forked from lijiext/lammps
Added hexatic bond orientational order parameter
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@14236 f3b2605a-c512-4ea7-a41b-209d697bcdaa
This commit is contained in:
parent
d212245359
commit
3bc7350704
Binary file not shown.
Before Width: | Height: | Size: 6.6 KiB After Width: | Height: | Size: 6.4 KiB |
|
@ -2,7 +2,7 @@
|
|||
\begin{document}
|
||||
|
||||
$$
|
||||
q_6 = \frac{1}{6}\sum_{j = 1}^{6} e^{6 i \theta({\bf r}_{ij})}
|
||||
q_n = \frac{1}{n}\sum_{j = 1}^{n} e^{n i \theta({\bf r}_{ij})}
|
||||
$$
|
||||
|
||||
\end{document}
|
||||
|
|
|
@ -10,26 +10,31 @@ compute hexorder/atom command :h3
|
|||
|
||||
[Syntax:]
|
||||
|
||||
compute ID group-ID hexorder/atom :pre
|
||||
compute ID group-ID hexorder/atom keyword values ... :pre
|
||||
|
||||
ID, group-ID are documented in "compute"_compute.html command
|
||||
hexorder/atom = style name of this compute command
|
||||
ID, group-ID are documented in "compute"_compute.html command :ulb,l
|
||||
hexorder/atom = style name of this compute command :l
|
||||
zero or more keyword/value pairs may be appended :l
|
||||
keyword = {degree} :l
|
||||
{n} value = degree of order parameter :pre
|
||||
:ule
|
||||
|
||||
[Examples:]
|
||||
|
||||
compute 1 all hexorder/atom :pre
|
||||
compute 1 all hexorder/atom
|
||||
compute 1 all hexorder/atom n 4 :pre
|
||||
|
||||
[Description:]
|
||||
|
||||
Define a computation that calculates {q}6 the hexatic bond-orientational
|
||||
order parameter for each atom in a group. This order
|
||||
Define a computation that calculates {qn} the bond-orientational
|
||||
order parameter for each atom in a group. The hexatic ({n} = 6) order
|
||||
parameter was introduced by "Nelson and Halperin"_#Nelson as a way to detect
|
||||
hexagonal symmetry in two-dimensional systems. For each atom, {q}6
|
||||
hexagonal symmetry in two-dimensional systems. For each atom, {qn}
|
||||
is a complex number (stored as two real numbers) defined as follows:
|
||||
|
||||
:c,image(Eqs/hexorder.jpg)
|
||||
|
||||
where the sum is over the six nearest neighbors
|
||||
where the sum is over the {n} nearest neighbors
|
||||
of the central atom. The angle theta
|
||||
is formed by the bond vector rij and the {x} axis. theta is calculated
|
||||
only using the {x} and {y} components, whereas the distance from the
|
||||
|
@ -38,16 +43,16 @@ central atom is calculated using all three
|
|||
Neighbor atoms not in the group
|
||||
are included in the order parameter of atoms in the group.
|
||||
|
||||
If the neighbors of the central atom lie on a hexagonal lattice,
|
||||
then |{q}6| = 1.
|
||||
The optional keyword {n} sets the degree of the order parameter.
|
||||
The default value is 6. If the neighbors of the central atom
|
||||
lie on a hexagonal lattice, then |{q}6| = 1.
|
||||
The complex phase of {q}6 depends on the orientation of the
|
||||
lattice relative to the {x} axis. For a liquid in which the
|
||||
atomic neighborhood lacks orientational symmetry, |{q}6| << 1.
|
||||
|
||||
The value of all order parameters will be zero for atoms not in the
|
||||
specified compute group. If the atom does not have 6 neighbors (within
|
||||
the potential cutoff), then its centro-symmetry parameter is set to
|
||||
zero.
|
||||
The value of {qn} will be zero for atoms not in the
|
||||
specified compute group. If the atom has less than {n} neighbors (within
|
||||
the potential cutoff), then {qn} is set to zero.
|
||||
|
||||
The neighbor list needed to compute this quantity is constructed each
|
||||
time the calculation is performed (i.e. each time a snapshot of atoms
|
||||
|
@ -70,7 +75,7 @@ the neighbor list.
|
|||
[Output info:]
|
||||
|
||||
This compute calculates a per-atom array with 2 columns, giving the
|
||||
real and imaginary parts of {q}6, respectively.
|
||||
real and imaginary parts of {qn}, respectively.
|
||||
|
||||
These values can be accessed by any command that uses
|
||||
per-atom values from a compute as input. See "Section_howto
|
||||
|
@ -78,8 +83,8 @@ per-atom values from a compute as input. See "Section_howto
|
|||
options.
|
||||
|
||||
The per-atom array contain pairs of numbers representing the
|
||||
real and imaginary parts of {q}6, a complex number subject to the
|
||||
constraint |{q}6| <= 1.
|
||||
real and imaginary parts of {qn}, a complex number subject to the
|
||||
constraint |{qn}| <= 1.
|
||||
|
||||
[Restrictions:] none
|
||||
|
||||
|
@ -87,7 +92,9 @@ constraint |{q}6| <= 1.
|
|||
|
||||
"compute coord/atom"_compute_coord_atom.html, "compute centro/atom"_compute_centro_atom.html
|
||||
|
||||
[Default:] none
|
||||
[Default:]
|
||||
|
||||
The option default is {n} = 6.
|
||||
|
||||
:line
|
||||
|
||||
|
|
|
@ -16,6 +16,7 @@
|
|||
------------------------------------------------------------------------- */
|
||||
|
||||
#include <math.h>
|
||||
#include <complex>
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
#include "compute_hexorder_atom.h"
|
||||
|
@ -38,10 +39,24 @@ using namespace LAMMPS_NS;
|
|||
ComputeHexOrderAtom::ComputeHexOrderAtom(LAMMPS *lmp, int narg, char **arg) :
|
||||
Compute(lmp, narg, arg)
|
||||
{
|
||||
if (narg != 3) error->all(FLERR,"Illegal compute hexorder/atom command");
|
||||
if (narg < 3 ) error->all(FLERR,"Illegal compute hexorder/atom command");
|
||||
|
||||
nnn = 6;
|
||||
|
||||
// process optional args
|
||||
|
||||
int iarg = 3;
|
||||
while (iarg < narg) {
|
||||
if (strcmp(arg[iarg],"degree") == 0) {
|
||||
if (iarg+1 > narg) error->all(FLERR,"Illegal lattice command");
|
||||
nnn = force->numeric(FLERR,arg[iarg+1]);
|
||||
if (nnn < 0)
|
||||
error->all(FLERR,"Illegal lattice command");
|
||||
iarg += 2;
|
||||
}
|
||||
}
|
||||
|
||||
ncol = 2;
|
||||
|
||||
peratom_flag = 1;
|
||||
size_peratom_cols = ncol;
|
||||
|
||||
|
@ -50,7 +65,6 @@ ComputeHexOrderAtom::ComputeHexOrderAtom(LAMMPS *lmp, int narg, char **arg) :
|
|||
maxneigh = 0;
|
||||
distsq = NULL;
|
||||
nearest = NULL;
|
||||
nnn = 6;
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
@ -187,7 +201,7 @@ void ComputeHexOrderAtom::compute_peratom()
|
|||
delx = xtmp - x[j][0];
|
||||
dely = ytmp - x[j][1];
|
||||
double u, v;
|
||||
calc_q6(delx, dely, u, v);
|
||||
calc_qn(delx, dely, u, v);
|
||||
usum += u;
|
||||
vsum += v;
|
||||
}
|
||||
|
@ -197,6 +211,8 @@ void ComputeHexOrderAtom::compute_peratom()
|
|||
}
|
||||
}
|
||||
|
||||
// this might be faster than pow(std::complex) on some platforms
|
||||
|
||||
inline void ComputeHexOrderAtom::calc_q6(double delx, double dely, double &u, double &v) {
|
||||
double rinv = 1.0/sqrt(delx*delx+dely*dely);
|
||||
double x = delx*rinv;
|
||||
|
@ -205,10 +221,23 @@ inline void ComputeHexOrderAtom::calc_q6(double delx, double dely, double &u, do
|
|||
double b1 = y*y;
|
||||
double b2 = b1*b1;
|
||||
double b3 = b2*b1;
|
||||
|
||||
// (x + i y)^6 coeffs: 1, 6, -15, -20, 15, 6, -1
|
||||
|
||||
u = (( a - 15*b1)*a + 15*b2)*a - b3;
|
||||
v = ((6*a - 20*b1)*a + 6*b2)*x*y;
|
||||
}
|
||||
|
||||
inline void ComputeHexOrderAtom::calc_qn(double delx, double dely, double &u, double &v) {
|
||||
double rinv = 1.0/sqrt(delx*delx+dely*dely);
|
||||
double x = delx*rinv;
|
||||
double y = dely*rinv;
|
||||
std::complex<double> z = x + y*1i;
|
||||
std::complex<double> zn = pow(z,nnn);
|
||||
u = real(zn);
|
||||
v = imag(zn);
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
select2 routine from Numerical Recipes (slightly modified)
|
||||
find k smallest values in array of length n
|
||||
|
|
|
@ -42,6 +42,8 @@ class ComputeHexOrderAtom : public Compute {
|
|||
double **q6array;
|
||||
|
||||
void calc_q6(double, double, double&, double&);
|
||||
void calc_q4(double, double, double&, double&);
|
||||
void calc_qn(double, double, double&, double&);
|
||||
void select2(int, int, double *, int *);
|
||||
};
|
||||
|
||||
|
|
Loading…
Reference in New Issue