
ForceConst<double> force_const_double;
};

View File

@ -74,8 +74,8 @@ void PairEAMIntel::compute(int eflag, int vflag)
template <class flt_t, class acc_t>
void PairEAMIntel::compute(int eflag, int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
{
if (eflag || vflag) {
ev_setup(eflag, vflag);
@ -111,37 +111,37 @@ void PairEAMIntel::compute(int eflag, int vflag,
if (_onetype) {
if (eflag) {
if (force->newton_pair) {
eval<1,1,1>(1, ovflag, buffers, fc, 0, offload_end);
eval<1,1,1>(0, ovflag, buffers, fc, host_start, inum);
eval<1,1,1>(1, ovflag, buffers, fc, 0, offload_end);
eval<1,1,1>(0, ovflag, buffers, fc, host_start, inum);
} else {
eval<1,1,0>(1, ovflag, buffers, fc, 0, offload_end);
eval<1,1,0>(0, ovflag, buffers, fc, host_start, inum);
eval<1,1,0>(1, ovflag, buffers, fc, 0, offload_end);
eval<1,1,0>(0, ovflag, buffers, fc, host_start, inum);
}
} else {
if (force->newton_pair) {
eval<1,0,1>(1, ovflag, buffers, fc, 0, offload_end);
eval<1,0,1>(0, ovflag, buffers, fc, host_start, inum);
eval<1,0,1>(1, ovflag, buffers, fc, 0, offload_end);
eval<1,0,1>(0, ovflag, buffers, fc, host_start, inum);
} else {
eval<1,0,0>(1, ovflag, buffers, fc, 0, offload_end);
eval<1,0,0>(0, ovflag, buffers, fc, host_start, inum);
eval<1,0,0>(1, ovflag, buffers, fc, 0, offload_end);
eval<1,0,0>(0, ovflag, buffers, fc, host_start, inum);
}
}
} else {
if (eflag) {
if (force->newton_pair) {
eval<0,1,1>(1, ovflag, buffers, fc, 0, offload_end);
eval<0,1,1>(0, ovflag, buffers, fc, host_start, inum);
eval<0,1,1>(1, ovflag, buffers, fc, 0, offload_end);
eval<0,1,1>(0, ovflag, buffers, fc, host_start, inum);
} else {
eval<0,1,0>(1, ovflag, buffers, fc, 0, offload_end);
eval<0,1,0>(0, ovflag, buffers, fc, host_start, inum);
eval<0,1,0>(1, ovflag, buffers, fc, 0, offload_end);
eval<0,1,0>(0, ovflag, buffers, fc, host_start, inum);
}
} else {
if (force->newton_pair) {
eval<0,0,1>(1, ovflag, buffers, fc, 0, offload_end);
eval<0,0,1>(0, ovflag, buffers, fc, host_start, inum);
eval<0,0,1>(1, ovflag, buffers, fc, 0, offload_end);
eval<0,0,1>(0, ovflag, buffers, fc, host_start, inum);
} else {
eval<0,0,0>(1, ovflag, buffers, fc, 0, offload_end);
eval<0,0,0>(0, ovflag, buffers, fc, host_start, inum);
eval<0,0,0>(1, ovflag, buffers, fc, 0, offload_end);
eval<0,0,0>(0, ovflag, buffers, fc, host_start, inum);
}
}
}
@ -151,8 +151,8 @@ void PairEAMIntel::compute(int eflag, int vflag,
template <int ONETYPE, int EFLAG, int NEWTON_PAIR, class flt_t, class acc_t>
void PairEAMIntel::eval(const int offload, const int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc,
const int astart, const int aend)
{
const int inum = aend - astart;
@ -251,8 +251,8 @@ void PairEAMIntel::eval(const int offload, const int vflag,
#endif
{
int iifrom, iito, tid;
IP_PRE_omp_range_id_vec(iifrom, iito, tid, inum, nthreads,
INTEL_VECTOR_WIDTH);
IP_PRE_omp_range_id_vec(iifrom, iito, tid, inum, nthreads,
INTEL_VECTOR_WIDTH);
iifrom += astart;
iito += astart;
@ -264,8 +264,8 @@ void PairEAMIntel::eval(const int offload, const int vflag,
else foff = 0;
double * _noalias const trho = rho + foff;
if (NEWTON_PAIR) {
memset(f + minlocal, 0, f_stride * sizeof(FORCE_T));
memset(trho, 0, nall * sizeof(double));
memset(f + minlocal, 0, f_stride * sizeof(FORCE_T));
memset(trho, 0, nall * sizeof(double));
}
const int toffs = tid * ccache_stride;
@ -280,108 +280,108 @@ void PairEAMIntel::eval(const int offload, const int vflag,
int rhor_joff, frho_ioff;
if (ONETYPE) {
const int ptr_off=_onetype * ntypes + _onetype;
oscale = scale_f[ptr_off];
int rhor_ioff = istride * _onetype;
rhor_joff = rhor_ioff + _onetype * jstride;
frho_ioff = fstride * _onetype;
oscale = scale_f[ptr_off];
int rhor_ioff = istride * _onetype;
rhor_joff = rhor_ioff + _onetype * jstride;
frho_ioff = fstride * _onetype;
}
for (int i = iifrom; i < iito; ++i) {
int itype, rhor_ioff;
if (!ONETYPE) {
if (!ONETYPE) {
itype = x[i].w;
rhor_ioff = istride * itype;
}
const int * _noalias const jlist = firstneigh + cnumneigh[i];
const int jnum = numneigh[i];
rhor_ioff = istride * itype;
}
const int * _noalias const jlist = firstneigh + cnumneigh[i];
const int jnum = numneigh[i];
const flt_t xtmp = x[i].x;
const flt_t ytmp = x[i].y;
const flt_t ztmp = x[i].z;
const flt_t xtmp = x[i].x;
const flt_t ytmp = x[i].y;
const flt_t ztmp = x[i].z;
acc_t rhoi = (acc_t)0.0;
int ej = 0;
acc_t rhoi = (acc_t)0.0;
int ej = 0;
#if defined(LMP_SIMD_COMPILER)
#pragma vector aligned
#pragma ivdep
#endif
for (int jj = 0; jj < jnum; jj++) {
const int j = jlist[jj] & NEIGHMASK;
#endif
for (int jj = 0; jj < jnum; jj++) {
const int j = jlist[jj] & NEIGHMASK;
const flt_t delx = xtmp - x[j].x;
const flt_t dely = ytmp - x[j].y;
const flt_t delz = ztmp - x[j].z;
const flt_t rsq = delx*delx + dely*dely + delz*delz;
const flt_t rsq = delx*delx + dely*dely + delz*delz;
if (rsq < fcutforcesq) {
trsq[ej]=rsq;
if (!ONETYPE) tjtype[ej]=x[j].w;
tj[ej]=jlist[jj];
ej++;
if (rsq < fcutforcesq) {
trsq[ej]=rsq;
if (!ONETYPE) tjtype[ej]=x[j].w;
tj[ej]=jlist[jj];
ej++;
}
}
#if defined(LMP_SIMD_COMPILER)
#pragma vector aligned
#pragma vector aligned
#pragma simd reduction(+:rhoi)
#endif
#endif
for (int jj = 0; jj < ej; jj++) {
int jtype;
const int j = tj[jj] & NEIGHMASK;
if (!ONETYPE) jtype = tjtype[jj];
const flt_t rsq = trsq[jj];
flt_t p = sqrt(rsq)*frdr + (flt_t)1.0;
int m = static_cast<int> (p);
m = MIN(m,nr-1);
p -= m;
p = MIN(p,(flt_t)1.0);
if (!ONETYPE)
rhor_joff = rhor_ioff + jtype * jstride;
const int joff = rhor_joff + m;
flt_t ra;
ra = ((rhor_spline_e[joff].a*p + rhor_spline_e[joff].b) * p +
rhor_spline_e[joff].c) * p + rhor_spline_e[joff].d;
rhoi += ra;
if (NEWTON_PAIR) {
if (!ONETYPE) {
const int ioff = jtype * istride + itype * jstride + m;
ra = ((rhor_spline_e[ioff].a*p + rhor_spline_e[ioff].b)*p +
rhor_spline_e[ioff].c) * p + rhor_spline_e[ioff].d;
}
trho[j] += ra;
}
int jtype;
const int j = tj[jj] & NEIGHMASK;
if (!ONETYPE) jtype = tjtype[jj];
const flt_t rsq = trsq[jj];
flt_t p = sqrt(rsq)*frdr + (flt_t)1.0;
int m = static_cast<int> (p);
m = MIN(m,nr-1);
p -= m;
p = MIN(p,(flt_t)1.0);
if (!ONETYPE)
rhor_joff = rhor_ioff + jtype * jstride;
const int joff = rhor_joff + m;
flt_t ra;
ra = ((rhor_spline_e[joff].a*p + rhor_spline_e[joff].b) * p +
rhor_spline_e[joff].c) * p + rhor_spline_e[joff].d;
rhoi += ra;
if (NEWTON_PAIR) {
if (!ONETYPE) {
const int ioff = jtype * istride + itype * jstride + m;
ra = ((rhor_spline_e[ioff].a*p + rhor_spline_e[ioff].b)*p +
rhor_spline_e[ioff].c) * p + rhor_spline_e[ioff].d;
}
trho[j] += ra;
}
} // for jj
if (NEWTON_PAIR)
trho[i] += rhoi;
else
trho[i] = rhoi;
if (NEWTON_PAIR)
trho[i] += rhoi;
else
trho[i] = rhoi;
} // for i
#if defined(_OPENMP)
if (NEWTON_PAIR && nthreads > 1) {
#pragma omp barrier
if (tid == 0) {
if (tid == 0) {
const int rcount = nall;
if (nthreads == 2) {
if (nthreads == 2) {
double *trho2 = rho + nmax;
#pragma vector aligned
#pragma vector aligned
#pragma simd
for (int n = 0; n < rcount; n++)
rho[n] += trho2[n];
for (int n = 0; n < rcount; n++)
rho[n] += trho2[n];
} else if (nthreads == 4) {
double *trho2 = rho + nmax;
double *trho3 = trho2 + nmax;
double *trho4 = trho3 + nmax;
#pragma vector aligned
#pragma simd
for (int n = 0; n < rcount; n++)
rho[n] += trho2[n] + trho3[n] + trho4[n];
double *trho3 = trho2 + nmax;
double *trho4 = trho3 + nmax;
#pragma vector aligned
#pragma simd
for (int n = 0; n < rcount; n++)
rho[n] += trho2[n] + trho3[n] + trho4[n];
} else {
double *trhon = rho + nmax;
for (int t = 1; t < nthreads; t++) {
#pragma vector aligned
#pragma simd
for (int n = 0; n < rcount; n++)
rho[n] += trhon[n];
trhon += nmax;
double *trhon = rho + nmax;
for (int t = 1; t < nthreads; t++) {
#pragma vector aligned
#pragma simd
for (int n = 0; n < rcount; n++)
rho[n] += trhon[n];
trhon += nmax;
}
}
}
@ -411,32 +411,32 @@ void PairEAMIntel::eval(const int offload, const int vflag,
#pragma simd reduction(+:tevdwl)
#endif
for (int i = iifrom; i < iito; ++i) {
int itype;
if (!ONETYPE) itype = x[i].w;
flt_t p = rho[i]*frdrho + (flt_t)1.0;
int m = static_cast<int> (p);
m = MAX(1,MIN(m,nrho-1));
p -= m;
p = MIN(p,(flt_t)1.0);
if (!ONETYPE) frho_ioff = itype * fstride;
const int ioff = frho_ioff + m;
fp_f[i] = (frho_spline_f[ioff].a*p + frho_spline_f[ioff].b)*p +
frho_spline_f[ioff].c;
if (EFLAG) {
flt_t phi = ((frho_spline_e[ioff].a*p + frho_spline_e[ioff].b)*p +
frho_spline_e[ioff].c)*p + frho_spline_e[ioff].d;
if (rho[i] > frhomax) phi += fp_f[i] * (rho[i]-frhomax);
if (!ONETYPE) {
const int ptr_off=itype*ntypes + itype;
oscale = scale_f[ptr_off];
}
phi *= oscale;
tevdwl += phi;
if (eatom) f[i].w += phi;
}
int itype;
if (!ONETYPE) itype = x[i].w;
flt_t p = rho[i]*frdrho + (flt_t)1.0;
int m = static_cast<int> (p);
m = MAX(1,MIN(m,nrho-1));
p -= m;
p = MIN(p,(flt_t)1.0);
if (!ONETYPE) frho_ioff = itype * fstride;
const int ioff = frho_ioff + m;
fp_f[i] = (frho_spline_f[ioff].a*p + frho_spline_f[ioff].b)*p +
frho_spline_f[ioff].c;
if (EFLAG) {
flt_t phi = ((frho_spline_e[ioff].a*p + frho_spline_e[ioff].b)*p +
frho_spline_e[ioff].c)*p + frho_spline_e[ioff].d;
if (rho[i] > frhomax) phi += fp_f[i] * (rho[i]-frhomax);
if (!ONETYPE) {
const int ptr_off=itype*ntypes + itype;
oscale = scale_f[ptr_off];
}
phi *= oscale;
tevdwl += phi;
if (eatom) f[i].w += phi;
}
}
if (EFLAG) oevdwl += tevdwl;
// communicate derivative of embedding function
@ -447,7 +447,7 @@ void PairEAMIntel::eval(const int offload, const int vflag,
if (tid == 0)
comm->forward_comm_pair(this);
if (NEWTON_PAIR)
memset(f + minlocal, 0, f_stride * sizeof(FORCE_T));
memset(f + minlocal, 0, f_stride * sizeof(FORCE_T));
#if defined(_OPENMP)
#pragma omp barrier
@ -458,94 +458,94 @@ void PairEAMIntel::eval(const int offload, const int vflag,
for (int i = iifrom; i < iito; ++i) {
int itype, rhor_ioff;
const flt_t * _noalias scale_fi;
if (!ONETYPE) {
itype = x[i].w;
rhor_ioff = istride * itype;
scale_fi = scale_f + itype*ntypes;
}
const int * _noalias const jlist = firstneigh + cnumneigh[i];
const int jnum = numneigh[i];
const flt_t * _noalias scale_fi;
if (!ONETYPE) {
itype = x[i].w;
rhor_ioff = istride * itype;
scale_fi = scale_f + itype*ntypes;
}
const int * _noalias const jlist = firstneigh + cnumneigh[i];
const int jnum = numneigh[i];
acc_t fxtmp, fytmp, fztmp, fwtmp;
acc_t sevdwl, sv0, sv1, sv2, sv3, sv4, sv5;
acc_t fxtmp, fytmp, fztmp, fwtmp;
acc_t sevdwl, sv0, sv1, sv2, sv3, sv4, sv5;
const flt_t xtmp = x[i].x;
const flt_t ytmp = x[i].y;
const flt_t ztmp = x[i].z;
fxtmp = fytmp = fztmp = (acc_t)0;
if (EFLAG) fwtmp = sevdwl = (acc_t)0;
const flt_t xtmp = x[i].x;
const flt_t ytmp = x[i].y;
const flt_t ztmp = x[i].z;
fxtmp = fytmp = fztmp = (acc_t)0;
if (EFLAG) fwtmp = sevdwl = (acc_t)0;
if (NEWTON_PAIR == 0)
if (vflag==1) sv0 = sv1 = sv2 = sv3 = sv4 = sv5 = (acc_t)0;
if (vflag==1) sv0 = sv1 = sv2 = sv3 = sv4 = sv5 = (acc_t)0;
int ej = 0;
int ej = 0;
#if defined(LMP_SIMD_COMPILER)
#pragma vector aligned
#pragma ivdep
#endif
for (int jj = 0; jj < jnum; jj++) {
const int j = jlist[jj] & NEIGHMASK;
#endif
for (int jj = 0; jj < jnum; jj++) {
const int j = jlist[jj] & NEIGHMASK;
const flt_t delx = xtmp - x[j].x;
const flt_t dely = ytmp - x[j].y;
const flt_t delz = ztmp - x[j].z;
const flt_t rsq = delx*delx + dely*dely + delz*delz;
const flt_t rsq = delx*delx + dely*dely + delz*delz;
if (rsq < fcutforcesq) {
trsq[ej]=rsq;
tdelx[ej]=delx;
tdely[ej]=dely;
tdelz[ej]=delz;
if (!ONETYPE) tjtype[ej]=x[j].w;
tj[ej]=jlist[jj];
ej++;
}
}
if (rsq < fcutforcesq) {
trsq[ej]=rsq;
tdelx[ej]=delx;
tdely[ej]=dely;
tdelz[ej]=delz;
if (!ONETYPE) tjtype[ej]=x[j].w;
tj[ej]=jlist[jj];
ej++;
}
}
#if defined(LMP_SIMD_COMPILER)
#pragma vector aligned
#pragma vector aligned
#pragma simd reduction(+:fxtmp, fytmp, fztmp, fwtmp, sevdwl, \
sv0, sv1, sv2, sv3, sv4, sv5)
sv0, sv1, sv2, sv3, sv4, sv5)
#endif
for (int jj = 0; jj < ej; jj++) {
int jtype;
const int j = tj[jj] & NEIGHMASK;
if (!ONETYPE) jtype = tjtype[jj];
const flt_t rsq = trsq[jj];
const flt_t r = sqrt(rsq);
flt_t p = r*frdr + (flt_t)1.0;
int m = static_cast<int> (p);
m = MIN(m,nr-1);
p -= m;
p = MIN(p,(flt_t)1.0);
if (!ONETYPE)
rhor_joff = rhor_ioff + jtype * jstride;
const int joff = rhor_joff + m;
const flt_t rhojp = (rhor_spline_f[joff].a*p +
rhor_spline_f[joff].b)*p +
rhor_spline_f[joff].c;
flt_t rhoip;
if (!ONETYPE) {
const int ioff = jtype * istride + itype * jstride + m;
rhoip = (rhor_spline_f[ioff].a*p + rhor_spline_f[ioff].b)*p +
rhor_spline_f[ioff].c;
} else
rhoip = rhojp;
const flt_t z2p = (z2r_spline_t[joff].a*p +
z2r_spline_t[joff].b)*p +
z2r_spline_t[joff].c;
const flt_t z2 = ((z2r_spline_t[joff].d*p +
z2r_spline_t[joff].e)*p +
z2r_spline_t[joff].f)*p +
z2r_spline_t[joff].g;
const flt_t recip = (flt_t)1.0/r;
const flt_t phi = z2*recip;
const flt_t phip = z2p*recip - phi*recip;
const flt_t psip = fp_f[i]*rhojp + fp_f[j]*rhoip + phip;
if (!ONETYPE)
oscale = scale_fi[jtype];
const flt_t fpair = -oscale*psip*recip;
int jtype;
const int j = tj[jj] & NEIGHMASK;
if (!ONETYPE) jtype = tjtype[jj];
const flt_t rsq = trsq[jj];
const flt_t r = sqrt(rsq);
flt_t p = r*frdr + (flt_t)1.0;
int m = static_cast<int> (p);
m = MIN(m,nr-1);
p -= m;
p = MIN(p,(flt_t)1.0);
if (!ONETYPE)
rhor_joff = rhor_ioff + jtype * jstride;
const int joff = rhor_joff + m;
const flt_t rhojp = (rhor_spline_f[joff].a*p +
rhor_spline_f[joff].b)*p +
rhor_spline_f[joff].c;
flt_t rhoip;
if (!ONETYPE) {
const int ioff = jtype * istride + itype * jstride + m;
rhoip = (rhor_spline_f[ioff].a*p + rhor_spline_f[ioff].b)*p +
rhor_spline_f[ioff].c;
} else
rhoip = rhojp;
const flt_t z2p = (z2r_spline_t[joff].a*p +
z2r_spline_t[joff].b)*p +
z2r_spline_t[joff].c;
const flt_t z2 = ((z2r_spline_t[joff].d*p +
z2r_spline_t[joff].e)*p +
z2r_spline_t[joff].f)*p +
z2r_spline_t[joff].g;
const flt_t recip = (flt_t)1.0/r;
const flt_t phi = z2*recip;
const flt_t phip = z2p*recip - phi*recip;
const flt_t psip = fp_f[i]*rhojp + fp_f[j]*rhoip + phip;
if (!ONETYPE)
oscale = scale_fi[jtype];
const flt_t fpair = -oscale*psip*recip;
const flt_t fpx = fpair * tdelx[jj];
fxtmp += fpx;
if (NEWTON_PAIR) f[j].x -= fpx;
@ -556,20 +556,20 @@ void PairEAMIntel::eval(const int offload, const int vflag,
fztmp += fpz;
if (NEWTON_PAIR) f[j].z -= fpz;
if (EFLAG) {
const flt_t evdwl = oscale*phi;
sevdwl += evdwl;
if (eatom) {
fwtmp += (flt_t)0.5 * evdwl;
if (NEWTON_PAIR)
f[j].w += (flt_t)0.5 * evdwl;
}
}
if (NEWTON_PAIR == 0)
IP_PRE_ev_tally_nborv(vflag, tdelx[jj], tdely[jj], tdelz[jj],
fpx, fpy, fpz);
if (EFLAG) {
const flt_t evdwl = oscale*phi;
sevdwl += evdwl;
if (eatom) {
fwtmp += (flt_t)0.5 * evdwl;
if (NEWTON_PAIR)
f[j].w += (flt_t)0.5 * evdwl;
}
}
if (NEWTON_PAIR == 0)
IP_PRE_ev_tally_nborv(vflag, tdelx[jj], tdely[jj], tdelz[jj],
fpx, fpy, fpz);
} // for jj
if (NEWTON_PAIR) {
if (NEWTON_PAIR) {
f[i].x += fxtmp;
f[i].y += fytmp;
f[i].z += fztmp;
@ -577,19 +577,19 @@ void PairEAMIntel::eval(const int offload, const int vflag,
f[i].x = fxtmp;
f[i].y = fytmp;
f[i].z = fztmp;
sevdwl *= (acc_t)0.5;
sevdwl *= (acc_t)0.5;
}
IP_PRE_ev_tally_atom(NEWTON_PAIR, EFLAG, vflag, f, fwtmp);
} // for i
IP_PRE_fdotr_reduce_omp(NEWTON_PAIR, nall, minlocal, nthreads, f_start,
f_stride, x, offload, vflag, ov0, ov1, ov2, ov3,
ov4, ov5);
f_stride, x, offload, vflag, ov0, ov1, ov2, ov3,
ov4, ov5);
} /// omp
IP_PRE_fdotr_reduce(NEWTON_PAIR, nall, nthreads, f_stride, vflag,
ov0, ov1, ov2, ov3, ov4, ov5);
ov0, ov1, ov2, ov3, ov4, ov5);
if (EFLAG) {
ev_global[0] = oevdwl;
@ -597,13 +597,13 @@ void PairEAMIntel::eval(const int offload, const int vflag,
}
if (vflag) {
if (NEWTON_PAIR == 0) {
ov0 *= (acc_t)0.5;
ov1 *= (acc_t)0.5;
ov2 *= (acc_t)0.5;
ov3 *= (acc_t)0.5;
ov4 *= (acc_t)0.5;
ov5 *= (acc_t)0.5;
}
ov0 *= (acc_t)0.5;
ov1 *= (acc_t)0.5;
ov2 *= (acc_t)0.5;
ov3 *= (acc_t)0.5;
ov4 *= (acc_t)0.5;
ov5 *= (acc_t)0.5;
}
ev_global[2] = ov0;
ev_global[3] = ov1;
ev_global[4] = ov2;
@ -665,7 +665,7 @@ void PairEAMIntel::init_style()
template <class flt_t, class acc_t>
void PairEAMIntel::pack_force_const(ForceConst<flt_t> &fc,
IntelBuffers<flt_t,acc_t> *buffers)
IntelBuffers<flt_t,acc_t> *buffers)
{
int off_ccache = 0;
#ifdef _LMP_INTEL_OFFLOAD
@ -684,14 +684,14 @@ void PairEAMIntel::pack_force_const(ForceConst<flt_t> &fc,
for (int i = 1; i <= atom->ntypes; i++) {
for (int j = i; j <= atom->ntypes; j++) {
if (setflag[i][j] != 0 || (setflag[i][i] != 0 && setflag[j][j] != 0)) {
cut = init_one(i,j);
cutneigh = cut + neighbor->skin;
cutsq[i][j] = cutsq[j][i] = cut*cut;
cutneighsq[i][j] = cutneighsq[j][i] = cutneigh * cutneigh;
cut = init_one(i,j);
cutneigh = cut + neighbor->skin;
cutsq[i][j] = cutsq[j][i] = cut*cut;
cutneighsq[i][j] = cutneighsq[j][i] = cutneigh * cutneigh;
}
}
}
_onetype=-1;
double oldscale=-1;
for (int i = 1; i < tp1; i++) {
@ -709,32 +709,32 @@ void PairEAMIntel::pack_force_const(ForceConst<flt_t> &fc,
for (int j = 1; j < tp1; j++) {
fc.scale_f[i][j] = scale[i][j];
if (type2rhor[i][j] >= 0) {
const int joff = ioff + j * fc.rhor_jstride();
for (int k = 0; k < nr + 1; k++) {
if (type2rhor[j][i] != type2rhor[i][j])
_onetype = 0;
const int joff = ioff + j * fc.rhor_jstride();
for (int k = 0; k < nr + 1; k++) {
if (type2rhor[j][i] != type2rhor[i][j])
_onetype = 0;
else if (_onetype < 0)
_onetype = i;
_onetype = i;
if (oldscale < 0)
oldscale = scale[i][j];
else
if (oldscale != scale[i][j])
_onetype = 0;
fc.rhor_spline_f[joff + k].a=rhor_spline[type2rhor[j][i]][k][0];
fc.rhor_spline_f[joff + k].b=rhor_spline[type2rhor[j][i]][k][1];
fc.rhor_spline_f[joff + k].c=rhor_spline[type2rhor[j][i]][k][2];
fc.rhor_spline_e[joff + k].a=rhor_spline[type2rhor[j][i]][k][3];
fc.rhor_spline_e[joff + k].b=rhor_spline[type2rhor[j][i]][k][4];
fc.rhor_spline_e[joff + k].c=rhor_spline[type2rhor[j][i]][k][5];
fc.rhor_spline_e[joff + k].d=rhor_spline[type2rhor[j][i]][k][6];
fc.z2r_spline_t[joff + k].a=z2r_spline[type2rhor[j][i]][k][0];
fc.z2r_spline_t[joff + k].b=z2r_spline[type2rhor[j][i]][k][1];
fc.z2r_spline_t[joff + k].c=z2r_spline[type2rhor[j][i]][k][2];
fc.z2r_spline_t[joff + k].d=z2r_spline[type2rhor[j][i]][k][3];
fc.z2r_spline_t[joff + k].e=z2r_spline[type2rhor[j][i]][k][4];
fc.z2r_spline_t[joff + k].f=z2r_spline[type2rhor[j][i]][k][5];
fc.z2r_spline_t[joff + k].g=z2r_spline[type2rhor[j][i]][k][6];
}
if (oldscale != scale[i][j])
_onetype = 0;
fc.rhor_spline_f[joff + k].a=rhor_spline[type2rhor[j][i]][k][0];
fc.rhor_spline_f[joff + k].b=rhor_spline[type2rhor[j][i]][k][1];
fc.rhor_spline_f[joff + k].c=rhor_spline[type2rhor[j][i]][k][2];
fc.rhor_spline_e[joff + k].a=rhor_spline[type2rhor[j][i]][k][3];
fc.rhor_spline_e[joff + k].b=rhor_spline[type2rhor[j][i]][k][4];
fc.rhor_spline_e[joff + k].c=rhor_spline[type2rhor[j][i]][k][5];
fc.rhor_spline_e[joff + k].d=rhor_spline[type2rhor[j][i]][k][6];
fc.z2r_spline_t[joff + k].a=z2r_spline[type2rhor[j][i]][k][0];
fc.z2r_spline_t[joff + k].b=z2r_spline[type2rhor[j][i]][k][1];
fc.z2r_spline_t[joff + k].c=z2r_spline[type2rhor[j][i]][k][2];
fc.z2r_spline_t[joff + k].d=z2r_spline[type2rhor[j][i]][k][3];
fc.z2r_spline_t[joff + k].e=z2r_spline[type2rhor[j][i]][k][4];
fc.z2r_spline_t[joff + k].f=z2r_spline[type2rhor[j][i]][k][5];
fc.z2r_spline_t[joff + k].g=z2r_spline[type2rhor[j][i]][k][6];
}
}
}
}
@ -745,9 +745,9 @@ void PairEAMIntel::pack_force_const(ForceConst<flt_t> &fc,
template <class flt_t>
void PairEAMIntel::ForceConst<flt_t>::set_ntypes(const int ntypes,
const int nr, const int nrho,
Memory *memory,
const int cop) {
const int nr, const int nrho,
Memory *memory,
const int cop) {
if (ntypes != _ntypes || nr > _nr || nrho > _nrho) {
if (_ntypes > 0) {
_memory->destroy(rhor_spline_f);
@ -780,7 +780,7 @@ void PairEAMIntel::ForceConst<flt_t>::set_ntypes(const int ntypes,
/* ---------------------------------------------------------------------- */
int PairEAMIntel::pack_forward_comm(int n, int *list, double *buf,
int pbc_flag, int *pbc)
int pbc_flag, int *pbc)
{
if (fix->precision() == FixIntel::PREC_MODE_DOUBLE)
return pack_forward_comm(n, list, buf, fp);
@ -802,7 +802,7 @@ void PairEAMIntel::unpack_forward_comm(int n, int first, double *buf)
template<class flt_t>
int PairEAMIntel::pack_forward_comm(int n, int *list, double *buf,
flt_t *fp_f)
flt_t *fp_f)
{
int i,j,m;
@ -817,8 +817,8 @@ int PairEAMIntel::pack_forward_comm(int n, int *list, double *buf,
/* ---------------------------------------------------------------------- */
template<class flt_t>
void PairEAMIntel::unpack_forward_comm(int n, int first, double *buf,
flt_t *fp_f)
void PairEAMIntel::unpack_forward_comm(int n, int first, double *buf,
flt_t *fp_f)
{
int i,m,last;

View File

@ -53,8 +53,8 @@ class PairEAMIntel : public PairEAM {
template <class flt_t, class acc_t>
void compute(int eflag, int vflag, IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc);
template <int ONETYPE, int EFLAG, int NEWTON_PAIR, class flt_t,
class acc_t>
template <int ONETYPE, int EFLAG, int NEWTON_PAIR, class flt_t,
class acc_t>
void eval(const int offload, const int vflag,
IntelBuffers<flt_t,acc_t> * buffers,
const ForceConst<flt_t> &fc, const int astart, const int aend);
@ -79,8 +79,8 @@ class PairEAMIntel : public PairEAM {
ForceConst() : _ntypes(0), _nr(0) {}
~ForceConst() { set_ntypes(0, 0, 0, NULL, _cop); }
void set_ntypes(const int ntypes, const int nr, const int nrho,
Memory *memory, const int cop);
void set_ntypes(const int ntypes, const int nr, const int nrho,
Memory *memory, const int cop);
inline int rhor_jstride() const { return _nr; }
inline int rhor_istride() const { return _nr * _ntypes; }
inline int frho_stride() const { return _nrho; }

View File

@ -98,17 +98,17 @@ void PairGayBerneIntel::compute(int eflag, int vflag,
{
int ifrom, ito, tid;
IP_PRE_omp_range_id_align(ifrom, ito, tid, nall, packthreads,
sizeof(ATOM_T));
sizeof(ATOM_T));
if (ago != 0) buffers->thr_pack(ifrom,ito,ago);
for (int i = ifrom; i < ito; i++) {
int qi = ellipsoid[i];
if (qi > -1) {
quat[i].w = bonus[qi].quat[0];
quat[i].i = bonus[qi].quat[1];
quat[i].j = bonus[qi].quat[2];
quat[i].k = bonus[qi].quat[3];
}
int qi = ellipsoid[i];
if (qi > -1) {
quat[i].w = bonus[qi].quat[0];
quat[i].i = bonus[qi].quat[1];
quat[i].j = bonus[qi].quat[2];
quat[i].k = bonus[qi].quat[3];
}
}
}
quat[nall].w = (flt_t)1.0;
@ -161,65 +161,65 @@ void PairGayBerneIntel::eval(const int offload, const int vflag,
if (fix->separate_buffers()) {
fix->start_watch(TIME_PACK);
if (offload) {
#pragma omp parallel
#pragma omp parallel
{
int ifrom, ito, tid;
int nthreads = comm->nthreads;
IP_PRE_omp_range_id_align(ifrom, ito, tid, nlocal,
nthreads, sizeof(ATOM_T));
if (ago != 0) buffers->thr_pack_cop(ifrom, ito, 0);
for (int i = ifrom; i < ito; i++) {
int qi = ellipsoid[i];
if (qi > -1) {
quat[i].w = bonus[qi].quat[0];
quat[i].i = bonus[qi].quat[1];
quat[i].j = bonus[qi].quat[2];
quat[i].k = bonus[qi].quat[3];
}
}
int nghost = nall - nlocal;
if (nghost) {
IP_PRE_omp_range_align(ifrom, ito, tid, nall - nlocal,
nthreads, sizeof(ATOM_T));
int offset = 0;
ifrom += nlocal;
ito += nlocal;
if (ago != 0) {
offset = fix->offload_min_ghost() - nlocal;
buffers->thr_pack_cop(ifrom, ito, offset, ago == 1);
}
for (int i = ifrom; i < ito; i++) {
int qi = ellipsoid[i + offset];
if (qi > -1) {
quat[i].w = bonus[qi].quat[0];
quat[i].i = bonus[qi].quat[1];
quat[i].j = bonus[qi].quat[2];
quat[i].k = bonus[qi].quat[3];
}
}
}
int nthreads = comm->nthreads;
IP_PRE_omp_range_id_align(ifrom, ito, tid, nlocal,
nthreads, sizeof(ATOM_T));
if (ago != 0) buffers->thr_pack_cop(ifrom, ito, 0);
for (int i = ifrom; i < ito; i++) {
int qi = ellipsoid[i];
if (qi > -1) {
quat[i].w = bonus[qi].quat[0];
quat[i].i = bonus[qi].quat[1];
quat[i].j = bonus[qi].quat[2];
quat[i].k = bonus[qi].quat[3];
}
}
int nghost = nall - nlocal;
if (nghost) {
IP_PRE_omp_range_align(ifrom, ito, tid, nall - nlocal,
nthreads, sizeof(ATOM_T));
int offset = 0;
ifrom += nlocal;
ito += nlocal;
if (ago != 0) {
offset = fix->offload_min_ghost() - nlocal;
buffers->thr_pack_cop(ifrom, ito, offset, ago == 1);
}
for (int i = ifrom; i < ito; i++) {
int qi = ellipsoid[i + offset];
if (qi > -1) {
quat[i].w = bonus[qi].quat[0];
quat[i].i = bonus[qi].quat[1];
quat[i].j = bonus[qi].quat[2];
quat[i].k = bonus[qi].quat[3];
}
}
}
}
} else {
if (ago != 0) buffers->thr_pack_host(fix->host_min_local(), nlocal, 0);
for (int i = fix->host_min_local(); i < nlocal; i++) {
int qi = ellipsoid[i];
if (qi > -1) {
quat[i].w = bonus[qi].quat[0];
quat[i].i = bonus[qi].quat[1];
quat[i].j = bonus[qi].quat[2];
quat[i].k = bonus[qi].quat[3];
}
int qi = ellipsoid[i];
if (qi > -1) {
quat[i].w = bonus[qi].quat[0];
quat[i].i = bonus[qi].quat[1];
quat[i].j = bonus[qi].quat[2];
quat[i].k = bonus[qi].quat[3];
}
}
int offset = fix->host_min_ghost() - nlocal;
if (ago != 0) buffers->thr_pack_host(nlocal, nall, offset);
for (int i = nlocal; i < nall; i++) {
int qi = ellipsoid[i + offset];
if (qi > -1) {
quat[i].w = bonus[qi].quat[0];
quat[i].i = bonus[qi].quat[1];
quat[i].j = bonus[qi].quat[2];
quat[i].k = bonus[qi].quat[3];
}
int qi = ellipsoid[i + offset];
if (qi > -1) {
quat[i].w = bonus[qi].quat[0];
quat[i].i = bonus[qi].quat[1];
quat[i].j = bonus[qi].quat[2];
quat[i].k = bonus[qi].quat[3];
}
}
}
fix->stop_watch(TIME_PACK);
@ -252,8 +252,8 @@ void PairGayBerneIntel::eval(const int offload, const int vflag,
// Determine how much data to transfer
int x_size, q_size, f_stride, ev_size, separate_flag;
IP_PRE_get_transfern(ago, NEWTON_PAIR, EFLAG, vflag,
buffers, offload, fix, separate_flag,
x_size, q_size, ev_size, f_stride);
buffers, offload, fix, separate_flag,
x_size, q_size, ev_size, f_stride);
int tc;
FORCE_T * _noalias f_start;
@ -303,26 +303,26 @@ void PairGayBerneIntel::eval(const int offload, const int vflag,
#ifdef _LMP_INTEL_OFFLOAD
if (separate_flag) {
if (separate_flag < 3) {
int all_local = nlocal;
int ghost_min = overflow[LMP_GHOST_MIN];
nlocal = overflow[LMP_LOCAL_MAX] + 1;
int nghost = overflow[LMP_GHOST_MAX] + 1 - ghost_min;
if (nghost < 0) nghost = 0;
nall = nlocal + nghost;
separate_flag--;
int flength;
if (NEWTON_PAIR) flength = nall;
else flength = nlocal;
IP_PRE_get_stride(f_stride, flength, sizeof(FORCE_T),
separate_flag);
if (nghost) {
if (nlocal < all_local || ghost_min > all_local) {
memmove(x + nlocal, x + ghost_min,
(nall - nlocal) * sizeof(ATOM_T));
memmove(quat + nlocal, quat + ghost_min,
(nall - nlocal) * sizeof(QUAT_T));
}
}
int all_local = nlocal;
int ghost_min = overflow[LMP_GHOST_MIN];
nlocal = overflow[LMP_LOCAL_MAX] + 1;
int nghost = overflow[LMP_GHOST_MAX] + 1 - ghost_min;
if (nghost < 0) nghost = 0;
nall = nlocal + nghost;
separate_flag--;
int flength;
if (NEWTON_PAIR) flength = nall;
else flength = nlocal;
IP_PRE_get_stride(f_stride, flength, sizeof(FORCE_T),
separate_flag);
if (nghost) {
if (nlocal < all_local || ghost_min > all_local) {
memmove(x + nlocal, x + ghost_min,
(nall - nlocal) * sizeof(ATOM_T));
memmove(quat + nlocal, quat + ghost_min,
(nall - nlocal) * sizeof(QUAT_T));
}
}
}
x[nall].x = (flt_t)INTEL_BIGP;
x[nall].y = (flt_t)INTEL_BIGP;
@ -395,17 +395,17 @@ void PairGayBerneIntel::eval(const int offload, const int vflag,
acc_t sevdwl, sv0, sv1, sv2, sv3, sv4, sv5;
fxtmp = fytmp = fztmp = t1tmp = t2tmp = t3tmp = (acc_t)0.0;
if (EFLAG) fwtmp = sevdwl = (acc_t)0.0;
if (NEWTON_PAIR == 0)
if (EFLAG) fwtmp = sevdwl = (acc_t)0.0;
if (NEWTON_PAIR == 0)
if (vflag==1) sv0 = sv1 = sv2 = sv3 = sv4 = sv5 = (acc_t)0.0;
bool multiple_forms = false;
int packed_j = 0;
#if defined(LMP_SIMD_COMPILER)
#pragma vector aligned
#pragma ivdep
#endif
for (int jj = 0; jj < jnum; jj++) {
#pragma vector aligned
#pragma ivdep
#endif
for (int jj = 0; jj < jnum; jj++) {
int jm = jlist[jj];
int j = jm & NEIGHMASK;
const int jtype = x[j].w;
@ -428,27 +428,27 @@ void PairGayBerneIntel::eval(const int offload, const int vflag,
} else
multiple_forms = true;
}
const int edge = (packed_j % pad_width);
if (edge) {
const int packed_end = packed_j + (pad_width - edge);
const int edge = (packed_j % pad_width);
if (edge) {
const int packed_end = packed_j + (pad_width - edge);
#if defined(LMP_SIMD_COMPILER)
#pragma loop_count min=1, max=15, avg=8
#endif
for ( ; packed_j < packed_end; packed_j++)
jlist_form[packed_j] = nall;
}
for ( ; packed_j < packed_end; packed_j++)
jlist_form[packed_j] = nall;
}
// -------------------------------------------------------------
#ifdef INTEL_V512
__assume(packed_j % INTEL_VECTOR_WIDTH == 0);
__assume(packed_j % 8 == 0);
__assume(packed_j % INTEL_MIC_VECTOR_WIDTH == 0);
#endif
#ifdef INTEL_V512
__assume(packed_j % INTEL_VECTOR_WIDTH == 0);
__assume(packed_j % 8 == 0);
__assume(packed_j % INTEL_MIC_VECTOR_WIDTH == 0);
#endif
#if defined(LMP_SIMD_COMPILER)
#pragma vector aligned
#pragma simd reduction(+:fxtmp,fytmp,fztmp,fwtmp,t1tmp,t2tmp,t3tmp, \
sevdwl,sv0,sv1,sv2,sv3,sv4,sv5)
#pragma simd reduction(+:fxtmp,fytmp,fztmp,fwtmp,t1tmp,t2tmp,t3tmp, \
sevdwl,sv0,sv1,sv2,sv3,sv4,sv5)
#endif
for (int jj = 0; jj < packed_j; jj++) {
flt_t a2_0, a2_1, a2_2, a2_3, a2_4, a2_5, a2_6, a2_7, a2_8;
@ -458,15 +458,15 @@ void PairGayBerneIntel::eval(const int offload, const int vflag,
flt_t fforce_0, fforce_1, fforce_2, ttor_0, ttor_1, ttor_2;
flt_t rtor_0, rtor_1, rtor_2;
const int sbindex = jlist_form[jj] >> SBBITS & 3;
const int j = jlist_form[jj] & NEIGHMASK;
const int sbindex = jlist_form[jj] >> SBBITS & 3;
const int j = jlist_form[jj] & NEIGHMASK;
flt_t factor_lj = special_lj[sbindex];
const int jtype = jtype_form[jj];
const flt_t sigma = ijci[jtype].sigma;
const flt_t epsilon = ijci[jtype].epsilon;
const flt_t shape2_0 = ic[jtype].shape2[0];
const flt_t shape2_1 = ic[jtype].shape2[1];
const flt_t shape2_2 = ic[jtype].shape2[2];
const flt_t sigma = ijci[jtype].sigma;
const flt_t epsilon = ijci[jtype].epsilon;
const flt_t shape2_0 = ic[jtype].shape2[0];
const flt_t shape2_1 = ic[jtype].shape2[1];
const flt_t shape2_2 = ic[jtype].shape2[2];
flt_t one_eng, evdwl;
ME_quat_to_mat_trans(quat[j], a2);
@ -488,7 +488,7 @@ void PairGayBerneIntel::eval(const int offload, const int vflag,
ME_plus3(g1, g2, g12);
flt_t kappa_0, kappa_1, kappa_2;
ME_mldivide3(g12, delx_form[jj], dely_form[jj], delz_form[jj],
kappa, ierror);
kappa, ierror);
// tempv = G12^-1*r12hat
@ -520,7 +520,7 @@ void PairGayBerneIntel::eval(const int offload, const int vflag,
flt_t iota_0, iota_1, iota_2;
ME_plus3(b1, b2, b12);
ME_mldivide3(b12, delx_form[jj], dely_form[jj], delz_form[jj],
iota, ierror);
iota, ierror);
// tempv = G12^-1*r12hat
@ -534,7 +534,7 @@ void PairGayBerneIntel::eval(const int offload, const int vflag,
// compute dUr/dr
temp1 = ((flt_t)2.0 * varrho12 * varrho - varrho6 * varrho) /
sigma;
sigma;
temp1 = temp1 * (flt_t)24.0 * epsilon;
flt_t u_slj = temp1 * std::pow(sigma12, (flt_t)3.0) * (flt_t)0.5;
flt_t dUr_0, dUr_1, dUr_2;
@ -548,8 +548,8 @@ void PairGayBerneIntel::eval(const int offload, const int vflag,
flt_t dchi_0, dchi_1, dchi_2;
temp1 = ME_dot3(iota, r12hat);
temp2 = (flt_t)-4.0 / rsq_form[jj] * mu *
std::pow(chi, (mu - (flt_t)1.0) / mu);
temp2 = (flt_t)-4.0 / rsq_form[jj] * mu *
std::pow(chi, (mu - (flt_t)1.0) / mu);
dchi_0 = temp2 * (iota_0 - temp1 * r12hat_0);
dchi_1 = temp2 * (iota_1 - temp1 * r12hat_1);
dchi_2 = temp2 * (iota_2 - temp1 * r12hat_2);
@ -663,36 +663,36 @@ void PairGayBerneIntel::eval(const int offload, const int vflag,
temp3 = chi * eta;
ttor_0 = (temp1 * dchi_0 + temp2 * deta_0 + temp3 * dUr_0) *
(flt_t)-1.0;
(flt_t)-1.0;
ttor_1 = (temp1 * dchi_1 + temp2 * deta_1 + temp3 * dUr_1) *
(flt_t)-1.0;
(flt_t)-1.0;
ttor_2 = (temp1 * dchi_2 + temp2 * deta_2 + temp3 * dUr_2) *
(flt_t)-1.0;
(flt_t)-1.0;
if (NEWTON_PAIR) {
rtor_0 = (temp1 * dchi2_0 + temp2 * deta2_0 + temp3 * dUr2_0) *
(flt_t)-1.0;
(flt_t)-1.0;
rtor_1 = (temp1 * dchi2_1 + temp2 * deta2_1 + temp3 * dUr2_1) *
(flt_t)-1.0;
(flt_t)-1.0;
rtor_2 = (temp1 * dchi2_2 + temp2 * deta2_2 + temp3 * dUr2_2) *
(flt_t)-1.0;
(flt_t)-1.0;
}
one_eng = temp1 * chi;
#ifndef INTEL_VMASK
if (jlist_form[jj] == nall) {
one_eng = (flt_t)0.0;
fforce_0 = 0.0;
fforce_1 = 0.0;
fforce_2 = 0.0;
ttor_0 = 0.0;
ttor_1 = 0.0;
ttor_2 = 0.0;
rtor_0 = 0.0;
rtor_1 = 0.0;
rtor_2 = 0.0;
}
#endif
#ifndef INTEL_VMASK
if (jlist_form[jj] == nall) {
one_eng = (flt_t)0.0;
fforce_0 = 0.0;
fforce_1 = 0.0;
fforce_2 = 0.0;
ttor_0 = 0.0;
ttor_1 = 0.0;
ttor_2 = 0.0;
rtor_0 = 0.0;
rtor_1 = 0.0;
rtor_2 = 0.0;
}
#endif
fforce_0 *= factor_lj;
fforce_1 *= factor_lj;
@ -701,53 +701,53 @@ void PairGayBerneIntel::eval(const int offload, const int vflag,
ttor_1 *= factor_lj;
ttor_2 *= factor_lj;
#ifdef INTEL_VMASK
if (jlist_form[jj] < nall) {
#endif
fxtmp += fforce_0;
fytmp += fforce_1;
fztmp += fforce_2;
t1tmp += ttor_0;
t2tmp += ttor_1;
t3tmp += ttor_2;
#ifdef INTEL_VMASK
if (jlist_form[jj] < nall) {
#endif
fxtmp += fforce_0;
fytmp += fforce_1;
fztmp += fforce_2;
t1tmp += ttor_0;
t2tmp += ttor_1;
t3tmp += ttor_2;
if (NEWTON_PAIR) {
rtor_0 *= factor_lj;
rtor_1 *= factor_lj;
rtor_2 *= factor_lj;
int jp = j * 2;
f[jp].x -= fforce_0;
f[jp].y -= fforce_1;
f[jp].z -= fforce_2;
jp++;
f[jp].x += rtor_0;
f[jp].y += rtor_1;
f[jp].z += rtor_2;
}
if (NEWTON_PAIR) {
rtor_0 *= factor_lj;
rtor_1 *= factor_lj;
rtor_2 *= factor_lj;
int jp = j * 2;
f[jp].x -= fforce_0;
f[jp].y -= fforce_1;
f[jp].z -= fforce_2;
jp++;
f[jp].x += rtor_0;
f[jp].y += rtor_1;
f[jp].z += rtor_2;
}
if (EFLAG) {
evdwl = factor_lj * one_eng;
sevdwl += evdwl;
if (eatom) {
fwtmp += (flt_t)0.5 * evdwl;
if (NEWTON_PAIR)
f[j*2].w += (flt_t)0.5 * evdwl;
}
}
if (EFLAG) {
evdwl = factor_lj * one_eng;
sevdwl += evdwl;
if (eatom) {
fwtmp += (flt_t)0.5 * evdwl;
if (NEWTON_PAIR)
f[j*2].w += (flt_t)0.5 * evdwl;
}
}
if (NEWTON_PAIR == 0) {
if (vflag == 1) {
sv0 += delx_form[jj] * fforce_0;
sv1 += dely_form[jj] * fforce_1;
sv2 += delz_form[jj] * fforce_2;
sv3 += delx_form[jj] * fforce_1;
sv4 += delx_form[jj] * fforce_2;
sv5 += dely_form[jj] * fforce_2;
}
if (NEWTON_PAIR == 0) {
if (vflag == 1) {
sv0 += delx_form[jj] * fforce_0;
sv1 += dely_form[jj] * fforce_1;
sv2 += delz_form[jj] * fforce_2;
sv3 += delx_form[jj] * fforce_1;
sv4 += delx_form[jj] * fforce_2;
sv5 += dely_form[jj] * fforce_2;
}
} // EVFLAG
#ifdef INTEL_VMASK
}
#endif
#ifdef INTEL_VMASK
}
#endif
} // for jj
// -------------------------------------------------------------
@ -756,29 +756,29 @@ void PairGayBerneIntel::eval(const int offload, const int vflag,
ierror = 2;
int ip = i * 2;
if (NEWTON_PAIR) {
f[ip].x += fxtmp;
f[ip].y += fytmp;
f[ip].z += fztmp;
ip++;
f[ip].x += t1tmp;
f[ip].y += t2tmp;
f[ip].z += t3tmp;
} else {
f[ip].x = fxtmp;
f[ip].y = fytmp;
f[ip].z = fztmp;
ip++;
f[ip].x = t1tmp;
f[ip].y = t2tmp;
f[ip].z = t3tmp;
}
if (NEWTON_PAIR) {
f[ip].x += fxtmp;
f[ip].y += fytmp;
f[ip].z += fztmp;
ip++;
f[ip].x += t1tmp;
f[ip].y += t2tmp;
f[ip].z += t3tmp;
} else {
f[ip].x = fxtmp;
f[ip].y = fytmp;
f[ip].z = fztmp;
ip++;
f[ip].x = t1tmp;
f[ip].y = t2tmp;
f[ip].z = t3tmp;
}
if (EFLAG) {
oevdwl += sevdwl;
if (eatom) f[i * 2].w += fwtmp;
}
if (NEWTON_PAIR == 0) {
if (EFLAG) {
oevdwl += sevdwl;
if (eatom) f[i * 2].w += fwtmp;
}
if (NEWTON_PAIR == 0) {
if (vflag == 1) {
ov0 += sv0;
ov1 += sv1;
@ -792,30 +792,30 @@ void PairGayBerneIntel::eval(const int offload, const int vflag,
int o_range;
if (NEWTON_PAIR) {
o_range = nall;
if (offload == 0) o_range -= minlocal;
IP_PRE_omp_range_align(iifrom, iito, tid, o_range, nthreads,
if (offload == 0) o_range -= minlocal;
IP_PRE_omp_range_align(iifrom, iito, tid, o_range, nthreads,
sizeof(FORCE_T));
const int sto = iito * 8;
const int fst4 = f_stride * 4;
const int sto = iito * 8;
const int fst4 = f_stride * 4;
#if defined(_OPENMP)
#pragma omp barrier
#endif
acc_t *f_scalar = &f_start[0].x;
acc_t *f_scalar = &f_start[0].x;
acc_t *f_scalar2 = f_scalar + fst4;
for (int t = 1; t < nthreads; t++) {
for (int t = 1; t < nthreads; t++) {
#if defined(LMP_SIMD_COMPILER)
#pragma vector aligned
#pragma simd
#pragma vector aligned
#pragma simd
#endif
for (int n = iifrom * 8; n < sto; n++)
f_scalar[n] += f_scalar2[n];
f_scalar2 += fst4;
for (int n = iifrom * 8; n < sto; n++)
f_scalar[n] += f_scalar2[n];
f_scalar2 += fst4;
}
if (vflag==2) {
const ATOM_T * _noalias const xo = x + minlocal;
const ATOM_T * _noalias const xo = x + minlocal;
#if defined(LMP_SIMD_COMPILER)
#pragma novector
#pragma novector
#endif
for (int n = iifrom; n < iito; n++) {
const int nt2 = n * 2;
@ -826,7 +826,7 @@ void PairGayBerneIntel::eval(const int offload, const int vflag,
ov4 += f_start[nt2].z * xo[n].x;
ov5 += f_start[nt2].z * xo[n].y;
}
}
}
}
if (ierror)
@ -840,12 +840,12 @@ void PairGayBerneIntel::eval(const int offload, const int vflag,
}
if (vflag) {
if (NEWTON_PAIR == 0) {
ov0 *= (acc_t)-0.5;
ov1 *= (acc_t)-0.5;
ov2 *= (acc_t)-0.5;
ov3 *= (acc_t)-0.5;
ov4 *= (acc_t)-0.5;
ov5 *= (acc_t)-0.5;
ov0 *= (acc_t)-0.5;
ov1 *= (acc_t)-0.5;
ov2 *= (acc_t)-0.5;
ov3 *= (acc_t)-0.5;
ov4 *= (acc_t)-0.5;
ov5 *= (acc_t)-0.5;
}
ev_global[2] = ov0;
ev_global[3] = ov1;
@ -982,7 +982,7 @@ void PairGayBerneIntel::ForceConst<flt_t>::set_ntypes(const int ntypes,
const int one_length,
const int nthreads,
Memory *memory,
const int cop) {
const int cop) {
if (ntypes != _ntypes) {
if (_ntypes > 0) {
fc_packed3 *oic = ic;
@ -999,9 +999,9 @@ void PairGayBerneIntel::ForceConst<flt_t>::set_ntypes(const int ntypes,
int * ojlist_form = jlist_form[0];
if (ospecial_lj != NULL && oijc != NULL && olj34 != NULL &&
orsq_form != NULL && odelx_form != NULL && odely_form != NULL &&
odelz_form != NULL && ojtype_form != NULL && ojlist_form != NULL &&
_cop >= 0) {
orsq_form != NULL && odelx_form != NULL && odely_form != NULL &&
odelz_form != NULL && ojtype_form != NULL && ojlist_form != NULL &&
_cop >= 0) {
#pragma offload_transfer target(mic:_cop) \
nocopy(ospecial_lj, oijc, olj34, oic: alloc_if(0) free_if(1)) \
nocopy(orsq_form, odelx_form, odely_form: alloc_if(0) free_if(1)) \
@ -1033,14 +1033,14 @@ void PairGayBerneIntel::ForceConst<flt_t>::set_ntypes(const int ntypes,
memory->create(jlist_form, nthreads, one_length, "jlist_form");
for (int zn = 0; zn < nthreads; zn++)
for (int zo = 0; zo < one_length; zo++) {
rsq_form[zn][zo] = 10.0;
delx_form[zn][zo] = 10.0;
dely_form[zn][zo] = 10.0;
delz_form[zn][zo] = 10.0;
jtype_form[zn][zo] = 1;
jlist_form[zn][zo] = 0;
}
for (int zo = 0; zo < one_length; zo++) {
rsq_form[zn][zo] = 10.0;
delx_form[zn][zo] = 10.0;
dely_form[zn][zo] = 10.0;
delz_form[zn][zo] = 10.0;
jtype_form[zn][zo] = 1;
jlist_form[zn][zo] = 0;
}
#ifdef _LMP_INTEL_OFFLOAD
flt_t * ospecial_lj = special_lj;
@ -1057,9 +1057,9 @@ void PairGayBerneIntel::ForceConst<flt_t>::set_ntypes(const int ntypes,
int tp1sq = ntypes*ntypes;
if (ospecial_lj != NULL && oijc != NULL && olj34 != NULL &&
oic != NULL && orsq_form != NULL && odelx_form != NULL &&
odely_form != NULL && odelz_form != NULL && ojtype_form !=NULL &&
ojlist_form !=NULL && cop >= 0) {
oic != NULL && orsq_form != NULL && odelx_form != NULL &&
odely_form != NULL && odelz_form != NULL && ojtype_form !=NULL &&
ojlist_form !=NULL && cop >= 0) {
#pragma offload_transfer target(mic:cop) \
nocopy(ospecial_lj: length(4) alloc_if(1) free_if(0)) \
nocopy(oijc,olj34: length(tp1sq) alloc_if(1) free_if(0)) \

View File

@ -67,8 +67,8 @@ void PairLJCharmmCoulLongIntel::compute(int eflag, int vflag)
template <class flt_t, class acc_t>
void PairLJCharmmCoulLongIntel::compute(int eflag, int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
{
if (eflag || vflag) {
ev_setup(eflag,vflag);
@ -125,9 +125,9 @@ void PairLJCharmmCoulLongIntel::compute(int eflag, int vflag,
template <int EFLAG, int NEWTON_PAIR, class flt_t, class acc_t>
void PairLJCharmmCoulLongIntel::eval(const int offload, const int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc,
const int astart, const int aend)
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc,
const int astart, const int aend)
{
const int inum = aend - astart;
if (inum == 0) return;
@ -177,8 +177,8 @@ void PairLJCharmmCoulLongIntel::eval(const int offload, const int vflag,
// Determine how much data to transfer
int x_size, q_size, f_stride, ev_size, separate_flag;
IP_PRE_get_transfern(ago, NEWTON_PAIR, EFLAG, vflag,
buffers, offload, fix, separate_flag,
x_size, q_size, ev_size, f_stride);
buffers, offload, fix, separate_flag,
x_size, q_size, ev_size, f_stride);
int tc;
FORCE_T * _noalias f_start;
@ -227,7 +227,7 @@ void PairLJCharmmCoulLongIntel::eval(const int offload, const int vflag,
#endif
IP_PRE_repack_for_offload(NEWTON_PAIR, separate_flag, nlocal, nall,
f_stride, x, q);
f_stride, x, q);
acc_t oevdwl, oecoul, ov0, ov1, ov2, ov3, ov4, ov5;
if (EFLAG) oevdwl = oecoul = (acc_t)0;
@ -259,7 +259,7 @@ void PairLJCharmmCoulLongIntel::eval(const int offload, const int vflag,
int * _noalias const tjtype = ccachej + toffs;
for (int i = iifrom; i < iito; i += iip) {
// const int i = ilist[ii];
// const int i = ilist[ii];
const int itype = x[i].w;
const int ptr_off = itype * ntypes;
@ -270,175 +270,175 @@ void PairLJCharmmCoulLongIntel::eval(const int offload, const int vflag,
const int jnum = numneigh[i];
acc_t fxtmp,fytmp,fztmp,fwtmp;
acc_t sevdwl, secoul, sv0, sv1, sv2, sv3, sv4, sv5;
acc_t sevdwl, secoul, sv0, sv1, sv2, sv3, sv4, sv5;
const flt_t xtmp = x[i].x;
const flt_t ytmp = x[i].y;
const flt_t ztmp = x[i].z;
const flt_t qtmp = q[i];
fxtmp = fytmp = fztmp = (acc_t)0;
if (EFLAG) fwtmp = sevdwl = secoul = (acc_t)0;
if (NEWTON_PAIR == 0)
if (vflag==1) sv0 = sv1 = sv2 = sv3 = sv4 = sv5 = (acc_t)0;
if (EFLAG) fwtmp = sevdwl = secoul = (acc_t)0;
if (NEWTON_PAIR == 0)
if (vflag==1) sv0 = sv1 = sv2 = sv3 = sv4 = sv5 = (acc_t)0;
int ej = 0;
int ej = 0;
#if defined(LMP_SIMD_COMPILER)
#pragma vector aligned
#pragma ivdep
#pragma vector aligned
#pragma ivdep
#endif
for (int jj = 0; jj < jnum; jj++) {
const int j = jlist[jj] & NEIGHMASK;
const flt_t delx = xtmp - x[j].x;
const flt_t delx = xtmp - x[j].x;
const flt_t dely = ytmp - x[j].y;
const flt_t delz = ztmp - x[j].z;
const flt_t rsq = delx * delx + dely * dely + delz * delz;
if (rsq < cut_coulsq) {
trsq[ej]=rsq;
tdelx[ej]=delx;
tdely[ej]=dely;
tdelz[ej]=delz;
tjtype[ej]=x[j].w;
tj[ej]=jlist[jj];
ej++;
}
}
if (rsq < cut_coulsq) {
trsq[ej]=rsq;
tdelx[ej]=delx;
tdely[ej]=dely;
tdelz[ej]=delz;
tjtype[ej]=x[j].w;
tj[ej]=jlist[jj];
ej++;
}
}
#if defined(LMP_SIMD_COMPILER)
#pragma vector aligned
#pragma simd reduction(+:fxtmp, fytmp, fztmp, fwtmp, sevdwl, secoul, \
sv0, sv1, sv2, sv3, sv4, sv5)
#pragma vector aligned
#pragma simd reduction(+:fxtmp, fytmp, fztmp, fwtmp, sevdwl, secoul, \
sv0, sv1, sv2, sv3, sv4, sv5)
#endif
for (int jj = 0; jj < ej; jj++) {
flt_t forcecoul, forcelj, evdwl, ecoul;
forcecoul = forcelj = evdwl = ecoul = (flt_t)0.0;
const int j = tj[jj] & NEIGHMASK;
const int j = tj[jj] & NEIGHMASK;
const int sbindex = tj[jj] >> SBBITS & 3;
const int jtype = tjtype[jj];
const flt_t rsq = trsq[jj];
const int jtype = tjtype[jj];
const flt_t rsq = trsq[jj];
const flt_t r2inv = (flt_t)1.0 / rsq;
#ifdef INTEL_ALLOW_TABLE
if (!ncoultablebits || rsq <= tabinnersq) {
#endif
const flt_t A1 = 0.254829592;
const flt_t A2 = -0.284496736;
const flt_t A3 = 1.421413741;
const flt_t A4 = -1.453152027;
const flt_t A5 = 1.061405429;
const flt_t EWALD_F = 1.12837917;
const flt_t INV_EWALD_P = 1.0 / 0.3275911;
const flt_t A2 = -0.284496736;
const flt_t A3 = 1.421413741;
const flt_t A4 = -1.453152027;
const flt_t A5 = 1.061405429;
const flt_t EWALD_F = 1.12837917;
const flt_t INV_EWALD_P = 1.0 / 0.3275911;
const flt_t r = (flt_t)1.0 / sqrt(r2inv);
const flt_t grij = g_ewald * r;
const flt_t expm2 = exp(-grij * grij);
const flt_t t = INV_EWALD_P / (INV_EWALD_P + grij);
const flt_t erfc = t * (A1+t*(A2+t*(A3+t*(A4+t*A5)))) * expm2;
const flt_t prefactor = qqrd2e * qtmp * q[j] / r;
forcecoul = prefactor * (erfc + EWALD_F * grij * expm2);
if (EFLAG) ecoul = prefactor * erfc;
const flt_t r = (flt_t)1.0 / sqrt(r2inv);
const flt_t grij = g_ewald * r;
const flt_t expm2 = exp(-grij * grij);
const flt_t t = INV_EWALD_P / (INV_EWALD_P + grij);
const flt_t erfc = t * (A1+t*(A2+t*(A3+t*(A4+t*A5)))) * expm2;
const flt_t prefactor = qqrd2e * qtmp * q[j] / r;
forcecoul = prefactor * (erfc + EWALD_F * grij * expm2);
if (EFLAG) ecoul = prefactor * erfc;
const flt_t adjust = ((flt_t)1.0 - special_coul[sbindex])*
prefactor;
forcecoul -= adjust;
if (EFLAG) ecoul -= adjust;
const flt_t adjust = ((flt_t)1.0 - special_coul[sbindex])*
prefactor;
forcecoul -= adjust;
if (EFLAG) ecoul -= adjust;
#ifdef INTEL_ALLOW_TABLE
} else {
float rsq_lookup = rsq;
const int itable = (__intel_castf32_u32(rsq_lookup) &
ncoulmask) >> ncoulshiftbits;
const flt_t fraction = (rsq_lookup - table[itable].r) *
table[itable].dr;
} else {
float rsq_lookup = rsq;
const int itable = (__intel_castf32_u32(rsq_lookup) &
ncoulmask) >> ncoulshiftbits;
const flt_t fraction = (rsq_lookup - table[itable].r) *
table[itable].dr;
const flt_t tablet = table[itable].f +
fraction * table[itable].df;
forcecoul = qtmp * q[j] * tablet;
if (EFLAG) ecoul = qtmp * q[j] * (etable[itable] +
fraction * detable[itable]);
if (sbindex) {
const flt_t table2 = ctable[itable] +
fraction * dctable[itable];
const flt_t prefactor = qtmp * q[j] * table2;
const flt_t adjust = ((flt_t)1.0 - special_coul[sbindex]) *
prefactor;
forcecoul -= adjust;
if (EFLAG) ecoul -= adjust;
}
const flt_t tablet = table[itable].f +
fraction * table[itable].df;
forcecoul = qtmp * q[j] * tablet;
if (EFLAG) ecoul = qtmp * q[j] * (etable[itable] +
fraction * detable[itable]);
if (sbindex) {
const flt_t table2 = ctable[itable] +
fraction * dctable[itable];
const flt_t prefactor = qtmp * q[j] * table2;
const flt_t adjust = ((flt_t)1.0 - special_coul[sbindex]) *
prefactor;
forcecoul -= adjust;
if (EFLAG) ecoul -= adjust;
}
}
#endif
#ifdef INTEL_VMASK
if (rsq < cut_ljsq) {
#endif
#ifdef INTEL_VMASK
if (rsq < cut_ljsq) {
#endif
flt_t r6inv = r2inv * r2inv * r2inv;
forcelj = r6inv * (lji[jtype].x * r6inv - lji[jtype].y);
if (EFLAG) evdwl = r6inv*(lji[jtype].z * r6inv - lji[jtype].w);
#ifdef INTEL_VMASK
if (rsq > cut_lj_innersq) {
#endif
#ifdef INTEL_VMASK
if (rsq > cut_lj_innersq) {
#endif
const flt_t drsq = cut_ljsq - rsq;
const flt_t cut2 = (rsq - cut_lj_innersq) * drsq;
const flt_t switch1 = drsq * (drsq * drsq + (flt_t)3.0 * cut2) *
inv_denom_lj;
const flt_t switch2 = (flt_t)12.0 * rsq * cut2 * inv_denom_lj;
if (EFLAG) {
#ifndef INTEL_VMASK
if (rsq > cut_lj_innersq) {
#endif
#ifndef INTEL_VMASK
if (rsq > cut_lj_innersq) {
#endif
forcelj = forcelj * switch1 + evdwl * switch2;
evdwl *= switch1;
#ifndef INTEL_VMASK
}
#endif
#ifndef INTEL_VMASK
}
#endif
} else {
const flt_t philj = r6inv * (lji[jtype].z*r6inv -
lji[jtype].w);
#ifndef INTEL_VMASK
if (rsq > cut_lj_innersq)
#endif
#ifndef INTEL_VMASK
if (rsq > cut_lj_innersq)
#endif
forcelj = forcelj * switch1 + philj * switch2;
}
#ifdef INTEL_VMASK
}
#endif
#ifdef INTEL_VMASK
}
#endif
if (sbindex) {
const flt_t factor_lj = special_lj[sbindex];
forcelj *= factor_lj;
if (EFLAG) evdwl *= factor_lj;
}
#ifdef INTEL_VMASK
}
#else
if (rsq > cut_ljsq) { forcelj = (flt_t)0.0; evdwl = (flt_t)0.0; }
#endif
#ifdef INTEL_VMASK
}
#else
if (rsq > cut_ljsq) { forcelj = (flt_t)0.0; evdwl = (flt_t)0.0; }
#endif
const flt_t fpair = (forcecoul + forcelj) * r2inv;
const flt_t fpx = fpair * tdelx[jj];
fxtmp += fpx;
if (NEWTON_PAIR) f[j].x -= fpx;
const flt_t fpy = fpair * tdely[jj];
fytmp += fpy;
if (NEWTON_PAIR) f[j].y -= fpy;
const flt_t fpz = fpair * tdelz[jj];
fztmp += fpz;
if (NEWTON_PAIR) f[j].z -= fpz;
const flt_t fpair = (forcecoul + forcelj) * r2inv;
const flt_t fpx = fpair * tdelx[jj];
fxtmp += fpx;
if (NEWTON_PAIR) f[j].x -= fpx;
const flt_t fpy = fpair * tdely[jj];
fytmp += fpy;
if (NEWTON_PAIR) f[j].y -= fpy;
const flt_t fpz = fpair * tdelz[jj];
fztmp += fpz;
if (NEWTON_PAIR) f[j].z -= fpz;
if (EFLAG) {
sevdwl += evdwl;
secoul += ecoul;
if (eatom) {
fwtmp += (flt_t)0.5 * evdwl + (flt_t)0.5 * ecoul;
if (NEWTON_PAIR)
f[j].w += (flt_t)0.5 * evdwl + (flt_t)0.5 * ecoul;
}
}
if (NEWTON_PAIR == 0)
IP_PRE_ev_tally_nborv(vflag, tdelx[jj], tdely[jj], tdelz[jj],
fpx, fpy, fpz);
if (EFLAG) {
sevdwl += evdwl;
secoul += ecoul;
if (eatom) {
fwtmp += (flt_t)0.5 * evdwl + (flt_t)0.5 * ecoul;
if (NEWTON_PAIR)
f[j].w += (flt_t)0.5 * evdwl + (flt_t)0.5 * ecoul;
}
}
if (NEWTON_PAIR == 0)
IP_PRE_ev_tally_nborv(vflag, tdelx[jj], tdely[jj], tdelz[jj],
fpx, fpy, fpz);
} // for jj
if (NEWTON_PAIR) {
f[i].x += fxtmp;
@ -449,33 +449,33 @@ void PairLJCharmmCoulLongIntel::eval(const int offload, const int vflag,
f[i].y = fytmp;
f[i].z = fztmp;
}
IP_PRE_ev_tally_atomq(NEWTON_PAIR, EFLAG, vflag, f, fwtmp);
IP_PRE_ev_tally_atomq(NEWTON_PAIR, EFLAG, vflag, f, fwtmp);
} // for ii
IP_PRE_fdotr_reduce_omp(NEWTON_PAIR, nall, minlocal, nthreads, f_start,
f_stride, x, offload, vflag, ov0, ov1, ov2, ov3,
ov4, ov5);
f_stride, x, offload, vflag, ov0, ov1, ov2, ov3,
ov4, ov5);
} // end of omp parallel region
IP_PRE_fdotr_reduce(NEWTON_PAIR, nall, nthreads, f_stride, vflag,
ov0, ov1, ov2, ov3, ov4, ov5);
ov0, ov1, ov2, ov3, ov4, ov5);
if (EFLAG) {
if (NEWTON_PAIR == 0) {
oevdwl *= (acc_t)0.5;
oecoul *= (acc_t)0.5;
oevdwl *= (acc_t)0.5;
oecoul *= (acc_t)0.5;
}
ev_global[0] = oevdwl;
ev_global[1] = oecoul;
}
if (vflag) {
if (NEWTON_PAIR == 0) {
ov0 *= (acc_t)0.5;
ov1 *= (acc_t)0.5;
ov2 *= (acc_t)0.5;
ov3 *= (acc_t)0.5;
ov4 *= (acc_t)0.5;
ov5 *= (acc_t)0.5;
ov0 *= (acc_t)0.5;
ov1 *= (acc_t)0.5;
ov2 *= (acc_t)0.5;
ov3 *= (acc_t)0.5;
ov4 *= (acc_t)0.5;
ov5 *= (acc_t)0.5;
}
ev_global[2] = ov0;
ev_global[3] = ov1;
@ -556,7 +556,7 @@ void PairLJCharmmCoulLongIntel::pack_force_const(ForceConst<flt_t> &fc,
double cut, cutneigh;
if (cut_lj > cut_coul)
error->all(FLERR,
"Intel varient of lj/charmm/coul/long expects lj cutoff<=coulombic");
"Intel varient of lj/charmm/coul/long expects lj cutoff<=coulombic");
for (int i = 1; i <= atom->ntypes; i++) {
for (int j = i; j <= atom->ntypes; j++) {
if (setflag[i][j] != 0 || (setflag[i][i] != 0 && setflag[j][j] != 0)) {
@ -637,7 +637,7 @@ template <class flt_t>
void PairLJCharmmCoulLongIntel::ForceConst<flt_t>::set_ntypes(const int ntypes,
const int ntable,
Memory *memory,
const int cop) {
const int cop) {
if ( (ntypes != _ntypes || ntable != _ntable) ) {
if (_ntypes > 0) {
#ifdef _LMP_INTEL_OFFLOAD
@ -653,12 +653,12 @@ void PairLJCharmmCoulLongIntel::ForceConst<flt_t>::set_ntypes(const int ntypes,
if (ospecial_lj != NULL && ocutsq != NULL && olj != NULL &&
otable != NULL && oetable != NULL && odetable != NULL &&
octable != NULL && odctable != NULL && ospecial_coul != NULL &&
cop >= 0) {
cop >= 0) {
#pragma offload_transfer target(mic:cop) \
nocopy(ospecial_lj, ospecial_coul: alloc_if(0) free_if(1)) \
nocopy(ocutsq, olj: alloc_if(0) free_if(1)) \
nocopy(otable: alloc_if(0) free_if(1)) \
nocopy(oetable, odetable, octable, odctable: alloc_if(0) free_if(1))
nocopy(ocutsq, olj: alloc_if(0) free_if(1)) \
nocopy(otable: alloc_if(0) free_if(1)) \
nocopy(oetable, odetable, octable, odctable: alloc_if(0) free_if(1))
}
#endif
@ -694,7 +694,7 @@ void PairLJCharmmCoulLongIntel::ForceConst<flt_t>::set_ntypes(const int ntypes,
if (ospecial_lj != NULL && ocutsq != NULL && olj != NULL &&
otable !=NULL && oetable != NULL && odetable != NULL &&
octable != NULL && odctable != NULL && ospecial_coul != NULL &&
cop >= 0) {
cop >= 0) {
#pragma offload_transfer target(mic:cop) \
nocopy(ospecial_lj: length(4) alloc_if(1) free_if(0)) \
nocopy(ospecial_coul: length(4) alloc_if(1) free_if(0)) \

View File

@ -50,8 +50,8 @@ class PairLJCharmmCoulLongIntel : public PairLJCharmmCoulLong {
const ForceConst<flt_t> &fc);
template <int EFLAG, int NEWTON_PAIR, class flt_t, class acc_t>
void eval(const int offload, const int vflag,
IntelBuffers<flt_t,acc_t> * buffers,
const ForceConst<flt_t> &fc, const int astart, const int aend);
IntelBuffers<flt_t,acc_t> * buffers,
const ForceConst<flt_t> &fc, const int astart, const int aend);
template <class flt_t, class acc_t>
void pack_force_const(ForceConst<flt_t> &fc,
@ -75,7 +75,7 @@ class PairLJCharmmCoulLongIntel : public PairLJCharmmCoulLong {
~ForceConst() { set_ntypes(0,0,NULL,_cop); }
void set_ntypes(const int ntypes, const int ntable, Memory *memory,
const int cop);
const int cop);
private:
int _ntypes, _ntable, _cop;

View File

@ -68,8 +68,8 @@ void PairLJCutCoulLongIntel::compute(int eflag, int vflag)
template <class flt_t, class acc_t>
void PairLJCutCoulLongIntel::compute(int eflag, int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
{
if (eflag || vflag) {
ev_setup(eflag,vflag);
@ -92,7 +92,7 @@ void PairLJCutCoulLongIntel::compute(int eflag, int vflag,
{
int ifrom, ito, tid;
IP_PRE_omp_range_id_align(ifrom, ito, tid, atom->nlocal + atom->nghost,
packthreads, sizeof(ATOM_T));
packthreads, sizeof(ATOM_T));
buffers->thr_pack(ifrom,ito,ago);
}
fix->stop_watch(TIME_PACK);
@ -124,9 +124,9 @@ void PairLJCutCoulLongIntel::compute(int eflag, int vflag,
template <int EFLAG, int NEWTON_PAIR, class flt_t, class acc_t>
void PairLJCutCoulLongIntel::eval(const int offload, const int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc,
const int astart, const int aend)
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc,
const int astart, const int aend)
{
const int inum = aend - astart;
if (inum == 0) return;
@ -171,8 +171,8 @@ void PairLJCutCoulLongIntel::eval(const int offload, const int vflag,
// Determine how much data to transfer
int x_size, q_size, f_stride, ev_size, separate_flag;
IP_PRE_get_transfern(ago, NEWTON_PAIR, EFLAG, vflag,
buffers, offload, fix, separate_flag,
x_size, q_size, ev_size, f_stride);
buffers, offload, fix, separate_flag,
x_size, q_size, ev_size, f_stride);
int tc;
FORCE_T * _noalias f_start;
@ -208,7 +208,7 @@ void PairLJCutCoulLongIntel::eval(const int offload, const int vflag,
in(ccachex,ccachey,ccachez,ccachew:length(0) alloc_if(0) free_if(0)) \
in(ccachei,ccachej:length(0) alloc_if(0) free_if(0)) \
in(astart,nthreads,qqrd2e,g_ewald,inum,nall,ntypes,vflag,eatom) \
in(ccache_stride,f_stride,nlocal,minlocal,separate_flag,offload) \
in(ccache_stride,f_stride,nlocal,minlocal,separate_flag,offload) \
out(f_start:length(f_stride) alloc_if(0) free_if(0)) \
out(ev_global:length(ev_size) alloc_if(0) free_if(0)) \
out(timer_compute:length(1) alloc_if(0) free_if(0)) \
@ -220,7 +220,7 @@ void PairLJCutCoulLongIntel::eval(const int offload, const int vflag,
#endif
IP_PRE_repack_for_offload(NEWTON_PAIR, separate_flag, nlocal, nall,
f_stride, x, q);
f_stride, x, q);
acc_t oevdwl, oecoul, ov0, ov1, ov2, ov3, ov4, ov5;
if (EFLAG) oevdwl = oecoul = (acc_t)0;
@ -261,18 +261,18 @@ void PairLJCutCoulLongIntel::eval(const int offload, const int vflag,
const int jnum = numneigh[i];
acc_t fxtmp,fytmp,fztmp,fwtmp;
acc_t sevdwl, secoul, sv0, sv1, sv2, sv3, sv4, sv5;
acc_t sevdwl, secoul, sv0, sv1, sv2, sv3, sv4, sv5;
const flt_t xtmp = x[i].x;
const flt_t ytmp = x[i].y;
const flt_t ztmp = x[i].z;
const flt_t qtmp = q[i];
fxtmp = fytmp = fztmp = (acc_t)0;
if (EFLAG) fwtmp = sevdwl = secoul = (acc_t)0;
if (NEWTON_PAIR == 0)
if (vflag==1) sv0 = sv1 = sv2 = sv3 = sv4 = sv5 = (acc_t)0;
if (EFLAG) fwtmp = sevdwl = secoul = (acc_t)0;
if (NEWTON_PAIR == 0)
if (vflag==1) sv0 = sv1 = sv2 = sv3 = sv4 = sv5 = (acc_t)0;
int ej = 0;
int ej = 0;
#if defined(LMP_SIMD_COMPILER)
#pragma vector aligned
#pragma ivdep
@ -282,91 +282,91 @@ void PairLJCutCoulLongIntel::eval(const int offload, const int vflag,
const flt_t delx = xtmp - x[j].x;
const flt_t dely = ytmp - x[j].y;
const flt_t delz = ztmp - x[j].z;
const int jtype = x[j].w;
const int jtype = x[j].w;
const flt_t rsq = delx * delx + dely * dely + delz * delz;
if (rsq < c_forcei[jtype].cutsq) {
trsq[ej]=rsq;
tdelx[ej]=delx;
tdely[ej]=dely;
tdelz[ej]=delz;
tjtype[ej]=jtype;
tj[ej]=jlist[jj];
ej++;
}
}
if (rsq < c_forcei[jtype].cutsq) {
trsq[ej]=rsq;
tdelx[ej]=delx;
tdely[ej]=dely;
tdelz[ej]=delz;
tjtype[ej]=jtype;
tj[ej]=jlist[jj];
ej++;
}
}
#if defined(LMP_SIMD_COMPILER)
#pragma vector aligned
#pragma vector aligned
#pragma simd reduction(+:fxtmp, fytmp, fztmp, fwtmp, sevdwl, secoul, \
sv0, sv1, sv2, sv3, sv4, sv5)
sv0, sv1, sv2, sv3, sv4, sv5)
#endif
for (int jj = 0; jj < ej; jj++) {
flt_t forcecoul, forcelj, evdwl, ecoul;
forcecoul = forcelj = evdwl = ecoul = (flt_t)0.0;
const int j = tj[jj] & NEIGHMASK;
const int j = tj[jj] & NEIGHMASK;
const int sbindex = tj[jj] >> SBBITS & 3;
const int jtype = tjtype[jj];
const flt_t rsq = trsq[jj];
const int jtype = tjtype[jj];
const flt_t rsq = trsq[jj];
const flt_t r2inv = (flt_t)1.0 / rsq;
#ifdef INTEL_ALLOW_TABLE
if (!ncoultablebits || rsq <= tabinnersq) {
if (!ncoultablebits || rsq <= tabinnersq) {
#endif
const flt_t A1 = 0.254829592;
const flt_t A2 = -0.284496736;
const flt_t A3 = 1.421413741;
const flt_t A4 = -1.453152027;
const flt_t A5 = 1.061405429;
const flt_t EWALD_F = 1.12837917;
const flt_t INV_EWALD_P = 1.0 / 0.3275911;
const flt_t r = (flt_t)1.0 / sqrt(r2inv);
const flt_t grij = g_ewald * r;
const flt_t expm2 = exp(-grij * grij);
const flt_t t = INV_EWALD_P / (INV_EWALD_P + grij);
const flt_t erfc = t * (A1+t*(A2+t*(A3+t*(A4+t*A5)))) * expm2;
const flt_t prefactor = qqrd2e * qtmp * q[j] / r;
forcecoul = prefactor * (erfc + EWALD_F * grij * expm2);
if (EFLAG) ecoul = prefactor * erfc;
const flt_t adjust = ((flt_t)1.0 - special_coul[sbindex])*
prefactor;
forcecoul -= adjust;
if (EFLAG) ecoul -= adjust;
const flt_t A1 = 0.254829592;
const flt_t A2 = -0.284496736;
const flt_t A3 = 1.421413741;
const flt_t A4 = -1.453152027;
const flt_t A5 = 1.061405429;
const flt_t EWALD_F = 1.12837917;
const flt_t INV_EWALD_P = 1.0 / 0.3275911;
const flt_t r = (flt_t)1.0 / sqrt(r2inv);
const flt_t grij = g_ewald * r;
const flt_t expm2 = exp(-grij * grij);
const flt_t t = INV_EWALD_P / (INV_EWALD_P + grij);
const flt_t erfc = t * (A1+t*(A2+t*(A3+t*(A4+t*A5)))) * expm2;
const flt_t prefactor = qqrd2e * qtmp * q[j] / r;
forcecoul = prefactor * (erfc + EWALD_F * grij * expm2);
if (EFLAG) ecoul = prefactor * erfc;
const flt_t adjust = ((flt_t)1.0 - special_coul[sbindex])*
prefactor;
forcecoul -= adjust;
if (EFLAG) ecoul -= adjust;
#ifdef INTEL_ALLOW_TABLE
} else {
float rsq_lookup = rsq;
const int itable = (__intel_castf32_u32(rsq_lookup) &
ncoulmask) >> ncoulshiftbits;
const flt_t fraction = (rsq_lookup - table[itable].r) *
table[itable].dr;
float rsq_lookup = rsq;
const int itable = (__intel_castf32_u32(rsq_lookup) &
ncoulmask) >> ncoulshiftbits;
const flt_t fraction = (rsq_lookup - table[itable].r) *
table[itable].dr;
const flt_t tablet = table[itable].f +
fraction * table[itable].df;
forcecoul = qtmp * q[j] * tablet;
if (EFLAG) ecoul = qtmp * q[j] * (etable[itable] +
fraction * detable[itable]);
if (sbindex) {
const flt_t table2 = ctable[itable] +
fraction * dctable[itable];
const flt_t prefactor = qtmp * q[j] * table2;
const flt_t adjust = ((flt_t)1.0 - special_coul[sbindex]) *
prefactor;
forcecoul -= adjust;
if (EFLAG) ecoul -= adjust;
}
}
const flt_t tablet = table[itable].f +
fraction * table[itable].df;
forcecoul = qtmp * q[j] * tablet;
if (EFLAG) ecoul = qtmp * q[j] * (etable[itable] +
fraction * detable[itable]);
if (sbindex) {
const flt_t table2 = ctable[itable] +
fraction * dctable[itable];
const flt_t prefactor = qtmp * q[j] * table2;
const flt_t adjust = ((flt_t)1.0 - special_coul[sbindex]) *
prefactor;
forcecoul -= adjust;
if (EFLAG) ecoul -= adjust;
}
}
#endif
#ifdef INTEL_VMASK
if (rsq < c_forcei[jtype].cut_ljsq) {
#endif
#ifdef INTEL_VMASK
if (rsq < c_forcei[jtype].cut_ljsq) {
#endif
flt_t r6inv = r2inv * r2inv * r2inv;
forcelj = r6inv * (c_forcei[jtype].lj1 * r6inv -
c_forcei[jtype].lj2);
c_forcei[jtype].lj2);
if (EFLAG) evdwl = r6inv*(c_energyi[jtype].lj3 * r6inv -
c_energyi[jtype].lj4) -
c_energyi[jtype].offset;
@ -376,14 +376,14 @@ void PairLJCutCoulLongIntel::eval(const int offload, const int vflag,
forcelj *= factor_lj;
if (EFLAG) evdwl *= factor_lj;
}
#ifdef INTEL_VMASK
}
#else
if (rsq > c_forcei[jtype].cut_ljsq)
{ forcelj = (flt_t)0.0; evdwl = (flt_t)0.0; }
#endif
#ifdef INTEL_VMASK
}
#else
if (rsq > c_forcei[jtype].cut_ljsq)
{ forcelj = (flt_t)0.0; evdwl = (flt_t)0.0; }
#endif
const flt_t fpair = (forcecoul + forcelj) * r2inv;
const flt_t fpair = (forcecoul + forcelj) * r2inv;
const flt_t fpx = fpair * tdelx[jj];
fxtmp += fpx;
if (NEWTON_PAIR) f[j].x -= fpx;
@ -394,58 +394,58 @@ void PairLJCutCoulLongIntel::eval(const int offload, const int vflag,
fztmp += fpz;
if (NEWTON_PAIR) f[j].z -= fpz;
if (EFLAG) {
sevdwl += evdwl;
secoul += ecoul;
if (eatom) {
fwtmp += (flt_t)0.5 * evdwl + (flt_t)0.5 * ecoul;
if (NEWTON_PAIR)
f[j].w += (flt_t)0.5 * evdwl + (flt_t)0.5 * ecoul;
if (EFLAG) {
sevdwl += evdwl;
secoul += ecoul;
if (eatom) {
fwtmp += (flt_t)0.5 * evdwl + (flt_t)0.5 * ecoul;
if (NEWTON_PAIR)
f[j].w += (flt_t)0.5 * evdwl + (flt_t)0.5 * ecoul;
}
}
if (NEWTON_PAIR == 0)
IP_PRE_ev_tally_nborv(vflag, tdelx[jj], tdely[jj], tdelz[jj],
fpx, fpy, fpz);
}
if (NEWTON_PAIR == 0)
IP_PRE_ev_tally_nborv(vflag, tdelx[jj], tdely[jj], tdelz[jj],
fpx, fpy, fpz);
} // for jj
if (NEWTON_PAIR) {
if (NEWTON_PAIR) {
f[i].x += fxtmp;
f[i].y += fytmp;
f[i].z += fztmp;
f[i].y += fytmp;
f[i].z += fztmp;
} else {
f[i].x = fxtmp;
f[i].y = fytmp;
f[i].z = fztmp;
f[i].y = fytmp;
f[i].z = fztmp;
}
IP_PRE_ev_tally_atomq(NEWTON_PAIR, EFLAG, vflag, f, fwtmp);
IP_PRE_ev_tally_atomq(NEWTON_PAIR, EFLAG, vflag, f, fwtmp);
} // for ii
IP_PRE_fdotr_reduce_omp(NEWTON_PAIR, nall, minlocal, nthreads, f_start,
f_stride, x, offload, vflag, ov0, ov1, ov2, ov3,
ov4, ov5);
f_stride, x, offload, vflag, ov0, ov1, ov2, ov3,
ov4, ov5);
} // end of omp parallel region
IP_PRE_fdotr_reduce(NEWTON_PAIR, nall, nthreads, f_stride, vflag,
ov0, ov1, ov2, ov3, ov4, ov5);
ov0, ov1, ov2, ov3, ov4, ov5);
if (EFLAG) {
if (NEWTON_PAIR == 0) {
oevdwl *= (acc_t)0.5;
oecoul *= (acc_t)0.5;
oevdwl *= (acc_t)0.5;
oecoul *= (acc_t)0.5;
}
ev_global[0] = oevdwl;
ev_global[1] = oecoul;
}
if (vflag) {
if (NEWTON_PAIR == 0) {
ov0 *= (acc_t)0.5;
ov1 *= (acc_t)0.5;
ov2 *= (acc_t)0.5;
ov3 *= (acc_t)0.5;
ov4 *= (acc_t)0.5;
ov5 *= (acc_t)0.5;
}
ov0 *= (acc_t)0.5;
ov1 *= (acc_t)0.5;
ov2 *= (acc_t)0.5;
ov3 *= (acc_t)0.5;
ov4 *= (acc_t)0.5;
ov5 *= (acc_t)0.5;
}
ev_global[2] = ov0;
ev_global[3] = ov1;
ev_global[4] = ov2;
@ -547,8 +547,8 @@ void PairLJCutCoulLongIntel::pack_force_const(ForceConst<flt_t> &fc,
for (int i = 0; i < tp1; i++) {
for (int j = 0; j < tp1; j++) {
if (cutsq[i][j] < cut_ljsq[i][j])
error->all(FLERR,
"Intel variant of lj/cut/coul/long expects lj cutoff<=coulombic");
error->all(FLERR,
"Intel variant of lj/cut/coul/long expects lj cutoff<=coulombic");
fc.c_force[i][j].cutsq = cutsq[i][j];
fc.c_force[i][j].cut_ljsq = cut_ljsq[i][j];
fc.c_force[i][j].lj1 = lj1[i][j];
@ -598,9 +598,9 @@ void PairLJCutCoulLongIntel::pack_force_const(ForceConst<flt_t> &fc,
template <class flt_t>
void PairLJCutCoulLongIntel::ForceConst<flt_t>::set_ntypes(const int ntypes,
const int ntable,
Memory *memory,
const int cop) {
const int ntable,
Memory *memory,
const int cop) {
if ( (ntypes != _ntypes || ntable != _ntable) ) {
if (_ntypes > 0) {
#ifdef _LMP_INTEL_OFFLOAD
@ -619,9 +619,9 @@ void PairLJCutCoulLongIntel::ForceConst<flt_t>::set_ntypes(const int ntypes,
ospecial_coul != NULL && _cop >= 0) {
#pragma offload_transfer target(mic:cop) \
nocopy(ospecial_lj, ospecial_coul: alloc_if(0) free_if(1)) \
nocopy(oc_force, oc_energy: alloc_if(0) free_if(1)) \
nocopy(otable: alloc_if(0) free_if(1)) \
nocopy(oetable, odetable, octable, odctable: alloc_if(0) free_if(1))
nocopy(oc_force, oc_energy: alloc_if(0) free_if(1)) \
nocopy(otable: alloc_if(0) free_if(1)) \
nocopy(oetable, odetable, octable, odctable: alloc_if(0) free_if(1))
}
#endif

View File

@ -50,8 +50,8 @@ class PairLJCutCoulLongIntel : public PairLJCutCoulLong {
const ForceConst<flt_t> &fc);
template <int EFLAG, int NEWTON_PAIR, class flt_t, class acc_t>
void eval(const int offload, const int vflag,
IntelBuffers<flt_t,acc_t> * buffers,
const ForceConst<flt_t> &fc, const int astart, const int aend);
IntelBuffers<flt_t,acc_t> * buffers,
const ForceConst<flt_t> &fc, const int astart, const int aend);
template <class flt_t, class acc_t>
void pack_force_const(ForceConst<flt_t> &fc,
@ -76,7 +76,7 @@ class PairLJCutCoulLongIntel : public PairLJCutCoulLong {
~ForceConst() { set_ntypes(0,0,NULL,_cop); }
void set_ntypes(const int ntypes, const int ntable, Memory *memory,
const int cop);
const int cop);
private:
int _ntypes, _ntable, _cop;

View File

@ -96,37 +96,37 @@ void PairLJCutIntel::compute(int eflag, int vflag,
if (_onetype) {
if (eflag) {
if (force->newton_pair) {
eval<1,1,1>(1, ovflag, buffers, fc, 0, offload_end);
eval<1,1,1>(0, ovflag, buffers, fc, host_start, inum);
eval<1,1,1>(1, ovflag, buffers, fc, 0, offload_end);
eval<1,1,1>(0, ovflag, buffers, fc, host_start, inum);
} else {
eval<1,1,0>(1, ovflag, buffers, fc, 0, offload_end);
eval<1,1,0>(0, ovflag, buffers, fc, host_start, inum);
eval<1,1,0>(1, ovflag, buffers, fc, 0, offload_end);
eval<1,1,0>(0, ovflag, buffers, fc, host_start, inum);
}
} else {
if (force->newton_pair) {
eval<1,0,1>(1, ovflag, buffers, fc, 0, offload_end);
eval<1,0,1>(0, ovflag, buffers, fc, host_start, inum);
eval<1,0,1>(1, ovflag, buffers, fc, 0, offload_end);
eval<1,0,1>(0, ovflag, buffers, fc, host_start, inum);
} else {
eval<1,0,0>(1, ovflag, buffers, fc, 0, offload_end);
eval<1,0,0>(0, ovflag, buffers, fc, host_start, inum);
eval<1,0,0>(1, ovflag, buffers, fc, 0, offload_end);
eval<1,0,0>(0, ovflag, buffers, fc, host_start, inum);
}
}
} else {
if (eflag) {
if (force->newton_pair) {
eval<0,1,1>(1, ovflag, buffers, fc, 0, offload_end);
eval<0,1,1>(0, ovflag, buffers, fc, host_start, inum);
eval<0,1,1>(1, ovflag, buffers, fc, 0, offload_end);
eval<0,1,1>(0, ovflag, buffers, fc, host_start, inum);
} else {
eval<0,1,0>(1, ovflag, buffers, fc, 0, offload_end);
eval<0,1,0>(0, ovflag, buffers, fc, host_start, inum);
eval<0,1,0>(1, ovflag, buffers, fc, 0, offload_end);
eval<0,1,0>(0, ovflag, buffers, fc, host_start, inum);
}
} else {
if (force->newton_pair) {
eval<0,0,1>(1, ovflag, buffers, fc, 0, offload_end);
eval<0,0,1>(0, ovflag, buffers, fc, host_start, inum);
eval<0,0,1>(1, ovflag, buffers, fc, 0, offload_end);
eval<0,0,1>(0, ovflag, buffers, fc, host_start, inum);
} else {
eval<0,0,0>(1, ovflag, buffers, fc, 0, offload_end);
eval<0,0,0>(0, ovflag, buffers, fc, host_start, inum);
eval<0,0,0>(1, ovflag, buffers, fc, 0, offload_end);
eval<0,0,0>(0, ovflag, buffers, fc, host_start, inum);
}
}
}
@ -161,8 +161,8 @@ void PairLJCutIntel::eval(const int offload, const int vflag,
// Determine how much data to transfer
int x_size, q_size, f_stride, ev_size, separate_flag;
IP_PRE_get_transfern(ago, NEWTON_PAIR, EFLAG, vflag,
buffers, offload, fix, separate_flag,
x_size, q_size, ev_size, f_stride);
buffers, offload, fix, separate_flag,
x_size, q_size, ev_size, f_stride);
int tc;
FORCE_T * _noalias f_start;
@ -176,7 +176,7 @@ void PairLJCutIntel::eval(const int offload, const int vflag,
#endif
IP_PRE_repack_for_offload(NEWTON_PAIR, separate_flag, nlocal, nall,
f_stride, x, 0);
f_stride, x, 0);
acc_t oevdwl, ov0, ov1, ov2, ov3, ov4, ov5;
if (EFLAG) oevdwl = (acc_t)0;
@ -200,23 +200,23 @@ void PairLJCutIntel::eval(const int offload, const int vflag,
flt_t cutsq, lj1, lj2, lj3, lj4, offset;
if (ONETYPE) {
cutsq = ljc12o[3].cutsq;
lj1 = ljc12o[3].lj1;
lj2 = ljc12o[3].lj2;
lj3 = lj34[3].lj3;
lj4 = lj34[3].lj4;
offset = ljc12o[3].offset;
cutsq = ljc12o[3].cutsq;
lj1 = ljc12o[3].lj1;
lj2 = ljc12o[3].lj2;
lj3 = lj34[3].lj3;
lj4 = lj34[3].lj4;
offset = ljc12o[3].offset;
}
for (int i = iifrom; i < iito; i += iip) {
int itype, ptr_off;
const FC_PACKED1_T * _noalias ljc12oi;
const FC_PACKED2_T * _noalias lj34i;
if (!ONETYPE) {
itype = x[i].w;
if (!ONETYPE) {
itype = x[i].w;
ptr_off = itype * ntypes;
ljc12oi = ljc12o + ptr_off;
lj34i = lj34 + ptr_off;
}
}
const int * _noalias const jlist = firstneigh + cnumneigh[i];
const int jnum = numneigh[i];
@ -228,113 +228,113 @@ void PairLJCutIntel::eval(const int offload, const int vflag,
const flt_t ytmp = x[i].y;
const flt_t ztmp = x[i].z;
fxtmp = fytmp = fztmp = (acc_t)0;
if (EFLAG) fwtmp = sevdwl = (acc_t)0;
if (NEWTON_PAIR == 0)
if (vflag==1) sv0 = sv1 = sv2 = sv3 = sv4 = sv5 = (acc_t)0;
if (EFLAG) fwtmp = sevdwl = (acc_t)0;
if (NEWTON_PAIR == 0)
if (vflag==1) sv0 = sv1 = sv2 = sv3 = sv4 = sv5 = (acc_t)0;
#if defined(LMP_SIMD_COMPILER)
#pragma vector aligned
#pragma simd reduction(+:fxtmp, fytmp, fztmp, fwtmp, sevdwl, \
sv0, sv1, sv2, sv3, sv4, sv5)
#pragma simd reduction(+:fxtmp, fytmp, fztmp, fwtmp, sevdwl, \
sv0, sv1, sv2, sv3, sv4, sv5)
#endif
for (int jj = 0; jj < jnum; jj++) {
flt_t forcelj, evdwl;
forcelj = evdwl = (flt_t)0.0;
int j, jtype, sbindex;
if (!ONETYPE) {
sbindex = jlist[jj] >> SBBITS & 3;
j = jlist[jj] & NEIGHMASK;
} else
j = jlist[jj];
int j, jtype, sbindex;
if (!ONETYPE) {
sbindex = jlist[jj] >> SBBITS & 3;
j = jlist[jj] & NEIGHMASK;
} else
j = jlist[jj];
const flt_t delx = xtmp - x[j].x;
const flt_t dely = ytmp - x[j].y;
const flt_t delz = ztmp - x[j].z;
if (!ONETYPE) {
jtype = x[j].w;
jtype = x[j].w;
cutsq = ljc12oi[jtype].cutsq;
}
}
const flt_t rsq = delx * delx + dely * dely + delz * delz;
#ifdef INTEL_VMASK
if (rsq < cutsq) {
#endif
#endif
flt_t factor_lj;
if (!ONETYPE) factor_lj = special_lj[sbindex];
if (!ONETYPE) factor_lj = special_lj[sbindex];
flt_t r2inv = 1.0 / rsq;
flt_t r6inv = r2inv * r2inv * r2inv;
#ifndef INTEL_VMASK
if (rsq > cutsq) r6inv = (flt_t)0.0;
#endif
if (!ONETYPE) {
lj1 = ljc12oi[jtype].lj1;
lj2 = ljc12oi[jtype].lj2;
}
if (rsq > cutsq) r6inv = (flt_t)0.0;
#endif
if (!ONETYPE) {
lj1 = ljc12oi[jtype].lj1;
lj2 = ljc12oi[jtype].lj2;
}
forcelj = r6inv * (lj1 * r6inv - lj2);
flt_t fpair;
if (!ONETYPE)
fpair = factor_lj * forcelj * r2inv;
else
fpair = forcelj * r2inv;
if (!ONETYPE)
fpair = factor_lj * forcelj * r2inv;
else
fpair = forcelj * r2inv;
const flt_t fpx = fpair * delx;
fxtmp += fpx;
if (NEWTON_PAIR) f[j].x -= fpx;
const flt_t fpy = fpair * dely;
fytmp += fpy;
if (NEWTON_PAIR) f[j].y -= fpy;
const flt_t fpz = fpair * delz;
fztmp += fpz;
if (NEWTON_PAIR) f[j].z -= fpz;
const flt_t fpx = fpair * delx;
fxtmp += fpx;
if (NEWTON_PAIR) f[j].x -= fpx;
const flt_t fpy = fpair * dely;
fytmp += fpy;
if (NEWTON_PAIR) f[j].y -= fpy;
const flt_t fpz = fpair * delz;
fztmp += fpz;
if (NEWTON_PAIR) f[j].z -= fpz;
if (EFLAG) {
if (!ONETYPE) {
lj3 = lj34i[jtype].lj3;
lj4 = lj34i[jtype].lj4;
offset = ljc12oi[jtype].offset;
}
evdwl = r6inv * (lj3 * r6inv - lj4);
if (!ONETYPE) {
lj3 = lj34i[jtype].lj3;
lj4 = lj34i[jtype].lj4;
offset = ljc12oi[jtype].offset;
}
evdwl = r6inv * (lj3 * r6inv - lj4);
#ifdef INTEL_VMASK
evdwl -= offset;
evdwl -= offset;
#else
if (rsq < cutsq) evdwl -= offset;
if (rsq < cutsq) evdwl -= offset;
#endif
if (!ONETYPE) evdwl *= factor_lj;
sevdwl += evdwl;
if (eatom) {
if (!ONETYPE) evdwl *= factor_lj;
sevdwl += evdwl;
if (eatom) {
fwtmp += (flt_t)0.5 * evdwl;
if (NEWTON_PAIR)
f[j].w += (flt_t)0.5 * evdwl;
f[j].w += (flt_t)0.5 * evdwl;
}
}
}
if (NEWTON_PAIR == 0)
IP_PRE_ev_tally_nborv(vflag, delx, dely, delz, fpx, fpy, fpz);
if (NEWTON_PAIR == 0)
IP_PRE_ev_tally_nborv(vflag, delx, dely, delz, fpx, fpy, fpz);
#ifdef INTEL_VMASK
} // if rsq
#endif
} // for jj
if (NEWTON_PAIR) {
f[i].x += fxtmp;
f[i].y += fytmp;
f[i].z += fztmp;
} else {
f[i].x = fxtmp;
f[i].y = fytmp;
f[i].z = fztmp;
}
if (NEWTON_PAIR) {
f[i].x += fxtmp;
f[i].y += fytmp;
f[i].z += fztmp;
} else {
f[i].x = fxtmp;
f[i].y = fytmp;
f[i].z = fztmp;
}
IP_PRE_ev_tally_atom(NEWTON_PAIR, EFLAG, vflag, f, fwtmp);
IP_PRE_ev_tally_atom(NEWTON_PAIR, EFLAG, vflag, f, fwtmp);
} // for ii
IP_PRE_fdotr_reduce_omp(NEWTON_PAIR, nall, minlocal, nthreads, f_start,
f_stride, x, offload, vflag, ov0, ov1, ov2, ov3,
ov4, ov5);
f_stride, x, offload, vflag, ov0, ov1, ov2, ov3,
ov4, ov5);
} // end omp
IP_PRE_fdotr_reduce(NEWTON_PAIR, nall, nthreads, f_stride, vflag,
ov0, ov1, ov2, ov3, ov4, ov5);
ov0, ov1, ov2, ov3, ov4, ov5);
if (EFLAG) {
if (NEWTON_PAIR == 0) oevdwl *= (acc_t)0.5;
@ -343,12 +343,12 @@ void PairLJCutIntel::eval(const int offload, const int vflag,
}
if (vflag) {
if (NEWTON_PAIR == 0) {
ov0 *= (acc_t)0.5;
ov1 *= (acc_t)0.5;
ov2 *= (acc_t)0.5;
ov3 *= (acc_t)0.5;
ov4 *= (acc_t)0.5;
ov5 *= (acc_t)0.5;
ov0 *= (acc_t)0.5;
ov1 *= (acc_t)0.5;
ov2 *= (acc_t)0.5;
ov3 *= (acc_t)0.5;
ov4 *= (acc_t)0.5;
ov5 *= (acc_t)0.5;
}
ev_global[2] = ov0;
ev_global[3] = ov1;
@ -454,7 +454,7 @@ void PairLJCutIntel::pack_force_const(ForceConst<flt_t> &fc,
template <class flt_t>
void PairLJCutIntel::ForceConst<flt_t>::set_ntypes(const int ntypes,
Memory *memory,
const int cop) {
const int cop) {
if (ntypes != _ntypes) {
if (_ntypes > 0) {
fc_packed1 *oljc12o = ljc12o[0];

View File

@ -1,50 +1,50 @@
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing authors: William McDoniel (RWTH Aachen University)
------------------------------------------------------------------------- */
#include <math.h>
#include "pair_lj_long_coul_long_intel.h"
#include "atom.h"
#include "comm.h"
#include "force.h"
#include "group.h"
#include "kspace.h"
#include "memory.h"
#include "neighbor.h"
#include "neigh_list.h"
#include "neigh_request.h"
#include "memory.h"
#include "suffix.h"
using namespace LAMMPS_NS;
#define C_FORCE_T typename ForceConst<flt_t>::c_force_t
#define C_ENERGY_T typename ForceConst<flt_t>::c_energy_t
#define TABLE_T typename ForceConst<flt_t>::table_t
PairLJLongCoulLongIntel::PairLJLongCoulLongIntel(LAMMPS *lmp) :
PairLJLongCoulLong(lmp)
{
suffix_flag |= Suffix::INTEL;
respa_enable = 0;
cut_respa = NULL;
}
PairLJLongCoulLongIntel::~PairLJLongCoulLongIntel()
{
}
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing authors: William McDoniel (RWTH Aachen University)
------------------------------------------------------------------------- */
#include <math.h>
#include "pair_lj_long_coul_long_intel.h"
#include "atom.h"
#include "comm.h"
#include "force.h"
#include "group.h"
#include "kspace.h"
#include "memory.h"
#include "neighbor.h"
#include "neigh_list.h"
#include "neigh_request.h"
#include "memory.h"
#include "suffix.h"
using namespace LAMMPS_NS;
#define C_FORCE_T typename ForceConst<flt_t>::c_force_t
#define C_ENERGY_T typename ForceConst<flt_t>::c_energy_t
#define TABLE_T typename ForceConst<flt_t>::table_t
PairLJLongCoulLongIntel::PairLJLongCoulLongIntel(LAMMPS *lmp) :
PairLJLongCoulLong(lmp)
{
suffix_flag |= Suffix::INTEL;
respa_enable = 0;
cut_respa = NULL;
}
PairLJLongCoulLongIntel::~PairLJLongCoulLongIntel()
{
}

View File

@ -1,39 +1,39 @@
/* *- c++ -*- -----------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing authors: William McDoniel (RWTH Aachen University)
------------------------------------------------------------------------- */
#ifdef PAIR_CLASS
PairStyle(lj/long/coul/long/intel,PairLJLongCoulLongIntel)
#else
#ifndef LMP_PAIR_LJ_LONG_COUL_LONG_INTEL_H
#define LMP_PAIR_LJ_LONG_COUL_LONG_INTEL_H
#include "pair_lj_long_coul_long.h"
#include "fix_intel.h"
namespace LAMMPS_NS {
class PairLJLongCoulLongIntel : public PairLJLongCoulLong {
public:
PairLJLongCoulLongIntel(class LAMMPS *);
virtual ~PairLJLongCoulLongIntel();
};
}
#endif
#endif
/* *- c++ -*- -----------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing authors: William McDoniel (RWTH Aachen University)
------------------------------------------------------------------------- */
#ifdef PAIR_CLASS
PairStyle(lj/long/coul/long/intel,PairLJLongCoulLongIntel)
#else
#ifndef LMP_PAIR_LJ_LONG_COUL_LONG_INTEL_H
#define LMP_PAIR_LJ_LONG_COUL_LONG_INTEL_H
#include "pair_lj_long_coul_long.h"
#include "fix_intel.h"
namespace LAMMPS_NS {
class PairLJLongCoulLongIntel : public PairLJLongCoulLong {
public:
PairLJLongCoulLongIntel(class LAMMPS *);
virtual ~PairLJLongCoulLongIntel();
};
}
#endif
#endif

File diff suppressed because it is too large Load Diff

View File

@ -49,7 +49,7 @@ class PairSWIntel : public PairSW {
template <int SPQ, int ONETYPE, int EFLAG, class flt_t, class acc_t>
void eval(const int offload, const int vflag,
IntelBuffers<flt_t,acc_t> * buffers, const ForceConst<flt_t> &fc,
const int astart, const int aend, const int pad_width);
const int astart, const int aend, const int pad_width);
template <class flt_t, class acc_t>
void pack_force_const(ForceConst<flt_t> &fc,

View File

@ -47,7 +47,7 @@ void PairTersoffIntel::init_style()
{
if (comm->me == 0) {
error->warning(FLERR, "Tersoff/intel currently requires intel compiler. "
"Using MANYBODY version.");
"Using MANYBODY version.");
}
PairTersoff::init_style();
}
@ -87,7 +87,7 @@ PairTersoffIntel::PairTersoffIntel(LAMMPS *lmp) : PairTersoff(lmp)
void PairTersoffIntel::compute(int eflag, int vflag)
{
if (fix->precision()==FixIntel::PREC_MODE_MIXED) {
compute<float,double>(eflag, vflag, fix->get_mixed_buffers(),
compute<float,double>(eflag, vflag, fix->get_mixed_buffers(),
force_const_single);
} else if (fix->precision()==FixIntel::PREC_MODE_DOUBLE) {
compute<double,double>(eflag, vflag, fix->get_double_buffers(),
@ -104,8 +104,8 @@ void PairTersoffIntel::compute(int eflag, int vflag)
// do we need to calculate energy/virial
template <class flt_t, class acc_t>
void PairTersoffIntel::compute(int eflag, int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc)
{
if (eflag || vflag) {
ev_setup(eflag,vflag);
@ -127,13 +127,13 @@ void PairTersoffIntel::compute(int eflag, int vflag,
#endif
{
int ifrom, ito, tid;
IP_PRE_omp_range_id_align(ifrom, ito, tid, atom->nlocal + atom->nghost,
packthreads, sizeof(ATOM_T));
IP_PRE_omp_range_id_align(ifrom, ito, tid, atom->nlocal + atom->nghost,
packthreads, sizeof(ATOM_T));
buffers->thr_pack(ifrom,ito,ago);
}
fix->stop_watch(TIME_PACK);
}
int ovflag = 0;
if (vflag_fdotr) ovflag = 2;
else if (vflag) ovflag = 1;
@ -170,14 +170,14 @@ struct IntelKernelTersoff : public lmp_intel::vector_routines<flt_t, acc_t, mic>
// what's done in here is that they are inlined and vectorized
// attractive() also provides an option to compute zeta as well
static fvec zeta_vector(
const c_inner_t * param,
ivec xjw, bvec mask,
fvec vrij, fvec rsq2,
fvec vdijx, fvec vdijy, fvec vdijz,
const c_inner_t * param,
ivec xjw, bvec mask,
fvec vrij, fvec rsq2,
fvec vdijx, fvec vdijy, fvec vdijz,
fvec dikx, fvec diky, fvec dikz
);
static void force_zeta_vector(
const c_outer_t * param,
const c_outer_t * param,
ivec xjw,
bvec mask,
fvec vrijsq, fvec vzeta_ij,
@ -202,14 +202,14 @@ struct IntelKernelTersoff : public lmp_intel::vector_routines<flt_t, acc_t, mic>
// perform the actual computation
template<bool EFLAG>
static void kernel(
int iito, int iifrom, int eatom, int vflag,
int iito, int iifrom, int eatom, int vflag,
const int * _noalias const numneigh,
const int * _noalias const numneighhalf,
const int * _noalias const cnumneigh,
const int * _noalias const firstneigh, int ntypes,
const int * _noalias const cnumneigh,
const int * _noalias const firstneigh, int ntypes,
typename IntelBuffers<flt_t,acc_t>::atom_t * _noalias const x,
const c_inner_t * _noalias const c_inner,
const c_outer_t * _noalias const c_outer,
const c_inner_t * _noalias const c_inner,
const c_outer_t * _noalias const c_outer,
typename IntelBuffers<flt_t,acc_t>::vec3_acc_t * _noalias const f,
acc_t *evdwl
);
@ -217,14 +217,14 @@ struct IntelKernelTersoff : public lmp_intel::vector_routines<flt_t, acc_t, mic>
// perform one step of calculation, pass in i-j pairs of atoms (is, js)
template<int EFLAG>
static void kernel_step(
int eatom, int vflag,
int eatom, int vflag,
const int * _noalias const numneigh,
const int * _noalias const cnumneigh,
const int * _noalias const firstneigh,
const int * _noalias const cnumneigh,
const int * _noalias const firstneigh,
int ntypes,
typename IntelBuffers<flt_t,acc_t>::atom_t * _noalias const x,
const c_inner_t * _noalias const c_inner,
const c_outer_t * _noalias const c_outer,
const c_inner_t * _noalias const c_inner,
const c_outer_t * _noalias const c_outer,
typename IntelBuffers<flt_t,acc_t>::vec3_acc_t * _noalias const f,
avec *vsevdwl, int compress_idx, iarr is, iarr js, bvec vmask_repulsive
);
@ -233,12 +233,12 @@ struct IntelKernelTersoff : public lmp_intel::vector_routines<flt_t, acc_t, mic>
// with fixed i and a number of js
template<int EFLAG>
static void kernel_step_const_i(
int eatom, int vflag,
const int * _noalias const numneigh, const int * _noalias const cnumneigh,
const int * _noalias const firstneigh, int ntypes,
int eatom, int vflag,
const int * _noalias const numneigh, const int * _noalias const cnumneigh,
const int * _noalias const firstneigh, int ntypes,
typename IntelBuffers<flt_t,acc_t>::atom_t * _noalias const x,
const c_inner_t * _noalias const c_inner,
const c_outer_t * _noalias const c_outer,
const c_inner_t * _noalias const c_inner,
const c_outer_t * _noalias const c_outer,
typename IntelBuffers<flt_t,acc_t>::vec3_acc_t * _noalias const f,
avec *vsevdwl, int compress_idx, int i, iarr js, bvec vmask_repulsive
);
@ -255,9 +255,9 @@ struct IntelKernelTersoff : public lmp_intel::vector_routines<flt_t, acc_t, mic>
// This method is nearly identical to what happens in the other /intel styles
template <int EFLAG, class flt_t, class acc_t>
void PairTersoffIntel::eval(const int offload, const int vflag,
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc,
const int astart, const int aend)
IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc,
const int astart, const int aend)
{
const int inum = aend - astart;
if (inum == 0) return;
@ -289,8 +289,8 @@ void PairTersoffIntel::eval(const int offload, const int vflag,
// Determine how much data to transfer
int x_size, q_size, f_stride, ev_size, separate_flag;
IP_PRE_get_transfern(ago, 1, EFLAG, vflag,
buffers, offload, fix, separate_flag,
x_size, q_size, ev_size, f_stride);
buffers, offload, fix, separate_flag,
x_size, q_size, ev_size, f_stride);
int tc;
FORCE_T * _noalias f_start;
@ -326,8 +326,8 @@ void PairTersoffIntel::eval(const int offload, const int vflag,
#endif
#endif
IP_PRE_repack_for_offload(1, separate_flag, nlocal, nall,
f_stride, x, 0);
IP_PRE_repack_for_offload(1, separate_flag, nlocal, nall,
f_stride, x, 0);
acc_t oevdwl, oecoul, ov0, ov1, ov2, ov3, ov4, ov5;
if (EFLAG) oevdwl = oecoul = (acc_t)0;
@ -354,7 +354,7 @@ void PairTersoffIntel::eval(const int offload, const int vflag,
// Pick the variable i algorithm under specific conditions
// do use scalar algorithm with very short vectors
int VL = lmp_intel::vector_routines<flt_t,acc_t,lmp_intel::mode>::VL;
bool pack_i = VL >= 8 &&
bool pack_i = VL >= 8 &&
lmp_intel::vector_traits<lmp_intel::mode>::support_integer_and_gather_ops;
bool use_scalar = VL < 4;
if (use_scalar) {
@ -364,16 +364,16 @@ void PairTersoffIntel::eval(const int offload, const int vflag,
} else {
IntelKernelTersoff<flt_t,acc_t,lmp_intel::mode,false>::kernel<EFLAG>(ARGS);
}
if (EFLAG) oevdwl += sevdwl;
if (EFLAG) oevdwl += sevdwl;
}
IP_PRE_fdotr_reduce_omp(1, nall, minlocal, nthreads, f_start,
f_stride, x, offload, vflag, ov0, ov1, ov2, ov3,
ov4, ov5);
f_stride, x, offload, vflag, ov0, ov1, ov2, ov3,
ov4, ov5);
} // end of omp parallel region
IP_PRE_fdotr_reduce(1, nall, nthreads, f_stride, vflag,
ov0, ov1, ov2, ov3, ov4, ov5);
ov0, ov1, ov2, ov3, ov4, ov5);
if (EFLAG) {
ev_global[0] = oevdwl;
@ -431,7 +431,7 @@ void PairTersoffIntel::init_style()
error->all(FLERR,
"The 'package intel' command is required for /intel styles");
fix = static_cast<FixIntel *>(modify->fix[ifix]);
fix->pair_init_check();
fix->three_body_neighbor(1);
#ifdef _LMP_INTEL_OFFLOAD
@ -481,25 +481,25 @@ void PairTersoffIntel::pack_force_const(ForceConst<flt_t> &fc,
for (int k = 1; k < tp1; k++) {
Param * param = &params[elem2param[map[i]][map[j]][map[k]]];
fc.c_cutoff_inner[i][k][j].cutsq = static_cast<flt_t>(param->cutsq);
fc.c_inner_loop[i][j][k].lam3 = static_cast<flt_t>(param->lam3);
fc.c_inner_loop[i][j][k].lam3 = static_cast<flt_t>(param->lam3);
fc.c_inner_loop[i][j][k].bigr = static_cast<flt_t>(param->bigr);
fc.c_inner_loop[i][j][k].bigd = static_cast<flt_t>(param->bigd);
fc.c_inner_loop[i][j][k].c2 = static_cast<flt_t>(param->c * param->c);
fc.c_inner_loop[i][j][k].d2 = static_cast<flt_t>(param->d * param->d);
fc.c_inner_loop[i][j][k].h = static_cast<flt_t>(param->h);
fc.c_inner_loop[i][j][k].gamma = static_cast<flt_t>(param->gamma);
fc.c_inner_loop[i][j][k].powermint = static_cast<flt_t>(param->powermint);
fc.c_inner_loop[i][j][k].powermint = static_cast<flt_t>(param->powermint);
fc.c_inner[i][j][k].cutsq = static_cast<flt_t>(param->cutsq);
fc.c_inner[i][j][k].lam3 = static_cast<flt_t>(param->lam3);
fc.c_inner[i][j][k].lam3 = static_cast<flt_t>(param->lam3);
fc.c_inner[i][j][k].bigr = static_cast<flt_t>(param->bigr);
fc.c_inner[i][j][k].bigd = static_cast<flt_t>(param->bigd);
fc.c_inner[i][j][k].c2 = static_cast<flt_t>(param->c * param->c);
fc.c_inner[i][j][k].d2 = static_cast<flt_t>(param->d * param->d);
fc.c_inner[i][j][k].h = static_cast<flt_t>(param->h);
fc.c_inner[i][j][k].gamma = static_cast<flt_t>(param->gamma);
fc.c_inner[i][j][k].powermint = static_cast<flt_t>(param->powermint);
fc.c_inner[i][j][k].powermint = static_cast<flt_t>(param->powermint);
}
Param * param = &params[elem2param[map[i]][map[j]][map[j]]];
fc.c_cutoff_outer[i][j].cutsq = static_cast<flt_t>(param->cutsq);
@ -515,7 +515,7 @@ void PairTersoffIntel::pack_force_const(ForceConst<flt_t> &fc,
fc.c_second_loop[i][j].c2 = static_cast<flt_t>(param->c2);
fc.c_second_loop[i][j].c3 = static_cast<flt_t>(param->c3);
fc.c_second_loop[i][j].c4 = static_cast<flt_t>(param->c4);
fc.c_outer[i][j].cutsq = static_cast<flt_t>(param->cutsq);
fc.c_outer[i][j].bigr = static_cast<flt_t>(param->bigr);
fc.c_outer[i][j].bigd = static_cast<flt_t>(param->bigd);
@ -563,8 +563,8 @@ void PairTersoffIntel::pack_force_const(ForceConst<flt_t> &fc,
// As in any other /intel pair style
template <class flt_t>
void PairTersoffIntel::ForceConst<flt_t>::set_ntypes(const int ntypes,
Memory *memory,
const int cop) {
Memory *memory,
const int cop) {
if ( (ntypes != _ntypes) ) {
if (_ntypes > 0) {
#ifdef _LMP_INTEL_OFFLOAD
@ -575,12 +575,12 @@ void PairTersoffIntel::ForceConst<flt_t>::set_ntypes(const int ntypes,
c_cutoff_t * oc_cutoff_outer = c_cutoff_outer[0];
c_inner_t * oc_inner = c_inner[0][0];
c_outer_t * oc_outer = c_outer[0];
if (c_first_loop != NULL && c_second_loop != NULL &&
if (c_first_loop != NULL && c_second_loop != NULL &&
c_inner_loop != NULL && _cop >= 0) {
#pragma offload_transfer target(mic:cop) \
nocopy(oc_first_loop, oc_second_loop, oc_inner_loop: alloc_if(0) free_if(1)) \
nocopy(oc_cutoff_outer, oc_cutoff_inner: alloc_if(0) free_if(1)) \
nocopy(oc_first_loop, oc_second_loop, oc_inner_loop: alloc_if(0) free_if(1)) \
nocopy(oc_cutoff_outer, oc_cutoff_inner: alloc_if(0) free_if(1)) \
nocopy(oc_inner, oc_outer: alloc_if(0) free_if(0))
}
#endif
@ -614,7 +614,7 @@ void PairTersoffIntel::ForceConst<flt_t>::set_ntypes(const int ntypes,
int tp1sq = ntypes * ntypes;
int tp1cb = ntypes * ntypes * ntypes;
int tp1cb_pad = ntypes * ntypes * ntypes_pad;
if (oc_first_loop != NULL && oc_second_loop != NULL &&
if (oc_first_loop != NULL && oc_second_loop != NULL &&
oc_inner_loop != NULL && cop >= 0) {
#pragma offload_transfer target(mic:cop) \
nocopy(oc_first_loop: length(tp1sq) alloc_if(1) free_if(0)) \
@ -642,15 +642,15 @@ static const int N_CACHE = 8;
template<class flt_t, class acc_t, lmp_intel::CalculationMode mic, bool pack_i>
template<int EFLAG>
void IntelKernelTersoff<flt_t, acc_t, mic, pack_i>::kernel_step(
int eatom, int vflag,
const int * _noalias const numneigh, const int * _noalias const cnumneigh,
const int * _noalias const firstneigh, int ntypes,
int eatom, int vflag,
const int * _noalias const numneigh, const int * _noalias const cnumneigh,
const int * _noalias const firstneigh, int ntypes,
typename IntelBuffers<flt_t,acc_t>::atom_t * _noalias const x,
const typename PairTersoffIntel::ForceConst<flt_t>::c_inner_t * _noalias const c_inner,
const typename PairTersoffIntel::ForceConst<flt_t>::c_outer_t * _noalias const c_outer,
const typename PairTersoffIntel::ForceConst<flt_t>::c_inner_t * _noalias const c_inner,
const typename PairTersoffIntel::ForceConst<flt_t>::c_outer_t * _noalias const c_outer,
typename IntelBuffers<flt_t,acc_t>::vec3_acc_t * _noalias const f,
avec *vsevdwl,
int compress_idx,
avec *vsevdwl,
int compress_idx,
iarr is,
iarr js,
bvec vmask_repulsive
@ -662,7 +662,7 @@ void IntelKernelTersoff<flt_t, acc_t, mic, pack_i>::kernel_step(
ivec v_i0(0);
ivec v_i_ntypes(ntypes);
ivec v_i_NEIGHMASK(NEIGHMASK);
farr fx, fy, fz, fw;
int cache_idx = 0;
fvec vfkx_cache[N_CACHE];
@ -672,7 +672,7 @@ void IntelKernelTersoff<flt_t, acc_t, mic, pack_i>::kernel_step(
bvec vmask_cache[N_CACHE];
ivec vkks_final_cache;
bvec vmask_final_cache;
iarr ts;
iarr ts;
// compute all the stuff we know from i and j
// TDO: We could extract this from the driver routine
ivec vis = v::int_mullo(v_i4floats, v::int_load_vl(is));
@ -738,7 +738,7 @@ void IntelKernelTersoff<flt_t, acc_t, mic, pack_i>::kernel_step(
&vfix,&vfiy,&vfiz,
&vfjx,&vfjy,&vfjz,
&vfkx,&vfky,&vfkz,
&vzeta_contrib);
&vzeta_contrib);
vfxtmp = v::mask_add(vfxtmp, veff_mask, vfxtmp, vfix);
vfytmp = v::mask_add(vfytmp, veff_mask, vfytmp, vfiy);
vfztmp = v::mask_add(vfztmp, veff_mask, vfztmp, vfiz);
@ -749,9 +749,9 @@ void IntelKernelTersoff<flt_t, acc_t, mic, pack_i>::kernel_step(
vfkx_cache[cache_idx] = vfkx;
vfky_cache[cache_idx] = vfky;
vfkz_cache[cache_idx] = vfkz;
vks_cache[cache_idx] = vks;
vmask_cache[cache_idx] = veff_mask;
cache_idx += 1;
vks_cache[cache_idx] = vks;
vmask_cache[cache_idx] = veff_mask;
cache_idx += 1;
vzeta = v::mask_add(vzeta, veff_mask, vzeta, vzeta_contrib);
vkks = vkks + v_i1;
@ -799,7 +799,7 @@ void IntelKernelTersoff<flt_t, acc_t, mic, pack_i>::kernel_step(
vfjxtmp = vfjxtmp * vprefactor - vdx_ij * vfpair;
vfjytmp = vfjytmp * vprefactor - vdy_ij * vfpair;
vfjztmp = vfjztmp * vprefactor - vdz_ij * vfpair;
if (EFLAG) {
*vsevdwl = v::acc_mask_add(*vsevdwl, vmask, *vsevdwl, vevdwl);
if (eatom) {
@ -833,7 +833,7 @@ void IntelKernelTersoff<flt_t, acc_t, mic, pack_i>::kernel_step(
fvec vx_k, vy_k, vz_k, vcutsq;
while (! v::mask_testz(vactive_mask)) {
bvec vnew_mask = vactive_mask & ~ veff_old_mask;
vks = v::int_mullo(v_i4floats, v_i_NEIGHMASK &
vks = v::int_mullo(v_i4floats, v_i_NEIGHMASK &
v::int_gather<4>(vks, vactive_mask, vkks + vcnumneigh_i, firstneigh));
v::gather_x(vks, vnew_mask, x, &vx_k, &vy_k, &vz_k, &vw_k);
fvec vdx_ik = vx_k - vx_i;
@ -855,7 +855,7 @@ void IntelKernelTersoff<flt_t, acc_t, mic, pack_i>::kernel_step(
&vfix,&vfiy,&vfiz,
&vfjx,&vfjy,&vfjz,
&vfkx,&vfky,&vfkz,
0);
0);
vfxtmp = v::mask_add(vfxtmp, veff_mask, vfxtmp, vfix);
vfytmp = v::mask_add(vfytmp, veff_mask, vfytmp, vfiy);
vfztmp = v::mask_add(vfztmp, veff_mask, vfztmp, vfiz);
@ -917,15 +917,15 @@ void IntelKernelTersoff<flt_t, acc_t, mic, pack_i>::kernel_step(
template<class flt_t, class acc_t, lmp_intel::CalculationMode mic, bool pack_i>
template<int EFLAG>
void IntelKernelTersoff<flt_t,acc_t,mic, pack_i>::kernel_step_const_i(
int eatom, int vflag,
const int * _noalias const numneigh, const int * _noalias const cnumneigh,
const int * _noalias const firstneigh, int ntypes,
int eatom, int vflag,
const int * _noalias const numneigh, const int * _noalias const cnumneigh,
const int * _noalias const firstneigh, int ntypes,
typename IntelBuffers<flt_t,acc_t>::atom_t * _noalias const x,
const typename PairTersoffIntel::ForceConst<flt_t>::c_inner_t * _noalias const c_inner,
const typename PairTersoffIntel::ForceConst<flt_t>::c_outer_t * _noalias const c_outer,
const typename PairTersoffIntel::ForceConst<flt_t>::c_inner_t * _noalias const c_inner,
const typename PairTersoffIntel::ForceConst<flt_t>::c_outer_t * _noalias const c_outer,
typename IntelBuffers<flt_t,acc_t>::vec3_acc_t * _noalias const f,
avec *vsevdwl,
int compress_idx,
avec *vsevdwl,
int compress_idx,
int i,
iarr js,
bvec vmask_repulsive
@ -951,7 +951,7 @@ void IntelKernelTersoff<flt_t,acc_t,mic, pack_i>::kernel_step_const_i(
int kk_final_cache;
aarr fx, fy, fz, fw;
iarr ts;
iarr ts;
bvec vmask = v::mask_enable_lower(compress_idx);
fvec vx_i(x[i].x), vy_i(x[i].y), vz_i(x[i].z);
@ -997,7 +997,7 @@ void IntelKernelTersoff<flt_t,acc_t,mic, pack_i>::kernel_step_const_i(
fvec vfix, vfiy, vfiz;
fvec vfjx, vfjy, vfjz;
fvec vfkx, vfky, vfkz;
attractive_vector<true>(&c_inner[ntypes * ntypes * w_i + w_k],vc_idx_j_ntypes,veff_mask,fvec(1.),
vrij,vrsq,vdx_ij,vdy_ij,vdz_ij,vdx_ik,vdy_ik,vdz_ik,
&vfix,&vfiy,&vfiz,
@ -1010,7 +1010,7 @@ void IntelKernelTersoff<flt_t,acc_t,mic, pack_i>::kernel_step_const_i(
vfjxtmp = v::acc_mask_add(vfjxtmp, veff_mask, vfjxtmp, vfjx);
vfjytmp = v::acc_mask_add(vfjytmp, veff_mask, vfjytmp, vfjy);
vfjztmp = v::acc_mask_add(vfjztmp, veff_mask, vfjztmp, vfjz);
vfkx_cache[cache_idx] = v::mask_add(v::zero(), veff_mask, vfkx, v::zero());
vfky_cache[cache_idx] = v::mask_add(v::zero(), veff_mask, vfky, v::zero());
vfkz_cache[cache_idx] = v::mask_add(v::zero(), veff_mask, vfkz, v::zero());
@ -1037,7 +1037,7 @@ void IntelKernelTersoff<flt_t,acc_t,mic, pack_i>::kernel_step_const_i(
bvec vsame_mask = v::int_cmpneq(vjs, ivec(static_cast<int>(4 * sizeof(typename v::fscal) * k)));
bvec veff_mask = vcutoff_mask & vsame_mask & vmask;
if (! v::mask_testz(veff_mask)) {
fvec vzeta_contrib = zeta_vector(&c_inner[ntypes * ntypes * w_i + w_k], vc_idx_j_ntypes, veff_mask, vrij, vrsq,
fvec vzeta_contrib = zeta_vector(&c_inner[ntypes * ntypes * w_i + w_k], vc_idx_j_ntypes, veff_mask, vrij, vrsq,
vdx_ij,vdy_ij,vdz_ij,vdx_ik,vdy_ik,vdz_ik);
vzeta = v::acc_mask_add(vzeta, veff_mask, vzeta, vzeta_contrib);
}
@ -1051,7 +1051,7 @@ void IntelKernelTersoff<flt_t,acc_t,mic, pack_i>::kernel_step_const_i(
vfjxtmp = vfjxtmp * vaprefactor - avec(vdx_ij * vfpair);
vfjytmp = vfjytmp * vaprefactor - avec(vdy_ij * vfpair);
vfjztmp = vfjztmp * vaprefactor - avec(vdz_ij * vfpair);
if (EFLAG) {
*vsevdwl = v::acc_mask_add(*vsevdwl, vmask, *vsevdwl, vevdwl);
if (eatom) {
@ -1093,7 +1093,7 @@ void IntelKernelTersoff<flt_t,acc_t,mic, pack_i>::kernel_step_const_i(
&vfix,&vfiy,&vfiz,
&vfjx,&vfjy,&vfjz,
&vfkx,&vfky,&vfkz,
0);
0);
vfxtmp = v::acc_mask_add(vfxtmp, veff_mask, vfxtmp, vfix);
vfytmp = v::acc_mask_add(vfytmp, veff_mask, vfytmp, vfiy);
vfztmp = v::acc_mask_add(vfztmp, veff_mask, vfztmp, vfiz);
@ -1129,14 +1129,14 @@ void IntelKernelTersoff<flt_t,acc_t,mic, pack_i>::kernel_step_const_i(
template<class flt_t, class acc_t, lmp_intel::CalculationMode mic, bool pack_i>
template<bool EFLAG>
void IntelKernelTersoff<flt_t,acc_t,mic, pack_i>::kernel(
int iito, int iifrom, int eatom, int vflag,
const int * _noalias const numneigh,
const int * _noalias const numneighhalf,
const int * _noalias const cnumneigh,
const int * _noalias const firstneigh, int ntypes,
int iito, int iifrom, int eatom, int vflag,
const int * _noalias const numneigh,
const int * _noalias const numneighhalf,
const int * _noalias const cnumneigh,
const int * _noalias const firstneigh, int ntypes,
typename IntelBuffers<flt_t,acc_t>::atom_t * _noalias const x,
const c_inner_t * _noalias const c_inner,
const c_outer_t * _noalias const c_outer,
const c_inner_t * _noalias const c_inner,
const c_outer_t * _noalias const c_outer,
typename IntelBuffers<flt_t,acc_t>::vec3_acc_t * _noalias const f,
acc_t *evdwl
) {
@ -1181,10 +1181,10 @@ void IntelKernelTersoff<flt_t,acc_t,mic, pack_i>::kernel(
if (compress_idx == v::VL) {
vmask_repulsive = v::int_cmpneq(v::int_load_vl(repulsive_flag), ivec(0));
kernel_step<EFLAG>(
eatom, vflag,
eatom, vflag,
numneigh, cnumneigh, firstneigh, ntypes,
x, c_inner, c_outer, f,
&vsevdwl, compress_idx,
&vsevdwl, compress_idx,
is, js, vmask_repulsive
);
compress_idx = 0;
@ -1194,10 +1194,10 @@ void IntelKernelTersoff<flt_t,acc_t,mic, pack_i>::kernel(
if (compress_idx == v::VL || (compress_idx > 0 && jj == jnum-1)) {
vmask_repulsive = v::int_cmpneq(v::int_load_vl(repulsive_flag), ivec(0));
kernel_step_const_i<EFLAG>(
eatom, vflag,
eatom, vflag,
numneigh, cnumneigh, firstneigh, ntypes,
x, c_inner, c_outer, f,
&vsevdwl, compress_idx,
&vsevdwl, compress_idx,
i, js, vmask_repulsive
);
compress_idx = 0;
@ -1209,10 +1209,10 @@ void IntelKernelTersoff<flt_t,acc_t,mic, pack_i>::kernel(
if (compress_idx > 0) {
vmask_repulsive = v::int_cmpneq(v::int_load_vl(repulsive_flag), ivec(0));
IntelKernelTersoff::kernel_step<EFLAG>(
eatom, vflag,
eatom, vflag,
numneigh, cnumneigh, firstneigh, ntypes,
x, c_inner, c_outer, f,
&vsevdwl, compress_idx,
&vsevdwl, compress_idx,
is, js, vmask_repulsive
);
}
@ -1224,10 +1224,10 @@ void IntelKernelTersoff<flt_t,acc_t,mic, pack_i>::kernel(
template<class flt_t, class acc_t, lmp_intel::CalculationMode mic, bool pack_i>
IntelKernelTersoff<flt_t,acc_t,mic,pack_i>::fvec IntelKernelTersoff<flt_t, acc_t, mic, pack_i>::zeta_vector(
const c_inner_t * param,
ivec xjw, bvec mask,
fvec vrij, fvec rsq2,
fvec vdijx, fvec vdijy, fvec vdijz,
const c_inner_t * param,
ivec xjw, bvec mask,
fvec vrij, fvec rsq2,
fvec vdijx, fvec vdijy, fvec vdijz,
fvec dikx, fvec diky, fvec dikz
) {
fvec v_1_0(1.0);
@ -1250,7 +1250,7 @@ IntelKernelTersoff<flt_t,acc_t,mic,pack_i>::fvec IntelKernelTersoff<flt_t, acc_t
// Its kind of important to check the mask.
// Some simulations never/rarely invoke this branch.
if (! v::mask_testz(vmask_need_sine)) {
vfc = v::blend(vmask_need_sine, vfc,
vfc = v::blend(vmask_need_sine, vfc,
v_0_5 * (v_1_0 - sin(fvec(MY_PI2) * (vrik - vpbigr) * v::recip(vpbigd))));
}
return vgijk * vex_delr * vfc;
@ -1258,7 +1258,7 @@ IntelKernelTersoff<flt_t,acc_t,mic,pack_i>::fvec IntelKernelTersoff<flt_t, acc_t
template<class flt_t, class acc_t, lmp_intel::CalculationMode mic, bool pack_i>
void IntelKernelTersoff<flt_t, acc_t, mic, pack_i>::force_zeta_vector(
const c_outer_t * param,
const c_outer_t * param,
ivec xjw,
bvec mask,
fvec vrij, fvec vzeta_ij,
@ -1402,9 +1402,9 @@ void IntelKernelTersoff<flt_t,acc_t,mic, pack_i>::attractive_vector(
vfc_d = v::blend(vmask_need_sine, vfc_d, fvec(-0.5) * vtmp * vfccos);
}
fvec vzeta_d_fc = vfc_d * vgijk * vex_delr;
fvec vzeta_d_gijk = vfc * vgijk_d * vex_delr;
fvec vzeta_d_ex_delr = vfc * vgijk * vex_delr_d;
fvec vzeta_d_fc = vfc_d * vgijk * vex_delr;
fvec vzeta_d_gijk = vfc * vgijk_d * vex_delr;
fvec vzeta_d_ex_delr = vfc * vgijk * vex_delr_d;
if (ZETA) *zeta = vfc * vgijk * vex_delr;
fvec vminus_costheta = - vcostheta;
@ -1417,7 +1417,7 @@ void IntelKernelTersoff<flt_t,acc_t,mic, pack_i>::attractive_vector(
fvec vdcosdrix = -(vdcosdrjx + vdcosdrkx);
fvec vdcosdriy = -(vdcosdrjy + vdcosdrky);
fvec vdcosdriz = -(vdcosdrjz + vdcosdrkz);
*fix = vprefactor * (vzeta_d_gijk * vdcosdrix + vzeta_d_ex_delr * (rik_hatx - vrij_hatx) - vzeta_d_fc * rik_hatx);
*fiy = vprefactor * (vzeta_d_gijk * vdcosdriy + vzeta_d_ex_delr * (rik_haty - vrij_haty) - vzeta_d_fc * rik_haty);
*fiz = vprefactor * (vzeta_d_gijk * vdcosdriz + vzeta_d_ex_delr * (rik_hatz - vrij_hatz) - vzeta_d_fc * rik_hatz);

View File

@ -75,14 +75,14 @@ class PairTersoffIntel : public PairTersoff {
};
ForceConst<float> force_const_single;
ForceConst<double> force_const_double;
template <class flt_t, class acc_t>
void compute(int eflag, int vflag, IntelBuffers<flt_t,acc_t> *buffers,
const ForceConst<flt_t> &fc);
template <int EFLAG, class flt_t, class acc_t>
void eval(const int offload, const int vflag,
IntelBuffers<flt_t,acc_t> * buffers,
const ForceConst<flt_t> &fc, const int astart, const int aend);
IntelBuffers<flt_t,acc_t> * buffers,
const ForceConst<flt_t> &fc, const int astart, const int aend);
template <class flt_t, class acc_t>
void pack_force_const(ForceConst<flt_t> &fc,

File diff suppressed because it is too large Load Diff

View File

@ -1,238 +1,238 @@
/* -*- c++ -*- ----------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing authors: William McDoniel (RWTH Aachen University)
------------------------------------------------------------------------- */
#ifdef KSPACE_CLASS
KSpaceStyle(pppm/disp/intel,PPPMDispIntel)
#else
#ifndef LMP_PPPMINTEL_DISP_H
#define LMP_PPPMINTEL_DISP_H
#include "pppm_disp.h"
#include "fix_intel.h"
namespace LAMMPS_NS {
class PPPMDispIntel : public PPPMDisp {
public:
PPPMDispIntel(class LAMMPS *, int, char **);
virtual ~PPPMDispIntel();
virtual void init();
virtual void compute(int, int);
#ifdef _LMP_INTEL_OFFLOAD
int use_base();
#endif
protected:
FixIntel *fix;
int _use_lrt;
FFT_SCALAR **perthread_density;
FFT_SCALAR *particle_ekx;
FFT_SCALAR *particle_eky;
FFT_SCALAR *particle_ekz;
FFT_SCALAR *particle_ekx0;
FFT_SCALAR *particle_eky0;
FFT_SCALAR *particle_ekz0;
FFT_SCALAR *particle_ekx1;
FFT_SCALAR *particle_eky1;
FFT_SCALAR *particle_ekz1;
FFT_SCALAR *particle_ekx2;
FFT_SCALAR *particle_eky2;
FFT_SCALAR *particle_ekz2;
FFT_SCALAR *particle_ekx3;
FFT_SCALAR *particle_eky3;
FFT_SCALAR *particle_ekz3;
FFT_SCALAR *particle_ekx4;
FFT_SCALAR *particle_eky4;
FFT_SCALAR *particle_ekz4;
FFT_SCALAR *particle_ekx5;
FFT_SCALAR *particle_eky5;
FFT_SCALAR *particle_ekz5;
FFT_SCALAR *particle_ekx6;
FFT_SCALAR *particle_eky6;
FFT_SCALAR *particle_ekz6;
int _use_table;
int rho_points;
FFT_SCALAR **rho_lookup;
FFT_SCALAR **rho6_lookup;
FFT_SCALAR **drho_lookup;
FFT_SCALAR **drho6_lookup;
FFT_SCALAR half_rho_scale, half_rho_scale_plus;
int _use_packing;
#ifdef _LMP_INTEL_OFFLOAD
int _use_base;
#endif
template<class flt_t, class acc_t>
void particle_map(double, double, double,
double, int **, int, int,
int, int, int,
int, int, int,
IntelBuffers<flt_t,acc_t> *buffers);
template<class flt_t, class acc_t, int use_table>
void make_rho_c(IntelBuffers<flt_t,acc_t> *buffers);
template<class flt_t, class acc_t>
void make_rho_c(IntelBuffers<flt_t,acc_t> *buffers) {
if (_use_table == 1) {
make_rho_c<flt_t,acc_t,1>(buffers);
} else {
make_rho_c<flt_t,acc_t,0>(buffers);
}
}
template<class flt_t, class acc_t, int use_table>
void make_rho_g(IntelBuffers<flt_t,acc_t> *buffers);
template<class flt_t, class acc_t>
void make_rho_g(IntelBuffers<flt_t,acc_t> *buffers) {
if (_use_table == 1) {
make_rho_g<flt_t,acc_t,1>(buffers);
} else {
make_rho_g<flt_t,acc_t,0>(buffers);
}
}
template<class flt_t, class acc_t, int use_table>
void make_rho_a(IntelBuffers<flt_t,acc_t> *buffers);
template<class flt_t, class acc_t>
void make_rho_a(IntelBuffers<flt_t,acc_t> *buffers) {
if (_use_table == 1) {
make_rho_a<flt_t,acc_t,1>(buffers);
} else {
make_rho_a<flt_t,acc_t,0>(buffers);
}
}
template<class flt_t, class acc_t, int use_table>
void make_rho_none(IntelBuffers<flt_t,acc_t> *buffers);
template<class flt_t, class acc_t>
void make_rho_none(IntelBuffers<flt_t,acc_t> *buffers) {
if (_use_table == 1) {
make_rho_none<flt_t,acc_t,1>(buffers);
} else {
make_rho_none<flt_t,acc_t,0>(buffers);
}
}
template<class flt_t, class acc_t, int use_table>
void fieldforce_c_ik(IntelBuffers<flt_t,acc_t> *buffers);
template<class flt_t, class acc_t>
void fieldforce_c_ik(IntelBuffers<flt_t,acc_t> *buffers) {
if (_use_table == 1) {
fieldforce_c_ik<flt_t,acc_t,1>(buffers);
} else {
fieldforce_c_ik<flt_t,acc_t,0>(buffers);
}
}
template<class flt_t, class acc_t, int use_table>
void fieldforce_c_ad(IntelBuffers<flt_t,acc_t> *buffers);
template<class flt_t, class acc_t>
void fieldforce_c_ad(IntelBuffers<flt_t,acc_t> *buffers) {
if (_use_table == 1) {
fieldforce_c_ad<flt_t,acc_t,1>(buffers);
} else {
fieldforce_c_ad<flt_t,acc_t,0>(buffers);
}
}
template<class flt_t, class acc_t, int use_table>
void fieldforce_g_ik(IntelBuffers<flt_t,acc_t> *buffers);
template<class flt_t, class acc_t>
void fieldforce_g_ik(IntelBuffers<flt_t,acc_t> *buffers) {
if (_use_table == 1) {
fieldforce_g_ik<flt_t,acc_t,1>(buffers);
} else {
fieldforce_g_ik<flt_t,acc_t,0>(buffers);
}
}
template<class flt_t, class acc_t, int use_table>
void fieldforce_g_ad(IntelBuffers<flt_t,acc_t> *buffers);
template<class flt_t, class acc_t>
void fieldforce_g_ad(IntelBuffers<flt_t,acc_t> *buffers) {
if (_use_table == 1) {
fieldforce_g_ad<flt_t,acc_t,1>(buffers);
} else {
fieldforce_g_ad<flt_t,acc_t,0>(buffers);
}
}
template<class flt_t, class acc_t, int use_table>
void fieldforce_a_ik(IntelBuffers<flt_t,acc_t> *buffers);
template<class flt_t, class acc_t>
void fieldforce_a_ik(IntelBuffers<flt_t,acc_t> *buffers) {
if (_use_table == 1) {
fieldforce_a_ik<flt_t,acc_t,1>(buffers);
} else {
fieldforce_a_ik<flt_t,acc_t,0>(buffers);
}
}
template<class flt_t, class acc_t, int use_table>
void fieldforce_a_ad(IntelBuffers<flt_t,acc_t> *buffers);
template<class flt_t, class acc_t>
void fieldforce_a_ad(IntelBuffers<flt_t,acc_t> *buffers) {
if (_use_table == 1) {
fieldforce_a_ad<flt_t,acc_t,1>(buffers);
} else {
fieldforce_a_ad<flt_t,acc_t,0>(buffers);
}
}
template<class flt_t, class acc_t, int use_table>
void fieldforce_none_ik(IntelBuffers<flt_t,acc_t> *buffers);
template<class flt_t, class acc_t>
void fieldforce_none_ik(IntelBuffers<flt_t,acc_t> *buffers) {
if (_use_table == 1) {
fieldforce_none_ik<flt_t,acc_t,1>(buffers);
} else {
fieldforce_none_ik<flt_t,acc_t,0>(buffers);
}
}
template<class flt_t, class acc_t, int use_table>
void fieldforce_none_ad(IntelBuffers<flt_t,acc_t> *buffers);
template<class flt_t, class acc_t>
void fieldforce_none_ad(IntelBuffers<flt_t,acc_t> *buffers) {
if (_use_table == 1) {
fieldforce_none_ad<flt_t,acc_t,1>(buffers);
} else {
fieldforce_none_ad<flt_t,acc_t,0>(buffers);
}
}
void precompute_rho();
};
}
#endif
#endif
/* -*- c++ -*- ----------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing authors: William McDoniel (RWTH Aachen University)
------------------------------------------------------------------------- */
#ifdef KSPACE_CLASS
KSpaceStyle(pppm/disp/intel,PPPMDispIntel)
#else
#ifndef LMP_PPPMINTEL_DISP_H
#define LMP_PPPMINTEL_DISP_H
#include "pppm_disp.h"
#include "fix_intel.h"
namespace LAMMPS_NS {
class PPPMDispIntel : public PPPMDisp {
public:
PPPMDispIntel(class LAMMPS *, int, char **);
virtual ~PPPMDispIntel();
virtual void init();
virtual void compute(int, int);
#ifdef _LMP_INTEL_OFFLOAD
int use_base();
#endif
protected:
FixIntel *fix;
int _use_lrt;
FFT_SCALAR **perthread_density;
FFT_SCALAR *particle_ekx;
FFT_SCALAR *particle_eky;
FFT_SCALAR *particle_ekz;
FFT_SCALAR *particle_ekx0;
FFT_SCALAR *particle_eky0;
FFT_SCALAR *particle_ekz0;
FFT_SCALAR *particle_ekx1;
FFT_SCALAR *particle_eky1;
FFT_SCALAR *particle_ekz1;
FFT_SCALAR *particle_ekx2;
FFT_SCALAR *particle_eky2;
FFT_SCALAR *particle_ekz2;
FFT_SCALAR *particle_ekx3;
FFT_SCALAR *particle_eky3;
FFT_SCALAR *particle_ekz3;
FFT_SCALAR *particle_ekx4;
FFT_SCALAR *particle_eky4;
FFT_SCALAR *particle_ekz4;
FFT_SCALAR *particle_ekx5;
FFT_SCALAR *particle_eky5;
FFT_SCALAR *particle_ekz5;
FFT_SCALAR *particle_ekx6;
FFT_SCALAR *particle_eky6;
FFT_SCALAR *particle_ekz6;
int _use_table;
int rho_points;
FFT_SCALAR **rho_lookup;
FFT_SCALAR **rho6_lookup;
FFT_SCALAR **drho_lookup;
FFT_SCALAR **drho6_lookup;
FFT_SCALAR half_rho_scale, half_rho_scale_plus;
int _use_packing;
#ifdef _LMP_INTEL_OFFLOAD
int _use_base;
#endif
template<class flt_t, class acc_t>
void particle_map(double, double, double,
double, int **, int, int,
int, int, int,
int, int, int,
IntelBuffers<flt_t,acc_t> *buffers);
template<class flt_t, class acc_t, int use_table>
void make_rho_c(IntelBuffers<flt_t,acc_t> *buffers);
template<class flt_t, class acc_t>
void make_rho_c(IntelBuffers<flt_t,acc_t> *buffers) {
if (_use_table == 1) {
make_rho_c<flt_t,acc_t,1>(buffers);
} else {
make_rho_c<flt_t,acc_t,0>(buffers);
}
}
template<class flt_t, class acc_t, int use_table>
void make_rho_g(IntelBuffers<flt_t,acc_t> *buffers);
template<class flt_t, class acc_t>
void make_rho_g(IntelBuffers<flt_t,acc_t> *buffers) {
if (_use_table == 1) {
make_rho_g<flt_t,acc_t,1>(buffers);
} else {
make_rho_g<flt_t,acc_t,0>(buffers);
}
}
template<class flt_t, class acc_t, int use_table>
void make_rho_a(IntelBuffers<flt_t,acc_t> *buffers);
template<class flt_t, class acc_t>
void make_rho_a(IntelBuffers<flt_t,acc_t> *buffers) {
if (_use_table == 1) {
make_rho_a<flt_t,acc_t,1>(buffers);
} else {
make_rho_a<flt_t,acc_t,0>(buffers);
}
}
template<class flt_t, class acc_t, int use_table>
void make_rho_none(IntelBuffers<flt_t,acc_t> *buffers);
template<class flt_t, class acc_t>
void make_rho_none(IntelBuffers<flt_t,acc_t> *buffers) {
if (_use_table == 1) {
make_rho_none<flt_t,acc_t,1>(buffers);
} else {
make_rho_none<flt_t,acc_t,0>(buffers);
}
}
template<class flt_t, class acc_t, int use_table>
void fieldforce_c_ik(IntelBuffers<flt_t,acc_t> *buffers);
template<class flt_t, class acc_t>
void fieldforce_c_ik(IntelBuffers<flt_t,acc_t> *buffers) {
if (_use_table == 1) {
fieldforce_c_ik<flt_t,acc_t,1>(buffers);
} else {
fieldforce_c_ik<flt_t,acc_t,0>(buffers);
}
}
template<class flt_t, class acc_t, int use_table>
void fieldforce_c_ad(IntelBuffers<flt_t,acc_t> *buffers);
template<class flt_t, class acc_t>
void fieldforce_c_ad(IntelBuffers<flt_t,acc_t> *buffers) {
if (_use_table == 1) {
fieldforce_c_ad<flt_t,acc_t,1>(buffers);
} else {
fieldforce_c_ad<flt_t,acc_t,0>(buffers);
}
}
template<class flt_t, class acc_t, int use_table>
void fieldforce_g_ik(IntelBuffers<flt_t,acc_t> *buffers);
template<class flt_t, class acc_t>
void fieldforce_g_ik(IntelBuffers<flt_t,acc_t> *buffers) {
if (_use_table == 1) {
fieldforce_g_ik<flt_t,acc_t,1>(buffers);
} else {
fieldforce_g_ik<flt_t,acc_t,0>(buffers);
}
}
template<class flt_t, class acc_t, int use_table>
void fieldforce_g_ad(IntelBuffers<flt_t,acc_t> *buffers);
template<class flt_t, class acc_t>
void fieldforce_g_ad(IntelBuffers<flt_t,acc_t> *buffers) {
if (_use_table == 1) {
fieldforce_g_ad<flt_t,acc_t,1>(buffers);
} else {
fieldforce_g_ad<flt_t,acc_t,0>(buffers);
}
}
template<class flt_t, class acc_t, int use_table>
void fieldforce_a_ik(IntelBuffers<flt_t,acc_t> *buffers);
template<class flt_t, class acc_t>
void fieldforce_a_ik(IntelBuffers<flt_t,acc_t> *buffers) {
if (_use_table == 1) {
fieldforce_a_ik<flt_t,acc_t,1>(buffers);
} else {
fieldforce_a_ik<flt_t,acc_t,0>(buffers);
}
}
template<class flt_t, class acc_t, int use_table>
void fieldforce_a_ad(IntelBuffers<flt_t,acc_t> *buffers);
template<class flt_t, class acc_t>
void fieldforce_a_ad(IntelBuffers<flt_t,acc_t> *buffers) {
if (_use_table == 1) {
fieldforce_a_ad<flt_t,acc_t,1>(buffers);
} else {
fieldforce_a_ad<flt_t,acc_t,0>(buffers);
}
}
template<class flt_t, class acc_t, int use_table>
void fieldforce_none_ik(IntelBuffers<flt_t,acc_t> *buffers);
template<class flt_t, class acc_t>
void fieldforce_none_ik(IntelBuffers<flt_t,acc_t> *buffers) {
if (_use_table == 1) {
fieldforce_none_ik<flt_t,acc_t,1>(buffers);
} else {
fieldforce_none_ik<flt_t,acc_t,0>(buffers);
}
}
template<class flt_t, class acc_t, int use_table>
void fieldforce_none_ad(IntelBuffers<flt_t,acc_t> *buffers);
template<class flt_t, class acc_t>
void fieldforce_none_ad(IntelBuffers<flt_t,acc_t> *buffers) {
if (_use_table == 1) {
fieldforce_none_ad<flt_t,acc_t,1>(buffers);
} else {
fieldforce_none_ad<flt_t,acc_t,0>(buffers);
}
}
void precompute_rho();
};
}
#endif
#endif

View File

@ -14,7 +14,7 @@
/* ----------------------------------------------------------------------
Contributing authors: William McDoniel (RWTH Aachen University)
Rodrigo Canales (RWTH Aachen University)
Markus Hoehnerbach (RWTH Aachen University)
Markus Hoehnerbach (RWTH Aachen University)
W. Michael Brown (Intel)
------------------------------------------------------------------------- */
@ -62,10 +62,10 @@ PPPMIntel::PPPMIntel(LAMMPS *lmp, int narg, char **arg) : PPPM(lmp, narg, arg)
perthread_density = NULL;
particle_ekx = particle_eky = particle_ekz = NULL;
rho_lookup = drho_lookup = NULL;
rho_points = 0;
vdxy_brick = vdz0_brick = NULL;
work3 = NULL;
cg_pack = NULL;
@ -120,20 +120,20 @@ void PPPMIntel::init()
if ((comm->nthreads > 1) && !_use_lrt) {
memory->destroy(perthread_density);
memory->create(perthread_density, comm->nthreads-1,
ngrid + INTEL_P3M_ALIGNED_MAXORDER,
ngrid + INTEL_P3M_ALIGNED_MAXORDER,
"pppmintel:perthread_density");
}
_use_table = fix->pppm_table();
if (_use_table) {
rho_points = 5000;
memory->destroy(rho_lookup);
memory->create(rho_lookup, rho_points, INTEL_P3M_ALIGNED_MAXORDER,
"pppmintel:rho_lookup");
"pppmintel:rho_lookup");
if(differentiation_flag == 1) {
memory->destroy(drho_lookup);
memory->create(drho_lookup, rho_points, INTEL_P3M_ALIGNED_MAXORDER,
"pppmintel:drho_lookup");
"pppmintel:drho_lookup");
}
precompute_rho();
}
@ -141,7 +141,7 @@ void PPPMIntel::init()
if (order > INTEL_P3M_MAXORDER)
error->all(FLERR,"PPPM order greater than supported by USER-INTEL\n");
_use_packing = (order == 7) && (INTEL_VECTOR_WIDTH == 16)
_use_packing = (order == 7) && (INTEL_VECTOR_WIDTH == 16)
&& (sizeof(FFT_SCALAR) == sizeof(float))
&& (differentiation_flag == 0);
if (_use_packing) {
@ -149,13 +149,13 @@ void PPPMIntel::init()
memory->destroy3d_offset(vdy_brick,nzlo_out,nylo_out,nxlo_out);
memory->destroy3d_offset(vdz_brick,nzlo_out,nylo_out,nxlo_out);
memory->destroy3d_offset(vdxy_brick, nzlo_out, nylo_out, 2*nxlo_out);
memory->create3d_offset(vdxy_brick, nzlo_out, nzhi_out+2,
nylo_out, nyhi_out, 2*nxlo_out, 2*nxhi_out+1,
"pppmintel:vdxy_brick");
memory->create3d_offset(vdxy_brick, nzlo_out, nzhi_out+2,
nylo_out, nyhi_out, 2*nxlo_out, 2*nxhi_out+1,
"pppmintel:vdxy_brick");
memory->destroy3d_offset(vdz0_brick, nzlo_out, nylo_out, 2*nxlo_out);
memory->create3d_offset(vdz0_brick, nzlo_out, nzhi_out+2,
nylo_out, nyhi_out, 2*nxlo_out, 2*nxhi_out+1,
"pppmintel:vdz0_brick");
memory->create3d_offset(vdz0_brick, nzlo_out, nzhi_out+2,
nylo_out, nyhi_out, 2*nxlo_out, 2*nxhi_out+1,
"pppmintel:vdz0_brick");
memory->destroy(work3);
memory->create(work3, 2*nfft_both, "pppmintel:work3");
@ -163,10 +163,10 @@ void PPPMIntel::init()
delete cg_pack;
int (*procneigh)[2] = comm->procneigh;
cg_pack = new GridComm(lmp,world,2,0, 2*nxlo_in,2*nxhi_in+1,nylo_in,
nyhi_in,nzlo_in,nzhi_in, 2*nxlo_out,2*nxhi_out+1,
nylo_out,nyhi_out,nzlo_out,nzhi_out,
procneigh[0][0],procneigh[0][1],procneigh[1][0],
procneigh[1][1],procneigh[2][0],procneigh[2][1]);
nyhi_in,nzlo_in,nzhi_in, 2*nxlo_out,2*nxhi_out+1,
nylo_out,nyhi_out,nzlo_out,nzhi_out,
procneigh[0][0],procneigh[0][1],procneigh[1][0],
procneigh[1][1],procneigh[2][0],procneigh[2][1]);
cg_pack->ghost_notify();
cg_pack->setup();
@ -484,7 +484,7 @@ void PPPMIntel::make_rho(IntelBuffers<flt_t,acc_t> *buffers)
{
const int nix = nxhi_out - nxlo_out + 1;
const int niy = nyhi_out - nylo_out + 1;
const flt_t lo0 = boxlo[0];
const flt_t lo1 = boxlo[1];
const flt_t lo2 = boxlo[2];
@ -503,7 +503,7 @@ void PPPMIntel::make_rho(IntelBuffers<flt_t,acc_t> *buffers)
memset(my_density, 0, ngrid * sizeof(FFT_SCALAR));
for (int i = ifrom; i < ito; i++) {
int nx = part2grid[i][0];
int ny = part2grid[i][1];
int nz = part2grid[i][2];
@ -515,9 +515,9 @@ void PPPMIntel::make_rho(IntelBuffers<flt_t,acc_t> *buffers)
FFT_SCALAR dx = nx+fshiftone - (x[i].x-lo0)*xi;
FFT_SCALAR dy = ny+fshiftone - (x[i].y-lo1)*yi;
FFT_SCALAR dz = nz+fshiftone - (x[i].z-lo2)*zi;
_alignvar(flt_t rho[3][INTEL_P3M_ALIGNED_MAXORDER], 64) = {0};
if (use_table) {
dx = dx*half_rho_scale + half_rho_scale_plus;
int idx = dx;
@ -527,7 +527,7 @@ void PPPMIntel::make_rho(IntelBuffers<flt_t,acc_t> *buffers)
int idz = dz;
#if defined(LMP_SIMD_COMPILER)
#pragma simd
#endif
#endif
for(int k = 0; k < INTEL_P3M_ALIGNED_MAXORDER; k++) {
rho[0][k] = rho_lookup[idx][k];
rho[1][k] = rho_lookup[idy][k];
@ -536,11 +536,11 @@ void PPPMIntel::make_rho(IntelBuffers<flt_t,acc_t> *buffers)
} else {
#if defined(LMP_SIMD_COMPILER)
#pragma simd
#endif
#endif
for (int k = nlower; k <= nupper; k++) {
FFT_SCALAR r1,r2,r3;
r1 = r2 = r3 = ZEROF;
for (int l = order-1; l >= 0; l--) {
r1 = rho_coeff[l][k] + r1*dx;
r2 = rho_coeff[l][k] + r2*dy;
@ -551,24 +551,24 @@ void PPPMIntel::make_rho(IntelBuffers<flt_t,acc_t> *buffers)
rho[2][k-nlower] = r3;
}
}
FFT_SCALAR z0 = fdelvolinv * q[i];
#if defined(LMP_SIMD_COMPILER)
#pragma loop_count=7
#endif
#endif
for (int n = 0; n < order; n++) {
int mz = n*nix*niy + nzsum;
FFT_SCALAR y0 = z0*rho[2][n];
#if defined(LMP_SIMD_COMPILER)
#pragma loop_count=7
#endif
#endif
for (int m = 0; m < order; m++) {
int mzy = m*nix + mz;
FFT_SCALAR x0 = y0*rho[1][m];
#if defined(LMP_SIMD_COMPILER)
#pragma simd
#endif
#endif
for (int l = 0; l < INTEL_P3M_ALIGNED_MAXORDER; l++) {
int mzyx = l + mzy;
my_density[mzyx] += x0*rho[0][l];
@ -709,21 +709,21 @@ void PPPMIntel::fieldforce_ik(IntelBuffers<flt_t,acc_t> *buffers)
#if defined(LMP_SIMD_COMPILER)
#pragma loop_count=7
#endif
#endif
for (int n = 0; n < order; n++) {
int mz = n+nzsum;
FFT_SCALAR z0 = rho2[n];
#if defined(LMP_SIMD_COMPILER)
#pragma loop_count=7
#endif
#endif
for (int m = 0; m < order; m++) {
int my = m+nysum;
FFT_SCALAR y0 = z0*rho1[m];
#if defined(LMP_SIMD_COMPILER)
#pragma simd
#endif
#endif
for (int l = 0; l < (use_packing ? 2 : 1) *
INTEL_P3M_ALIGNED_MAXORDER; l++) {
INTEL_P3M_ALIGNED_MAXORDER; l++) {
int mx = l+nxsum;
FFT_SCALAR x0 = y0*rho0[l];
if (use_packing) {
@ -824,13 +824,13 @@ void PPPMIntel::fieldforce_ad(IntelBuffers<flt_t,acc_t> *buffers)
const flt_t fsf_coeff3 = sf_coeff[3];
const flt_t fsf_coeff4 = sf_coeff[4];
const flt_t fsf_coeff5 = sf_coeff[5];
int ifrom, ito, tid;
IP_PRE_omp_range_id(ifrom, ito, tid, nlocal, nthr);
_alignvar(flt_t rho[3][INTEL_P3M_ALIGNED_MAXORDER], 64) = {0};
_alignvar(flt_t drho[3][INTEL_P3M_ALIGNED_MAXORDER], 64) = {0};
for (int i = ifrom; i < ito; i++) {
int nx = part2grid[i][0];
int ny = part2grid[i][1];
@ -838,11 +838,11 @@ void PPPMIntel::fieldforce_ad(IntelBuffers<flt_t,acc_t> *buffers)
FFT_SCALAR dx = nx+fshiftone - (x[i].x-lo0)*xi;
FFT_SCALAR dy = ny+fshiftone - (x[i].y-lo1)*yi;
FFT_SCALAR dz = nz+fshiftone - (x[i].z-lo2)*zi;
int nxsum = nx + nlower;
int nysum = ny + nlower;
int nzsum = nz + nlower;
if (use_table) {
dx = dx*half_rho_scale + half_rho_scale_plus;
int idx = dx;
@ -852,7 +852,7 @@ void PPPMIntel::fieldforce_ad(IntelBuffers<flt_t,acc_t> *buffers)
int idz = dz;
#if defined(LMP_SIMD_COMPILER)
#pragma simd
#endif
#endif
for(int k = 0; k < INTEL_P3M_ALIGNED_MAXORDER; k++) {
rho[0][k] = rho_lookup[idx][k];
rho[1][k] = rho_lookup[idy][k];
@ -864,11 +864,11 @@ void PPPMIntel::fieldforce_ad(IntelBuffers<flt_t,acc_t> *buffers)
} else {
#if defined(LMP_SIMD_COMPILER)
#pragma simd
#endif
#endif
for (int k = nlower; k <= nupper; k++) {
FFT_SCALAR r1,r2,r3,dr1,dr2,dr3;
dr1 = dr2 = dr3 = ZEROF;
r1 = rho_coeff[order-1][k];
r2 = rho_coeff[order-1][k];
r3 = rho_coeff[order-1][k];
@ -888,21 +888,21 @@ void PPPMIntel::fieldforce_ad(IntelBuffers<flt_t,acc_t> *buffers)
drho[2][k-nlower] = dr3;
}
}
_alignvar(FFT_SCALAR ekx[INTEL_P3M_ALIGNED_MAXORDER], 64) = {0};
_alignvar(FFT_SCALAR eky[INTEL_P3M_ALIGNED_MAXORDER], 64) = {0};
_alignvar(FFT_SCALAR ekz[INTEL_P3M_ALIGNED_MAXORDER], 64) = {0};
particle_ekx[i] = particle_eky[i] = particle_ekz[i] = ZEROF;
#if defined(LMP_SIMD_COMPILER)
#pragma loop_count=7
#endif
#endif
for (int n = 0; n < order; n++) {
int mz = n + nzsum;
#if defined(LMP_SIMD_COMPILER)
#pragma loop_count=7
#endif
#endif
for (int m = 0; m < order; m++) {
int my = m + nysum;
FFT_SCALAR ekx_p = rho[1][m] * rho[2][n];
@ -910,7 +910,7 @@ void PPPMIntel::fieldforce_ad(IntelBuffers<flt_t,acc_t> *buffers)
FFT_SCALAR ekz_p = rho[1][m] * drho[2][n];
#if defined(LMP_SIMD_COMPILER)
#pragma simd
#endif
#endif
for (int l = 0; l < INTEL_P3M_ALIGNED_MAXORDER; l++) {
int mx = l + nxsum;
ekx[l] += drho[0][l] * ekx_p * u_brick[mz][my][mx];
@ -919,17 +919,17 @@ void PPPMIntel::fieldforce_ad(IntelBuffers<flt_t,acc_t> *buffers)
}
}
}
#if defined(LMP_SIMD_COMPILER)
#pragma simd
#endif
for (int l = 0; l < INTEL_P3M_ALIGNED_MAXORDER; l++){
particle_ekx[i] += ekx[l];
particle_eky[i] += eky[l];
particle_ekz[i] += ekz[l];
particle_ekx[i] += ekx[l];
particle_eky[i] += eky[l];
particle_ekz[i] += ekz[l];
}
}
#if defined(LMP_SIMD_COMPILER)
#pragma simd
#endif
@ -937,12 +937,12 @@ void PPPMIntel::fieldforce_ad(IntelBuffers<flt_t,acc_t> *buffers)
particle_ekx[i] *= hx_inv;
particle_eky[i] *= hy_inv;
particle_ekz[i] *= hz_inv;
// convert E-field to force
const flt_t qfactor = fqqrd2es * q[i];
const flt_t twoqsq = (flt_t)2.0 * q[i] * q[i];
const flt_t s1 = x[i].x * hx_inv;
const flt_t s2 = x[i].y * hy_inv;
const flt_t s3 = x[i].z * hz_inv;
@ -950,16 +950,16 @@ void PPPMIntel::fieldforce_ad(IntelBuffers<flt_t,acc_t> *buffers)
sf += fsf_coeff1 * sin(ffour_pi * s1);
sf *= twoqsq;
f[i].x += qfactor * particle_ekx[i] - fqqrd2es * sf;
sf = fsf_coeff2 * sin(ftwo_pi * s2);
sf += fsf_coeff3 * sin(ffour_pi * s2);
sf *= twoqsq;
f[i].y += qfactor * particle_eky[i] - fqqrd2es * sf;
sf = fsf_coeff4 * sin(ftwo_pi * s3);
sf += fsf_coeff5 * sin(ffour_pi * s3);
sf *= twoqsq;
if (slabflag != 2) f[i].z += qfactor * particle_ekz[i] - fqqrd2es * sf;
}
}
@ -1000,7 +1000,7 @@ void PPPMIntel::poisson_ik_intel()
n = 0;
for (i = 0; i < nfft; i++) {
eng = s2 * greensfn[i] * (work1[n]*work1[n] +
work1[n+1]*work1[n+1]);
work1[n+1]*work1[n+1]);
for (j = 0; j < 6; j++) virial[j] += eng*vg[i][j];
if (eflag_global) energy += eng;
n += 2;
@ -1069,10 +1069,10 @@ void PPPMIntel::poisson_ik_intel()
for (j = nylo_in; j <= nyhi_in; j++)
for (i = nxlo_in; i <= nxhi_in; i++) {
vdxy_brick[k][j][2*i] = work2[n];
vdxy_brick[k][j][2*i+1] = work3[n];
vdxy_brick[k][j][2*i+1] = work3[n];
n += 2;
}
// z direction gradient
n = 0;
@ -1091,7 +1091,7 @@ void PPPMIntel::poisson_ik_intel()
for (j = nylo_in; j <= nyhi_in; j++)
for (i = nxlo_in; i <= nxhi_in; i++) {
vdz0_brick[k][j][2*i] = work2[n];
vdz0_brick[k][j][2*i+1] = 0.;
vdz0_brick[k][j][2*i+1] = 0.;
n += 2;
}
}
@ -1202,7 +1202,7 @@ double PPPMIntel::memory_usage()
}
}
if (_use_packing) {
bytes += 2 * (nzhi_out + 2 - nzlo_out + 1) * (nyhi_out - nylo_out + 1)
bytes += 2 * (nzhi_out + 2 - nzlo_out + 1) * (nyhi_out - nylo_out + 1)
* (2 * nxhi_out + 1 - 2 * nxlo_out + 1) * sizeof(FFT_SCALAR);
bytes -= 3 * (nxhi_out - nxlo_out + 1) * (nyhi_out - nylo_out + 1)
* (nzhi_out - nzlo_out + 1) * sizeof(FFT_SCALAR);
@ -1228,7 +1228,7 @@ void PPPMIntel::pack_buffers()
{
int ifrom, ito, tid;
IP_PRE_omp_range_id_align(ifrom, ito, tid, atom->nlocal+atom->nghost,
packthreads,
packthreads,
sizeof(IntelBuffers<float,double>::atom_t));
if (fix->precision() == FixIntel::PREC_MODE_MIXED)
fix->get_mixed_buffers()->thr_pack(ifrom,ito,1);

View File

@ -14,7 +14,7 @@
/* ----------------------------------------------------------------------
Contributing authors: William McDoniel (RWTH Aachen University)
Rodrigo Canales (RWTH Aachen University)
Markus Hoehnerbach (RWTH Aachen University)
Markus Hoehnerbach (RWTH Aachen University)
W. Michael Brown (Intel)
------------------------------------------------------------------------- */
@ -77,7 +77,7 @@ class PPPMIntel : public PPPM {
template<class flt_t, class acc_t>
void test_function(IntelBuffers<flt_t,acc_t> *buffers);
void precompute_rho();
template<class flt_t, class acc_t>
void particle_map(IntelBuffers<flt_t,acc_t> *buffers);

View File

@ -51,7 +51,7 @@ VerletLRTIntel::VerletLRTIntel(LAMMPS *lmp, int narg, char **arg) :
/* ---------------------------------------------------------------------- */
VerletLRTIntel::~VerletLRTIntel()
VerletLRTIntel::~VerletLRTIntel()
{
#if defined(_LMP_INTEL_LRT_PTHREAD)
pthread_mutex_destroy(&_kmutex);
@ -67,10 +67,10 @@ void VerletLRTIntel::init()
Verlet::init();
_intel_kspace = (PPPMIntel*)(force->kspace_match("pppm/intel", 0));
#ifdef LMP_INTEL_NOLRT
error->all(FLERR,
"LRT otion for Intel package disabled at compile time");
error->all(FLERR,
"LRT otion for Intel package disabled at compile time");
#endif
}
@ -83,7 +83,7 @@ void VerletLRTIntel::setup(int flag)
if (_intel_kspace == 0) {
Verlet::setup(flag);
return;
}
}
#ifdef _LMP_INTEL_OFFLOAD
if (_intel_kspace->use_base()) {
@ -154,15 +154,15 @@ void VerletLRTIntel::setup(int flag)
_intel_kspace->setup();
#if defined(_LMP_INTEL_LRT_PTHREAD)
pthread_create(&_kspace_thread, &_kspace_attr,
&VerletLRTIntel::k_launch_loop, this);
pthread_create(&_kspace_thread, &_kspace_attr,
&VerletLRTIntel::k_launch_loop, this);
#elif defined(_LMP_INTEL_LRT_11)
std::thread kspace_thread;
if (kspace_compute_flag)
_kspace_thread=std::thread([=]{ _intel_kspace->compute_first(eflag,
if (kspace_compute_flag)
_kspace_thread=std::thread([=]{ _intel_kspace->compute_first(eflag,
vflag); });
else
_kspace_thread=std::thread([=]{ _intel_kspace->compute_dummy(eflag,
else
_kspace_thread=std::thread([=]{ _intel_kspace->compute_dummy(eflag,
vflag); });
#endif
@ -297,8 +297,8 @@ void VerletLRTIntel::run(int n)
pthread_mutex_unlock(&_kmutex);
#elif defined(_LMP_INTEL_LRT_11)
std::thread kspace_thread;
if (kspace_compute_flag)
kspace_thread=std::thread([=] {
if (kspace_compute_flag)
kspace_thread=std::thread([=] {
_intel_kspace->compute_first(eflag, vflag);
timer->stamp(Timer::KSPACE);
} );
@ -329,7 +329,7 @@ void VerletLRTIntel::run(int n)
_kspace_done = 0;
pthread_mutex_unlock(&_kmutex);
#elif defined(_LMP_INTEL_LRT_11)
if (kspace_compute_flag)
if (kspace_compute_flag)
kspace_thread.join();
#endif
@ -367,7 +367,7 @@ void VerletLRTIntel::run(int n)
}
#if defined(_LMP_INTEL_LRT_PTHREAD)
if (run_cancelled)
if (run_cancelled)
pthread_cancel(_kspace_thread);
else {
pthread_mutex_lock(&_kmutex);
@ -390,9 +390,9 @@ void * VerletLRTIntel::k_launch_loop(void *context)
{
VerletLRTIntel * const c = (VerletLRTIntel *)context;
if (c->kspace_compute_flag)
if (c->kspace_compute_flag)
c->_intel_kspace->compute_first(c->eflag, c->vflag);
else
else
c->_intel_kspace->compute_dummy(c->eflag, c->vflag);
pthread_mutex_lock(&(c->_kmutex));
@ -408,7 +408,7 @@ void * VerletLRTIntel::k_launch_loop(void *context)
pthread_mutex_unlock(&(c->_kmutex));
for (int i = 0; i < n; i++) {
if (c->kspace_compute_flag) {
c->_intel_kspace->compute_first(c->eflag, c->vflag);
c->timer->stamp(Timer::KSPACE);