Merge branch 'master' into collected-small-fixes

This commit is contained in:
Axel Kohlmeyer 2020-03-25 06:50:11 -04:00
commit 3704d90efb
No known key found for this signature in database
GPG Key ID: D9B44E93BF0C375A
10 changed files with 367 additions and 485 deletions

View File

@ -12,6 +12,10 @@ via apt-get and all files are accessible in both the Windows Explorer and your
Linux shell (bash). This avoids switching to a different operating system or
installing a virtual machine. Everything runs on Windows.
.. seealso::
You can find more detailed information at the `Windows Subsystem for Linux Installation Guide for Windows 10 <https://docs.microsoft.com/en-us/windows/wsl/install-win10>`_.
Installing Bash on Windows
--------------------------
@ -103,7 +107,7 @@ needed for various LAMMPS features:
.. code-block:: bash
sudo apt install -y build-essential ccache gfortran openmpi-bin libopenmpi-dev libfftw3-dev libjpeg-dev libpng12-dev python-dev python-virtualenv libblas-dev liblapack-dev libhdf5-serial-dev hdf5-tools
sudo apt install -y build-essential ccache gfortran openmpi-bin libopenmpi-dev libfftw3-dev libjpeg-dev libpng-dev python-dev python-virtualenv libblas-dev liblapack-dev libhdf5-serial-dev hdf5-tools
Files in Ubuntu on Windows
^^^^^^^^^^^^^^^^^^^^^^^^^^

View File

@ -29,14 +29,14 @@ Description
Calculate forces through finite difference calculations of energy
versus position. These forces can be compared to analytic forces
computed by pair styles, bond styles, etc. E.g. for debugging
purposes.
computed by pair styles, bond styles, etc. This can be useful for
debugging or other purposes.
The group specified with the command means only atoms within the group
have their averages computed. Results are set to 0.0 for atoms not in
the group.
This fix performs a loop over all atoms (in the group). For each atom
This fix performs a loop over all atoms in the group. For each atom
and each component of force it adds *delta* to the position, and
computes the new energy of the entire system. It then subtracts
*delta* from the original position and again computes the new energy
@ -66,10 +66,10 @@ by two times *delta*.
.. note::
The cost of each energy evaluation is essentially the cost of an MD
timestep. This invoking this fix once has a cost of 2N timesteps,
where N is the total number of atoms in the system (assuming all atoms
are included in the group). So this fix can be very expensive to use
for large systems.
timestep. Thus invoking this fix once for a 3d system has a cost
of 6N timesteps, where N is the total number of atoms in the system
(assuming all atoms are included in the group). So this fix can be
very expensive to use for large systems.
----------

View File

@ -93,6 +93,7 @@ msst: MSST shock dynamics
nb3b: use of nonbonded 3-body harmonic pair style
neb: nudged elastic band (NEB) calculation for barrier finding
nemd: non-equilibrium MD of 2d sheared system
numdiff: numerical difference computation of forces
obstacle: flow around two voids in a 2d channel
peptide: dynamics of a small solvated peptide chain (5-mer)
peri: Peridynamic model of cylinder impacted by indenter

View File

@ -37,15 +37,13 @@ struct TagPairSNAPBeta{};
struct TagPairSNAPComputeNeigh{};
struct TagPairSNAPPreUi{};
struct TagPairSNAPComputeUi{};
struct TagPairSNAPComputeUiTot{}; // accumulate ulist into ulisttot separately
struct TagPairSNAPComputeUiCPU{};
struct TagPairSNAPComputeZi{};
struct TagPairSNAPComputeBi{};
struct TagPairSNAPZeroYi{};
struct TagPairSNAPComputeYi{};
struct TagPairSNAPComputeDuidrj{};
struct TagPairSNAPComputeFusedDeidrj{};
struct TagPairSNAPComputeDuidrjCPU{};
struct TagPairSNAPComputeDeidrj{};
struct TagPairSNAPComputeDeidrjCPU{};
template<class DeviceType>
@ -83,9 +81,6 @@ public:
KOKKOS_INLINE_FUNCTION
void operator() (TagPairSNAPComputeUi,const typename Kokkos::TeamPolicy<DeviceType, TagPairSNAPComputeUi>::member_type& team) const;
KOKKOS_INLINE_FUNCTION
void operator() (TagPairSNAPComputeUiTot,const typename Kokkos::TeamPolicy<DeviceType, TagPairSNAPComputeUiTot>::member_type& team) const;
KOKKOS_INLINE_FUNCTION
void operator() (TagPairSNAPComputeUiCPU,const typename Kokkos::TeamPolicy<DeviceType, TagPairSNAPComputeUiCPU>::member_type& team) const;
@ -102,14 +97,11 @@ public:
void operator() (TagPairSNAPComputeYi,const int& ii) const;
KOKKOS_INLINE_FUNCTION
void operator() (TagPairSNAPComputeDuidrj,const typename Kokkos::TeamPolicy<DeviceType, TagPairSNAPComputeDuidrj>::member_type& team) const;
void operator() (TagPairSNAPComputeFusedDeidrj,const typename Kokkos::TeamPolicy<DeviceType, TagPairSNAPComputeFusedDeidrj>::member_type& team) const;
KOKKOS_INLINE_FUNCTION
void operator() (TagPairSNAPComputeDuidrjCPU,const typename Kokkos::TeamPolicy<DeviceType, TagPairSNAPComputeDuidrjCPU>::member_type& team) const;
KOKKOS_INLINE_FUNCTION
void operator() (TagPairSNAPComputeDeidrj,const typename Kokkos::TeamPolicy<DeviceType, TagPairSNAPComputeDeidrj>::member_type& team) const;
KOKKOS_INLINE_FUNCTION
void operator() (TagPairSNAPComputeDeidrjCPU,const typename Kokkos::TeamPolicy<DeviceType, TagPairSNAPComputeDeidrjCPU>::member_type& team) const;

View File

@ -30,7 +30,6 @@
#include "kokkos.h"
#include "sna.h"
#define MAXLINE 1024
#define MAXWORD 3
@ -255,26 +254,19 @@ void PairSNAPKokkos<DeviceType>::compute(int eflag_in, int vflag_in)
// scratch size: 2 * team_size * (twojmax+1)^2, to cover all `m1`,`m2` values
// 2 is for double buffer
typename Kokkos::TeamPolicy<DeviceType, TagPairSNAPComputeUi> policy_ui(((chunk_size+team_size-1)/team_size)*max_neighs,team_size,vector_length);
const int tile_size = (twojmax+1)*(twojmax+1);
typedef Kokkos::View< SNAcomplex*,
Kokkos::DefaultExecutionSpace::scratch_memory_space,
Kokkos::MemoryTraits<Kokkos::Unmanaged> >
ScratchViewType;
int scratch_size = ScratchViewType::shmem_size( 2 * team_size * (twojmax+1)*(twojmax+1));
int scratch_size = ScratchViewType::shmem_size( 2 * team_size * tile_size );
typename Kokkos::TeamPolicy<DeviceType, TagPairSNAPComputeUi> policy_ui(((chunk_size+team_size-1)/team_size)*max_neighs,team_size,vector_length);
policy_ui = policy_ui.set_scratch_size(0, Kokkos::PerTeam( scratch_size ));
Kokkos::parallel_for("ComputeUi",policy_ui,*this);
// ComputeUitot
vector_length = 1;
team_size = 128;
team_size_max = Kokkos::TeamPolicy<DeviceType, TagPairSNAPComputeUiTot>::team_size_max(*this);
if (team_size*vector_length > team_size_max)
team_size = team_size_max/vector_length;
typename Kokkos::TeamPolicy<DeviceType, TagPairSNAPComputeUiTot> policy_ui_tot(((idxu_max+team_size-1)/team_size)*chunk_size,team_size,vector_length);
Kokkos::parallel_for("ComputeUiTot",policy_ui_tot,*this);
}
@ -316,7 +308,7 @@ void PairSNAPKokkos<DeviceType>::compute(int eflag_in, int vflag_in)
typename Kokkos::RangePolicy<DeviceType, TagPairSNAPComputeYi> policy_yi(0,chunk_size*idxz_max);
Kokkos::parallel_for("ComputeYi",policy_yi,*this);
//ComputeDuidrj
//ComputeDuidrj and Deidrj
if (lmp->kokkos->ngpus == 0) { // CPU
int vector_length = 1;
int team_size = 1;
@ -324,53 +316,37 @@ void PairSNAPKokkos<DeviceType>::compute(int eflag_in, int vflag_in)
typename Kokkos::TeamPolicy<DeviceType, TagPairSNAPComputeDuidrjCPU> policy_duidrj_cpu(((chunk_size+team_size-1)/team_size)*max_neighs,team_size,vector_length);
snaKK.set_dir(-1); // technically doesn't do anything
Kokkos::parallel_for("ComputeDuidrjCPU",policy_duidrj_cpu,*this);
} else { // GPU, utilize scratch memory and splitting over dimensions
int team_size_max = Kokkos::TeamPolicy<DeviceType, TagPairSNAPComputeDuidrj>::team_size_max(*this);
typename Kokkos::TeamPolicy<DeviceType, TagPairSNAPComputeDeidrjCPU> policy_deidrj_cpu(((chunk_size+team_size-1)/team_size)*max_neighs,team_size,vector_length);
Kokkos::parallel_for("ComputeDeidrjCPU",policy_deidrj_cpu,*this);
} else { // GPU, utilize scratch memory and splitting over dimensions, fused dui and dei
int team_size_max = Kokkos::TeamPolicy<DeviceType, TagPairSNAPComputeFusedDeidrj>::team_size_max(*this);
int vector_length = 32;
int team_size = 2; // need to cap b/c of shared memory reqs
if (team_size*vector_length > team_size_max)
team_size = team_size_max/vector_length;
// scratch size: 2 * 2 * team_size * (twojmax+1)^2, to cover all `m1`,`m2` values
// scratch size: 2 * 2 * team_size * (twojmax+1)*(twojmax/2+1), to cover half `m1`,`m2` values due to symmetry
// 2 is for double buffer
typedef Kokkos::View< SNAcomplex*,
Kokkos::DefaultExecutionSpace::scratch_memory_space,
Kokkos::MemoryTraits<Kokkos::Unmanaged> >
ScratchViewType;
const int tile_size = (twojmax+1)*(twojmax/2+1);
typedef Kokkos::View< SNAcomplex*,
Kokkos::DefaultExecutionSpace::scratch_memory_space,
Kokkos::MemoryTraits<Kokkos::Unmanaged> >
ScratchViewType;
int scratch_size = ScratchViewType::shmem_size( 4 * team_size * tile_size);
typename Kokkos::TeamPolicy<DeviceType, TagPairSNAPComputeFusedDeidrj> policy_fused_deidrj(((chunk_size+team_size-1)/team_size)*max_neighs,team_size,vector_length);
policy_fused_deidrj = policy_fused_deidrj.set_scratch_size(0, Kokkos::PerTeam( scratch_size ));
int scratch_size = ScratchViewType::shmem_size( 4 * team_size * (twojmax+1)*(twojmax+1));
typename Kokkos::TeamPolicy<DeviceType, TagPairSNAPComputeDuidrj> policy_duidrj(((chunk_size+team_size-1)/team_size)*max_neighs,team_size,vector_length);
policy_duidrj = policy_duidrj.set_scratch_size(0, Kokkos::PerTeam( scratch_size ));
// Need to call three times, once for each direction
for (int k = 0; k < 3; k++) {
snaKK.set_dir(k);
Kokkos::parallel_for("ComputeDuidrj",policy_duidrj,*this);
Kokkos::parallel_for("ComputeFusedDeidrj",policy_fused_deidrj,*this);
}
}
//ComputeDeidrj
if (lmp->kokkos->ngpus == 0) { // CPU
int vector_length = 1;
int team_size = 1;
typename Kokkos::TeamPolicy<DeviceType, TagPairSNAPComputeDeidrjCPU> policy_deidrj_cpu(((chunk_size+team_size-1)/team_size)*max_neighs,team_size,vector_length);
Kokkos::parallel_for("ComputeDeidrjCPU",policy_deidrj_cpu,*this);
} else { // GPU, different loop strategy internally
int team_size_max = Kokkos::TeamPolicy<DeviceType, TagPairSNAPComputeDeidrj>::team_size_max(*this);
int vector_length = 32; // coalescing disaster right now, will fix later
int team_size = 8;
if (team_size*vector_length > team_size_max)
team_size = team_size_max/vector_length;
typename Kokkos::TeamPolicy<DeviceType, TagPairSNAPComputeDeidrj> policy_deidrj(((chunk_size+team_size-1)/team_size)*max_neighs,team_size,vector_length);
Kokkos::parallel_for("ComputeDeidrj",policy_deidrj,*this);
}
//ComputeForce
if (eflag) {
if (neighflag == HALF) {
@ -642,25 +618,6 @@ void PairSNAPKokkos<DeviceType>::operator() (TagPairSNAPComputeUi,const typename
my_sna.compute_ui(team,ii,jj);
}
template<class DeviceType>
KOKKOS_INLINE_FUNCTION
void PairSNAPKokkos<DeviceType>::operator() (TagPairSNAPComputeUiTot,const typename Kokkos::TeamPolicy<DeviceType, TagPairSNAPComputeUiTot>::member_type& team) const {
SNAKokkos<DeviceType> my_sna = snaKK;
// Extract the quantum number
const int idx = team.team_rank() + team.team_size() * (team.league_rank() % ((my_sna.idxu_max+team.team_size()-1)/team.team_size()));
if (idx >= my_sna.idxu_max) return;
// Extract the atomic index
const int ii = team.league_rank() / ((my_sna.idxu_max+team.team_size()-1)/team.team_size());
if (ii >= chunk_size) return;
// Extract the number of neighbors neighbor number
const int ninside = d_ninside(ii);
my_sna.compute_uitot(team,idx,ii,ninside);
}
template<class DeviceType>
KOKKOS_INLINE_FUNCTION
void PairSNAPKokkos<DeviceType>::operator() (TagPairSNAPComputeUiCPU,const typename Kokkos::TeamPolicy<DeviceType, TagPairSNAPComputeUiCPU>::member_type& team) const {
@ -718,7 +675,7 @@ void PairSNAPKokkos<DeviceType>::operator() (TagPairSNAPComputeBi,const typename
template<class DeviceType>
KOKKOS_INLINE_FUNCTION
void PairSNAPKokkos<DeviceType>::operator() (TagPairSNAPComputeDuidrj,const typename Kokkos::TeamPolicy<DeviceType, TagPairSNAPComputeDuidrj>::member_type& team) const {
void PairSNAPKokkos<DeviceType>::operator() (TagPairSNAPComputeFusedDeidrj,const typename Kokkos::TeamPolicy<DeviceType, TagPairSNAPComputeFusedDeidrj>::member_type& team) const {
SNAKokkos<DeviceType> my_sna = snaKK;
// Extract the atom number
@ -730,7 +687,7 @@ void PairSNAPKokkos<DeviceType>::operator() (TagPairSNAPComputeDuidrj,const type
const int ninside = d_ninside(ii);
if (jj >= ninside) return;
my_sna.compute_duidrj(team,ii,jj);
my_sna.compute_fused_deidrj(team,ii,jj);
}
template<class DeviceType>
@ -750,24 +707,6 @@ void PairSNAPKokkos<DeviceType>::operator() (TagPairSNAPComputeDuidrjCPU,const t
my_sna.compute_duidrj_cpu(team,ii,jj);
}
template<class DeviceType>
KOKKOS_INLINE_FUNCTION
void PairSNAPKokkos<DeviceType>::operator() (TagPairSNAPComputeDeidrj,const typename Kokkos::TeamPolicy<DeviceType, TagPairSNAPComputeDeidrj>::member_type& team) const {
SNAKokkos<DeviceType> my_sna = snaKK;
// Extract the atom number
int ii = team.team_rank() + team.team_size() * (team.league_rank() % ((chunk_size+team.team_size()-1)/team.team_size()));
if (ii >= chunk_size) return;
// Extract the neighbor number
const int jj = team.league_rank() / ((chunk_size+team.team_size()-1)/team.team_size());
const int ninside = d_ninside(ii);
if (jj >= ninside) return;
my_sna.compute_deidrj(team,ii,jj);
}
template<class DeviceType>
KOKKOS_INLINE_FUNCTION
void PairSNAPKokkos<DeviceType>::operator() (TagPairSNAPComputeDeidrjCPU,const typename Kokkos::TeamPolicy<DeviceType, TagPairSNAPComputeDeidrjCPU>::member_type& team) const {

View File

@ -135,14 +135,10 @@ inline
KOKKOS_INLINE_FUNCTION
void pre_ui(const typename Kokkos::TeamPolicy<DeviceType>::member_type& team,const int&); // ForceSNAP
KOKKOS_INLINE_FUNCTION
void compute_ui(const typename Kokkos::TeamPolicy<DeviceType>::member_type& team, int, int); // ForceSNAP
void compute_ui(const typename Kokkos::TeamPolicy<DeviceType>::member_type& team, const int, const int); // ForceSNAP
KOKKOS_INLINE_FUNCTION
void compute_ui_cpu(const typename Kokkos::TeamPolicy<DeviceType>::member_type& team, int, int); // ForceSNAP
KOKKOS_INLINE_FUNCTION
void compute_ui_orig(const typename Kokkos::TeamPolicy<DeviceType>::member_type& team, int, int); // ForceSNAP
KOKKOS_INLINE_FUNCTION
void compute_uitot(const typename Kokkos::TeamPolicy<DeviceType>::member_type& team, int, int, int); // ForceSNAP
KOKKOS_INLINE_FUNCTION
void compute_zi(const int&); // ForceSNAP
KOKKOS_INLINE_FUNCTION
void zero_yi(const int&,const int&); // ForceSNAP
@ -155,12 +151,10 @@ inline
// functions for derivatives
KOKKOS_INLINE_FUNCTION
void compute_duidrj(const typename Kokkos::TeamPolicy<DeviceType>::member_type& team, int, int); //ForceSNAP
void compute_fused_deidrj(const typename Kokkos::TeamPolicy<DeviceType>::member_type& team, const int, const int); //ForceSNAP
KOKKOS_INLINE_FUNCTION
void compute_duidrj_cpu(const typename Kokkos::TeamPolicy<DeviceType>::member_type& team, int, int); //ForceSNAP
KOKKOS_INLINE_FUNCTION
void compute_deidrj(const typename Kokkos::TeamPolicy<DeviceType>::member_type& team, int, int); // ForceSNAP
KOKKOS_INLINE_FUNCTION
void compute_deidrj_cpu(const typename Kokkos::TeamPolicy<DeviceType>::member_type& team, int, int); // ForceSNAP
KOKKOS_INLINE_FUNCTION
double compute_sfac(double, double); // add_uarraytot, compute_duarray
@ -251,10 +245,6 @@ inline
KOKKOS_INLINE_FUNCTION
void add_uarraytot(const typename Kokkos::TeamPolicy<DeviceType>::member_type& team, int, int, double, double, double); // compute_ui
KOKKOS_INLINE_FUNCTION
void compute_uarray(const typename Kokkos::TeamPolicy<DeviceType>::member_type& team, int, int,
double, double, double,
double, double); // compute_ui
KOKKOS_INLINE_FUNCTION
void compute_uarray_cpu(const typename Kokkos::TeamPolicy<DeviceType>::member_type& team, int, int,
double, double, double,
@ -267,12 +257,8 @@ inline
inline
int compute_ncoeff(); // SNAKokkos()
KOKKOS_INLINE_FUNCTION
void compute_duarray(const typename Kokkos::TeamPolicy<DeviceType>::member_type& team, int, int,
double, double, double, // compute_duidrj
double, double, double, double, double);
KOKKOS_INLINE_FUNCTION
void compute_duarray_cpu(const typename Kokkos::TeamPolicy<DeviceType>::member_type& team, int, int,
double, double, double, // compute_duidrj
double, double, double, // compute_duidrj_cpu
double, double, double, double, double);
// Sets the style for the switching function

View File

@ -19,6 +19,7 @@
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <type_traits>
namespace LAMMPS_NS {
@ -231,11 +232,22 @@ void SNAKokkos<DeviceType>::grow_rij(int newnatom, int newnmax)
zlist = t_sna_2c_ll("sna:zlist",idxz_max,natom);
//ulist = t_sna_3c("sna:ulist",natom,nmax,idxu_max);
ulist = t_sna_3c_ll("sna:ulist",idxu_max,natom,nmax);
#ifdef KOKKOS_ENABLE_CUDA
if (std::is_same<DeviceType,Kokkos::Cuda>::value) {
// dummy allocation
ulist = t_sna_3c_ll("sna:ulist",1,1,1);
dulist = t_sna_4c_ll("sna:dulist",1,1,1);
} else {
#endif
ulist = t_sna_3c_ll("sna:ulist",idxu_max,natom,nmax);
dulist = t_sna_4c_ll("sna:dulist",idxu_max,natom,nmax);
#ifdef KOKKOS_ENABLE_CUDA
}
#endif
//ylist = t_sna_2c_lr("sna:ylist",natom,idxu_max);
ylist = t_sna_2c_ll("sna:ylist",idxu_max,natom);
//dulist = t_sna_4c("sna:dulist",natom,nmax,idxu_max);
dulist = t_sna_4c_ll("sna:dulist",idxu_max,natom,nmax);
}
@ -269,14 +281,14 @@ void SNAKokkos<DeviceType>::pre_ui(const typename Kokkos::TeamPolicy<DeviceType>
}
/* ----------------------------------------------------------------------
compute Ui by summing over bispectrum components
compute Ui by computing Wigner U-functions for one neighbor and
accumulating to the total. GPU only.
------------------------------------------------------------------------- */
template<class DeviceType>
KOKKOS_INLINE_FUNCTION
void SNAKokkos<DeviceType>::compute_ui(const typename Kokkos::TeamPolicy<DeviceType>::member_type& team, int iatom, int jnbor)
void SNAKokkos<DeviceType>::compute_ui(const typename Kokkos::TeamPolicy<DeviceType>::member_type& team, const int iatom, const int jnbor)
{
double rsq, r, x, y, z, z0, theta0;
// utot(j,ma,mb) = 0 for all j,ma,ma
// utot(j,ma,ma) = 1 for all j,ma
@ -284,22 +296,143 @@ void SNAKokkos<DeviceType>::compute_ui(const typename Kokkos::TeamPolicy<DeviceT
// compute r0 = (x,y,z,z0)
// utot(j,ma,mb) += u(r0;j,ma,mb) for all j,ma,mb
x = rij(iatom,jnbor,0);
y = rij(iatom,jnbor,1);
z = rij(iatom,jnbor,2);
rsq = x * x + y * y + z * z;
r = sqrt(rsq);
// get shared memory offset
const int max_m_tile = (twojmax+1)*(twojmax+1);
const int team_rank = team.team_rank();
const int scratch_shift = team_rank * max_m_tile;
theta0 = (r - rmin0) * rfac0 * MY_PI / (rcutij(iatom,jnbor) - rmin0);
// double buffer
SNAcomplex* buf1 = (SNAcomplex*)team.team_shmem( ).get_shmem(team.team_size()*max_m_tile*sizeof(SNAcomplex), 0) + scratch_shift;
SNAcomplex* buf2 = (SNAcomplex*)team.team_shmem( ).get_shmem(team.team_size()*max_m_tile*sizeof(SNAcomplex), 0) + scratch_shift;
const double x = rij(iatom,jnbor,0);
const double y = rij(iatom,jnbor,1);
const double z = rij(iatom,jnbor,2);
const double wj_local = wj(iatom, jnbor);
const double rcut = rcutij(iatom, jnbor);
const double rsq = x * x + y * y + z * z;
const double r = sqrt(rsq);
const double theta0 = (r - rmin0) * rfac0 * MY_PI / (rcutij(iatom,jnbor) - rmin0);
// theta0 = (r - rmin0) * rscale0;
z0 = r / tan(theta0);
const double cs = cos(theta0);
const double sn = sin(theta0);
const double z0 = r * cs / sn; // r / tan(theta0)
compute_uarray(team, iatom, jnbor, x, y, z, z0, r);
// Compute cutoff function
const double sfac = compute_sfac(r, rcut) * wj_local;
// if we're on the GPU, accumulating into uarraytot is done in a separate kernel.
// if we're not, it's more efficient to include it in compute_uarray.
// compute Cayley-Klein parameters for unit quaternion,
// pack into complex number
const double r0inv = 1.0 / sqrt(r * r + z0 * z0);
const SNAcomplex a = { r0inv * z0, -r0inv * z };
const SNAcomplex b = { r0inv * y, -r0inv * x };
// VMK Section 4.8.2
// All writes go to global memory and shared memory
// so we can avoid all global memory reads
Kokkos::single(Kokkos::PerThread(team), [=]() {
//ulist(0,iatom,jnbor) = { 1.0, 0.0 };
buf1[0] = {1.,0.};
Kokkos::atomic_add(&(ulisttot(0,iatom).re), sfac);
});
for (int j = 1; j <= twojmax; j++) {
const int jju = idxu_block[j];
const int jjup = idxu_block[j-1];
// fill in left side of matrix layer from previous layer
// Flatten loop over ma, mb, need to figure out total
// number of iterations
// for (int ma = 0; ma <= j; ma++)
const int n_ma = j+1;
// for (int mb = 0; 2*mb <= j; mb++)
const int n_mb = j/2+1;
// the last (j / 2) can be avoided due to symmetry
const int total_iters = n_ma * n_mb - (j % 2 == 0 ? (j / 2) : 0);
//for (int m = 0; m < total_iters; m++) {
Kokkos::parallel_for(Kokkos::ThreadVectorRange(team, total_iters),
[&] (const int m) {
// ma fast, mb slow
int ma = m % n_ma;
int mb = m / n_ma;
// index into global memory array
const int jju_index = jju+m;
//const int jjup_index = jjup+mb*j+ma;
// index into shared memory buffer for this level
const int jju_shared_idx = m;
// index into shared memory buffer for next level
const int jjup_shared_idx = jju_shared_idx - mb;
SNAcomplex u_accum = {0., 0.};
// VMK recursion relation: grab contribution which is multiplied by b*
const double rootpq2 = -rootpqarray(ma, j - mb);
const SNAcomplex u_up2 = (ma > 0)?rootpq2*buf1[jjup_shared_idx-1]:SNAcomplex(0.,0.);
//const SNAcomplex u_up2 = (ma > 0)?rootpq2*ulist(jjup_index-1,iatom,jnbor):SNAcomplex(0.,0.);
caconjxpy(b, u_up2, u_accum);
// VMK recursion relation: grab contribution which is multiplied by a*
const double rootpq1 = rootpqarray(j - ma, j - mb);
const SNAcomplex u_up1 = (ma < j)?rootpq1*buf1[jjup_shared_idx]:SNAcomplex(0.,0.);
//const SNAcomplex u_up1 = (ma < j)?rootpq1*ulist(jjup_index,iatom,jnbor):SNAcomplex(0.,0.);
caconjxpy(a, u_up1, u_accum);
//ulist(jju_index,iatom,jnbor) = u_accum;
// back up into shared memory for next iter
buf2[jju_shared_idx] = u_accum;
Kokkos::atomic_add(&(ulisttot(jju_index,iatom).re), sfac * u_accum.re);
Kokkos::atomic_add(&(ulisttot(jju_index,iatom).im), sfac * u_accum.im);
// copy left side to right side with inversion symmetry VMK 4.4(2)
// u[ma-j,mb-j] = (-1)^(ma-mb)*Conj([u[ma,mb))
// if j is even (-> physical j integer), last element maps to self, skip
//if (!(m == total_iters - 1 && j % 2 == 0)) {
if (m < total_iters - 1 || j % 2 == 1) {
const int sign_factor = (((ma+mb)%2==0)?1:-1);
const int jju_shared_flip = (j+1-mb)*(j+1)-(ma+1);
const int jjup_flip = jju + jju_shared_flip; // jju+(j+1-mb)*(j+1)-(ma+1);
if (sign_factor == 1) {
u_accum.im = -u_accum.im;
} else {
u_accum.re = -u_accum.re;
}
//ulist(jjup_flip,iatom,jnbor) = u_accum;
buf2[jju_shared_flip] = u_accum;
Kokkos::atomic_add(&(ulisttot(jjup_flip,iatom).re), sfac * u_accum.re);
Kokkos::atomic_add(&(ulisttot(jjup_flip,iatom).im), sfac * u_accum.im);
}
});
// In CUDA backend,
// ThreadVectorRange has a __syncwarp (appropriately masked for
// vector lengths < 32) implict at the end
// swap double buffers
auto tmp = buf1; buf1 = buf2; buf2 = tmp;
}
}
/* ----------------------------------------------------------------------
compute Ui by summing over bispectrum components. CPU only.
------------------------------------------------------------------------- */
template<class DeviceType>
KOKKOS_INLINE_FUNCTION
void SNAKokkos<DeviceType>::compute_ui_cpu(const typename Kokkos::TeamPolicy<DeviceType>::member_type& team, int iatom, int jnbor)
@ -327,40 +460,8 @@ void SNAKokkos<DeviceType>::compute_ui_cpu(const typename Kokkos::TeamPolicy<Dev
}
/* ----------------------------------------------------------------------
compute UiTot by summing over neighbors
------------------------------------------------------------------------- */
template<class DeviceType>
KOKKOS_INLINE_FUNCTION
void SNAKokkos<DeviceType>::compute_uitot(const typename Kokkos::TeamPolicy<DeviceType>::member_type& team, int idx, int iatom, int ninside)
{
// fuse initialize in, avoid this load?
SNAcomplex utot = ulisttot(idx, iatom);
for (int jnbor = 0; jnbor < ninside; jnbor++) {
const auto x = rij(iatom,jnbor,0);
const auto y = rij(iatom,jnbor,1);
const auto z = rij(iatom,jnbor,2);
const auto rsq = x * x + y * y + z * z;
const auto r = sqrt(rsq);
const double wj_local = wj(iatom, jnbor);
const double rcut = rcutij(iatom, jnbor);
const double sfac = compute_sfac(r, rcut) * wj_local;
auto ulist_local = ulist(idx, iatom, jnbor);
utot.re += sfac * ulist_local.re;
utot.im += sfac * ulist_local.im;
}
ulisttot(idx, iatom) = utot;
}
/* ----------------------------------------------------------------------
compute Zi by summing over products of Ui
not updated yet
------------------------------------------------------------------------- */
template<class DeviceType>
@ -509,72 +610,203 @@ void SNAKokkos<DeviceType>::compute_yi(int iter,
}
/* ----------------------------------------------------------------------
compute dEidRj
Fused calculation of the derivative of Ui w.r.t. atom j
and of dEidRj. GPU only.
------------------------------------------------------------------------- */
template<class DeviceType>
KOKKOS_INLINE_FUNCTION
void SNAKokkos<DeviceType>::compute_deidrj(const typename Kokkos::TeamPolicy<DeviceType>::member_type& team, int iatom, int jnbor)
void SNAKokkos<DeviceType>::compute_fused_deidrj(const typename Kokkos::TeamPolicy<DeviceType>::member_type& team, const int iatom, const int jnbor)
{
t_scalar3<double> final_sum;
// get shared memory offset
const int max_m_tile = (twojmax+1)*(twojmax/2+1);
const int team_rank = team.team_rank();
const int scratch_shift = team_rank * max_m_tile;
// Like in ComputeUi/ComputeDuidrj, regular loop over j.
for (int j = 0; j <= twojmax; j++) {
int jju = idxu_block(j);
// double buffer for ulist
SNAcomplex* ulist_buf1 = (SNAcomplex*)team.team_shmem( ).get_shmem(team.team_size()*max_m_tile*sizeof(SNAcomplex), 0) + scratch_shift;
SNAcomplex* ulist_buf2 = (SNAcomplex*)team.team_shmem( ).get_shmem(team.team_size()*max_m_tile*sizeof(SNAcomplex), 0) + scratch_shift;
// Flatten loop over ma, mb, reduce w/in
// double buffer for dulist
SNAcomplex* dulist_buf1 = (SNAcomplex*)team.team_shmem( ).get_shmem(team.team_size()*max_m_tile*sizeof(SNAcomplex), 0) + scratch_shift;
SNAcomplex* dulist_buf2 = (SNAcomplex*)team.team_shmem( ).get_shmem(team.team_size()*max_m_tile*sizeof(SNAcomplex), 0) + scratch_shift;
const double x = rij(iatom,jnbor,0);
const double y = rij(iatom,jnbor,1);
const double z = rij(iatom,jnbor,2);
const double rsq = x * x + y * y + z * z;
const double r = sqrt(rsq);
const double rcut = rcutij(iatom, jnbor);
const double rscale0 = rfac0 * MY_PI / (rcut - rmin0);
const double theta0 = (r - rmin0) * rscale0;
const double cs = cos(theta0);
const double sn = sin(theta0);
const double z0 = r * cs / sn;
const double dz0dr = z0 / r - (r*rscale0) * (rsq + z0 * z0) / rsq;
const double wj_local = wj(iatom, jnbor);
const double sfac = wj_local * compute_sfac(r, rcut);
const double dsfac = wj_local * compute_dsfac(r, rcut);
const double rinv = 1.0 / r;
// extract a single unit vector
const double u = (dir == 0 ? x * rinv : dir == 1 ? y * rinv : z * rinv);
// Compute Cayley-Klein parameters for unit quaternion
const double r0inv = 1.0 / sqrt(r * r + z0 * z0);
const SNAcomplex a = { r0inv * z0, -r0inv * z };
const SNAcomplex b = { r0inv * y, -r0inv * x };
const double dr0invdr = -r0inv * r0inv * r0inv * (r + z0 * dz0dr);
const double dr0inv = dr0invdr * u;
const double dz0 = dz0dr * u;
const SNAcomplex da = { dz0 * r0inv + z0 * dr0inv,
- z * dr0inv + (dir == 2 ? - r0inv : 0.) };
const SNAcomplex db = { y * dr0inv + (dir==1?r0inv:0.),
-x * dr0inv + (dir==0?-r0inv:0.) };
// Accumulate the full contribution to dedr on the fly
const double du_prod = dsfac * u; // chain rule
const SNAcomplex y_local = ylist(0, iatom);
// Symmetry factor of 0.5 b/c 0 element is on diagonal for even j==0
double dedr_full_sum = 0.5 * du_prod * y_local.re;
// single has a warp barrier at the end
Kokkos::single(Kokkos::PerThread(team), [=]() {
//dulist(0,iatom,jnbor,dir) = { dsfac * u, 0. }; // fold in chain rule here
ulist_buf1[0] = {1., 0.};
dulist_buf1[0] = {0., 0.};
});
for (int j = 1; j <= twojmax; j++) {
int jju = idxu_block[j];
int jjup = idxu_block[j-1];
// flatten the loop over ma,mb
// for (int ma = 0; ma <= j; ma++)
const int n_ma = j+1;
// for (int mb = 0; 2*mb <= j; mb++)
const int n_mb = j/2+1;
const int total_iters = n_ma * n_mb;
t_scalar3<double> sum;
double dedr_sum = 0.; // j-local sum
//for (int m = 0; m < total_iters; m++) {
Kokkos::parallel_reduce(Kokkos::ThreadVectorRange(team, total_iters),
[&] (const int m, t_scalar3<double>& sum_tmp) {
[&] (const int m, double& sum_tmp) {
// ma fast, mb slow
int ma = m % n_ma;
int mb = m / n_ma;
// get index
const int jju_index = jju+mb+mb*j+ma;
// get ylist, rescale last element by 0.5
SNAcomplex y_local = ylist(jju_index,iatom);
const SNAcomplex du_x = dulist(jju_index,iatom,jnbor,0);
const SNAcomplex du_y = dulist(jju_index,iatom,jnbor,1);
const SNAcomplex du_z = dulist(jju_index,iatom,jnbor,2);
const int jju_index = jju+m;
// Load y_local, apply the symmetry scaling factor
// The "secret" of the shared memory optimization is it eliminates
// all global memory reads to duidrj in lieu of caching values in
// shared memory and otherwise always writing, making the kernel
// ultimately compute bound. We take advantage of that by adding
// some reads back in.
auto y_local = ylist(jju_index,iatom);
if (j % 2 == 0 && 2*mb == j) {
if (ma == mb) { y_local = 0.5*y_local; }
else if (ma > mb) { y_local = { 0., 0. }; }
else if (ma > mb) { y_local = { 0., 0. }; } // can probably avoid this outright
// else the ma < mb gets "double counted", cancelling the 0.5.
}
sum_tmp.x += du_x.re * y_local.re + du_x.im * y_local.im;
sum_tmp.y += du_y.re * y_local.re + du_y.im * y_local.im;
sum_tmp.z += du_z.re * y_local.re + du_z.im * y_local.im;
// index into shared memory
const int jju_shared_idx = m;
const int jjup_shared_idx = jju_shared_idx - mb;
}, sum); // end loop over flattened ma,mb
// Need to compute and accumulate both u and du (mayhaps, we could probably
// balance some read and compute by reading u each time).
SNAcomplex u_accum = { 0., 0. };
SNAcomplex du_accum = { 0., 0. };
final_sum.x += sum.x;
final_sum.y += sum.y;
final_sum.z += sum.z;
const double rootpq2 = -rootpqarray(ma, j - mb);
const SNAcomplex u_up2 = (ma > 0)?rootpq2*ulist_buf1[jjup_shared_idx-1]:SNAcomplex(0.,0.);
caconjxpy(b, u_up2, u_accum);
const double rootpq1 = rootpqarray(j - ma, j - mb);
const SNAcomplex u_up1 = (ma < j)?rootpq1*ulist_buf1[jjup_shared_idx]:SNAcomplex(0.,0.);
caconjxpy(a, u_up1, u_accum);
// Next, spin up du_accum
const SNAcomplex du_up1 = (ma < j) ? rootpq1*dulist_buf1[jjup_shared_idx] : SNAcomplex(0.,0.);
caconjxpy(da, u_up1, du_accum);
caconjxpy(a, du_up1, du_accum);
const SNAcomplex du_up2 = (ma > 0) ? rootpq2*dulist_buf1[jjup_shared_idx-1] : SNAcomplex(0.,0.);
caconjxpy(db, u_up2, du_accum);
caconjxpy(b, du_up2, du_accum);
// No need to save u_accum to global memory
// Cache u_accum, du_accum to scratch memory.
ulist_buf2[jju_shared_idx] = u_accum;
dulist_buf2[jju_shared_idx] = du_accum;
// Directly accumulate deidrj into sum_tmp
//dulist(jju_index,iatom,jnbor,dir) = ((dsfac * u)*u_accum) + (sfac*du_accum);
const SNAcomplex du_prod = ((dsfac * u)*u_accum) + (sfac*du_accum);
sum_tmp += du_prod.re * y_local.re + du_prod.im * y_local.im;
// copy left side to right side with inversion symmetry VMK 4.4(2)
// u[ma-j][mb-j] = (-1)^(ma-mb)*Conj([u[ma][mb])
if (j%2==1 && mb+1==n_mb) {
int sign_factor = (((ma+mb)%2==0)?1:-1);
//const int jjup_flip = jju+(j+1-mb)*(j+1)-(ma+1); // no longer needed b/c we don't update dulist
const int jju_shared_flip = (j+1-mb)*(j+1)-(ma+1);
if (sign_factor == 1) {
u_accum.im = -u_accum.im;
du_accum.im = -du_accum.im;
} else {
u_accum.re = -u_accum.re;
du_accum.re = -du_accum.re;
}
// We don't need the second half of the tile for the deidrj accumulation.
// That's taken care of by the symmetry factor above.
//dulist(jjup_flip,iatom,jnbor,dir) = ((dsfac * u)*u_accum) + (sfac*du_accum);
// We do need it for ortho polynomial generation, though
ulist_buf2[jju_shared_flip] = u_accum;
dulist_buf2[jju_shared_flip] = du_accum;
}
}, dedr_sum);
// swap buffers
auto tmp = ulist_buf1; ulist_buf1 = ulist_buf2; ulist_buf2 = tmp;
tmp = dulist_buf1; dulist_buf1 = dulist_buf2; dulist_buf2 = tmp;
// Accumulate dedr. This "should" be in a single, but
// a Kokkos::single call implies a warp sync, and we may
// as well avoid that. This does no harm as long as the
// final assignment is in a single block.
//Kokkos::single(Kokkos::PerThread(team), [=]() {
dedr_full_sum += dedr_sum;
//});
}
// Store the accumulated dedr.
Kokkos::single(Kokkos::PerThread(team), [&] () {
dedr(iatom,jnbor,0) = final_sum.x*2.0;
dedr(iatom,jnbor,1) = final_sum.y*2.0;
dedr(iatom,jnbor,2) = final_sum.z*2.0;
dedr(iatom,jnbor,dir) = dedr_full_sum*2.0;
});
}
/* ----------------------------------------------------------------------
compute dEidRj, CPU path only.
------------------------------------------------------------------------- */
template<class DeviceType>
KOKKOS_INLINE_FUNCTION
void SNAKokkos<DeviceType>::compute_deidrj_cpu(const typename Kokkos::TeamPolicy<DeviceType>::member_type& team, int iatom, int jnbor)
@ -708,28 +940,6 @@ void SNAKokkos<DeviceType>::compute_bi(const typename Kokkos::TeamPolicy<DeviceT
calculate derivative of Ui w.r.t. atom j
------------------------------------------------------------------------- */
template<class DeviceType>
KOKKOS_INLINE_FUNCTION
void SNAKokkos<DeviceType>::compute_duidrj(const typename Kokkos::TeamPolicy<DeviceType>::member_type& team, int iatom, int jnbor)
{
double rsq, r, x, y, z, z0, theta0, cs, sn;
double dz0dr;
x = rij(iatom,jnbor,0);
y = rij(iatom,jnbor,1);
z = rij(iatom,jnbor,2);
rsq = x * x + y * y + z * z;
r = sqrt(rsq);
double rscale0 = rfac0 * MY_PI / (rcutij(iatom,jnbor) - rmin0);
theta0 = (r - rmin0) * rscale0;
cs = cos(theta0);
sn = sin(theta0);
z0 = r * cs / sn;
dz0dr = z0 / r - (r*rscale0) * (rsq + z0 * z0) / rsq;
compute_duarray(team, iatom, jnbor, x, y, z, z0, r, dz0dr, wj(iatom,jnbor), rcutij(iatom,jnbor));
}
template<class DeviceType>
KOKKOS_INLINE_FUNCTION
void SNAKokkos<DeviceType>::compute_duidrj_cpu(const typename Kokkos::TeamPolicy<DeviceType>::member_type& team, int iatom, int jnbor)
@ -774,119 +984,6 @@ void SNAKokkos<DeviceType>::add_uarraytot(const typename Kokkos::TeamPolicy<Devi
compute Wigner U-functions for one neighbor
------------------------------------------------------------------------- */
template<class DeviceType>
KOKKOS_INLINE_FUNCTION
void SNAKokkos<DeviceType>::compute_uarray(const typename Kokkos::TeamPolicy<DeviceType>::member_type& team, int iatom, int jnbor,
double x, double y, double z,
double z0, double r)
{
// define size of scratch memory buffer
const int max_m_tile = (twojmax+1)*(twojmax+1);
const int team_rank = team.team_rank();
// get scratch memory double buffer
SNAcomplex* buf1 = (SNAcomplex*)team.team_shmem( ).get_shmem(team.team_size()*max_m_tile*sizeof(SNAcomplex), 0);
SNAcomplex* buf2 = (SNAcomplex*)team.team_shmem( ).get_shmem(team.team_size()*max_m_tile*sizeof(SNAcomplex), 0);
// compute Cayley-Klein parameters for unit quaternion,
// pack into complex number
double r0inv = 1.0 / sqrt(r * r + z0 * z0);
SNAcomplex a = { r0inv * z0, -r0inv * z };
SNAcomplex b = { r0inv * y, -r0inv * x };
// VMK Section 4.8.2
// All writes go to global memory and shared memory
// so we can avoid all global memory reads
Kokkos::single(Kokkos::PerThread(team), [=]() {
ulist(0,iatom,jnbor) = { 1.0, 0.0 };
buf1[max_m_tile*team_rank] = {1.,0.};
});
for (int j = 1; j <= twojmax; j++) {
const int jju = idxu_block[j];
int jjup = idxu_block[j-1];
// fill in left side of matrix layer from previous layer
// Flatten loop over ma, mb, need to figure out total
// number of iterations
// for (int ma = 0; ma <= j; ma++)
const int n_ma = j+1;
// for (int mb = 0; 2*mb <= j; mb++)
const int n_mb = j/2+1;
const int total_iters = n_ma * n_mb;
//for (int m = 0; m < total_iters; m++) {
Kokkos::parallel_for(Kokkos::ThreadVectorRange(team, total_iters),
[&] (const int m) {
// ma fast, mb slow
int ma = m % n_ma;
int mb = m / n_ma;
// index into global memory array
const int jju_index = jju+mb+mb*j+ma;
// index into shared memory buffer for previous level
const int jju_shared_idx = max_m_tile*team_rank+mb+mb*j+ma;
// index into shared memory buffer for next level
const int jjup_shared_idx = max_m_tile*team_rank+mb*j+ma;
SNAcomplex u_accum = {0., 0.};
// VMK recursion relation: grab contribution which is multiplied by a*
const double rootpq1 = rootpqarray(j - ma, j - mb);
const SNAcomplex u_up1 = (ma < j)?rootpq1*buf1[jjup_shared_idx]:SNAcomplex(0.,0.);
caconjxpy(a, u_up1, u_accum);
// VMK recursion relation: grab contribution which is multiplied by b*
const double rootpq2 = -rootpqarray(ma, j - mb);
const SNAcomplex u_up2 = (ma > 0)?rootpq2*buf1[jjup_shared_idx-1]:SNAcomplex(0.,0.);
caconjxpy(b, u_up2, u_accum);
ulist(jju_index,iatom,jnbor) = u_accum;
// We no longer accumulate into ulisttot in this kernel.
// Instead, we have a separate kernel which avoids atomics.
// Running two separate kernels is net faster.
// back up into shared memory for next iter
if (j != twojmax) buf2[jju_shared_idx] = u_accum;
// copy left side to right side with inversion symmetry VMK 4.4(2)
// u[ma-j,mb-j] = (-1)^(ma-mb)*Conj([u[ma,mb))
// We can avoid this if we're on the last row for an integer j
if (!(n_ma % 2 == 1 && (mb+1) == n_mb)) {
int sign_factor = ((ma%2==0)?1:-1)*(mb%2==0?1:-1);
const int jjup_flip = jju+(j+1-mb)*(j+1)-(ma+1);
const int jju_shared_flip = max_m_tile*team_rank+(j+1-mb)*(j+1)-(ma+1);
if (sign_factor == 1) {
u_accum.im = -u_accum.im;
} else {
u_accum.re = -u_accum.re;
}
ulist(jjup_flip,iatom,jnbor) = u_accum;
if (j != twojmax) buf2[jju_shared_flip] = u_accum;
}
});
// In CUDA backend,
// ThreadVectorRange has a __syncwarp (appropriately masked for
// vector lengths < 32) implicit at the end
// swap double buffers
auto tmp = buf1; buf1 = buf2; buf2 = tmp;
//std::swap(buf1, buf2); // throws warnings
}
}
// CPU version
template<class DeviceType>
KOKKOS_INLINE_FUNCTION
void SNAKokkos<DeviceType>::compute_uarray_cpu(const typename Kokkos::TeamPolicy<DeviceType>::member_type& team, int iatom, int jnbor,
@ -976,152 +1073,9 @@ void SNAKokkos<DeviceType>::compute_uarray_cpu(const typename Kokkos::TeamPolicy
/* ----------------------------------------------------------------------
compute derivatives of Wigner U-functions for one neighbor
see comments in compute_uarray()
see comments in compute_uarray_cpu()
------------------------------------------------------------------------- */
template<class DeviceType>
KOKKOS_INLINE_FUNCTION
void SNAKokkos<DeviceType>::compute_duarray(const typename Kokkos::TeamPolicy<DeviceType>::member_type& team, int iatom, int jnbor,
double x, double y, double z,
double z0, double r, double dz0dr,
double wj, double rcut)
{
// get shared memory offset
const int max_m_tile = (twojmax+1)*(twojmax+1);
const int team_rank = team.team_rank();
// double buffer for ulist
SNAcomplex* ulist_buf1 = (SNAcomplex*)team.team_shmem( ).get_shmem(team.team_size()*max_m_tile*sizeof(SNAcomplex), 0);
SNAcomplex* ulist_buf2 = (SNAcomplex*)team.team_shmem( ).get_shmem(team.team_size()*max_m_tile*sizeof(SNAcomplex), 0);
// double buffer for dulist
SNAcomplex* dulist_buf1 = (SNAcomplex*)team.team_shmem( ).get_shmem(team.team_size()*max_m_tile*sizeof(SNAcomplex), 0);
SNAcomplex* dulist_buf2 = (SNAcomplex*)team.team_shmem( ).get_shmem(team.team_size()*max_m_tile*sizeof(SNAcomplex), 0);
const double sfac = wj * compute_sfac(r, rcut);
const double dsfac = wj * compute_dsfac(r, rcut);
const double rinv = 1.0 / r;
// extract a single unit vector
const double u = (dir == 0 ? x * rinv : dir == 1 ? y * rinv : z * rinv);
// Compute Cayley-Klein parameters for unit quaternion
const double r0inv = 1.0 / sqrt(r * r + z0 * z0);
const SNAcomplex a = { r0inv * z0, -r0inv * z };
const SNAcomplex b = { r0inv * y, -r0inv * x };
const double dr0invdr = -r0inv * r0inv * r0inv * (r + z0 * dz0dr);
const double dr0inv = dr0invdr * u;
const double dz0 = dz0dr * u;
const SNAcomplex da = { dz0 * r0inv + z0 * dr0inv,
- z * dr0inv + (dir == 2 ? - r0inv : 0.) };
const SNAcomplex db = { y * dr0inv + (dir==1?r0inv:0.),
-x * dr0inv + (dir==0?-r0inv:0.) };
// single has a warp barrier at the end
Kokkos::single(Kokkos::PerThread(team), [=]() {
dulist(0,iatom,jnbor,dir) = { dsfac * u, 0. }; // fold in chain rule here
ulist_buf1[max_m_tile*team_rank] = {1., 0.};
dulist_buf1[max_m_tile*team_rank] = {0., 0.};
});
for (int j = 1; j <= twojmax; j++) {
int jju = idxu_block[j];
int jjup = idxu_block[j-1];
// flatten the loop over ma,mb
// for (int ma = 0; ma <= j; ma++)
const int n_ma = j+1;
// for (int mb = 0; 2*mb <= j; mb++)
const int n_mb = j/2+1;
const int total_iters = n_ma * n_mb;
//for (int m = 0; m < total_iters; m++) {
Kokkos::parallel_for(Kokkos::ThreadVectorRange(team, total_iters),
[&] (const int m) {
// ma fast, mb slow
int ma = m % n_ma;
int mb = m / n_ma;
const int jju_index = jju+mb+mb*j+ma;
// index into shared memory
const int jju_shared_idx = max_m_tile*team_rank+mb+mb*j+ma;
const int jjup_shared_idx = max_m_tile*team_rank+mb*j+ma;
// Need to compute and accumulate both u and du (mayhaps, we could probably
// balance some read and compute by reading u each time).
SNAcomplex u_accum = { 0., 0. };
SNAcomplex du_accum = { 0., 0. };
const double rootpq1 = rootpqarray(j - ma, j - mb);
const SNAcomplex u_up1 = (ma < j)?rootpq1*ulist_buf1[jjup_shared_idx]:SNAcomplex(0.,0.);
caconjxpy(a, u_up1, u_accum);
const double rootpq2 = -rootpqarray(ma, j - mb);
const SNAcomplex u_up2 = (ma > 0)?rootpq2*ulist_buf1[jjup_shared_idx-1]:SNAcomplex(0.,0.);
caconjxpy(b, u_up2, u_accum);
// No need to save u_accum to global memory
if (j != twojmax) ulist_buf2[jju_shared_idx] = u_accum;
// Next, spin up du_accum
const SNAcomplex du_up1 = (ma < j) ? rootpq1*dulist_buf1[jjup_shared_idx] : SNAcomplex(0.,0.);
caconjxpy(da, u_up1, du_accum);
caconjxpy(a, du_up1, du_accum);
const SNAcomplex du_up2 = (ma > 0) ? rootpq2*dulist_buf1[jjup_shared_idx-1] : SNAcomplex(0.,0.);
caconjxpy(db, u_up2, du_accum);
caconjxpy(b, du_up2, du_accum);
dulist(jju_index,iatom,jnbor,dir) = ((dsfac * u)*u_accum) + (sfac*du_accum);
if (j != twojmax) dulist_buf2[jju_shared_idx] = du_accum;
// copy left side to right side with inversion symmetry VMK 4.4(2)
// u[ma-j][mb-j] = (-1)^(ma-mb)*Conj([u[ma][mb])
int sign_factor = ((ma%2==0)?1:-1)*(mb%2==0?1:-1);
const int jjup_flip = jju+(j+1-mb)*(j+1)-(ma+1);
const int jju_shared_flip = max_m_tile*team_rank+(j+1-mb)*(j+1)-(ma+1);
if (sign_factor == 1) {
//ulist_alt(iatom,jnbor,jjup_flip).re = u_accum.re;
//ulist_alt(iatom,jnbor,jjup_flip).im = -u_accum.im;
u_accum.im = -u_accum.im;
du_accum.im = -du_accum.im;
} else {
//ulist_alt(iatom,jnbor,jjup_flip).re = -u_accum.re;
//ulist_alt(iatom,jnbor,jjup_flip).im = u_accum.im;
u_accum.re = -u_accum.re;
du_accum.re = -du_accum.re;
}
dulist(jjup_flip,iatom,jnbor,dir) = ((dsfac * u)*u_accum) + (sfac*du_accum);
if (j != twojmax) {
ulist_buf2[jju_shared_flip] = u_accum;
dulist_buf2[jju_shared_flip] = du_accum;
}
});
// swap buffers
auto tmp = ulist_buf1; ulist_buf1 = ulist_buf2; ulist_buf2 = tmp;
tmp = dulist_buf1; dulist_buf1 = dulist_buf2; dulist_buf2 = tmp;
}
}
template<class DeviceType>
KOKKOS_INLINE_FUNCTION
void SNAKokkos<DeviceType>::compute_duarray_cpu(const typename Kokkos::TeamPolicy<DeviceType>::member_type& team, int iatom, int jnbor,
@ -1680,11 +1634,17 @@ double SNAKokkos<DeviceType>::memory_usage()
bytes += jdimpq*jdimpq * sizeof(double); // pqarray
bytes += idxcg_max * sizeof(double); // cglist
bytes += natom * idxu_max * sizeof(double) * 2; // ulist
#ifdef KOKKOS_ENABLE_CUDA
if (!std::is_same<DeviceType,Kokkos::Cuda>::value) {
#endif
bytes += natom * idxu_max * sizeof(double) * 2; // ulist
bytes += natom * idxu_max * 3 * sizeof(double) * 2; // dulist
#ifdef KOKKOS_ENABLE_CUDA
}
#endif
bytes += natom * idxu_max * sizeof(double) * 2; // ulisttot
if (!Kokkos::Impl::is_same<typename DeviceType::array_layout,Kokkos::LayoutRight>::value)
bytes += natom * idxu_max * sizeof(double) * 2; // ulisttot_lr
bytes += natom * idxu_max * 3 * sizeof(double) * 2; // dulist
bytes += natom * idxz_max * sizeof(double) * 2; // zlist
bytes += natom * idxb_max * sizeof(double); // blist

View File

@ -2920,7 +2920,7 @@ void MSM::compute_phis_and_dphis(const double &dx, const double &dy,
/* ----------------------------------------------------------------------
compute phi using interpolating polynomial
see Eq 7 from Parallel Computing 35 (2009) 164177
see Eq 7 from Parallel Computing 35 (2009) 164-177
and Hardy's thesis
------------------------------------------------------------------------- */
@ -2999,7 +2999,7 @@ inline double MSM::compute_phi(const double &xi)
/* ----------------------------------------------------------------------
compute the derivative of phi
phi is an interpolating polynomial
see Eq 7 from Parallel Computing 35 (2009) 164177
see Eq 7 from Parallel Computing 35 (2009) 164-177
and Hardy's thesis
------------------------------------------------------------------------- */

View File

@ -12,7 +12,7 @@
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Markus Höhnerbach (RWTH)
Contributing author: Markus Höhnerbach (RWTH)
------------------------------------------------------------------------- */
#include <cmath>

View File

@ -13,7 +13,7 @@
/* ----------------------------------------------------------------------
The SMTBQ code has been developed with the financial support of CNRS and
of the Regional Council of Burgundy (Convention n¡ 2010-9201AAO037S03129)
of the Regional Council of Burgundy (Convention n¡ 2010-9201AAO037S03129)
Copyright (2015)
Universite de Bourgogne : Nicolas SALLES, Olivier POLITANO
@ -943,7 +943,7 @@ void PairSMTBQ::compute(int eflag, int vflag)
3 -> Short int. Ox-Ox
4 -> Short int. SMTB (repulsion)
5 -> Covalent energy SMTB
6 -> Somme des Q(i)²
6 -> Somme des Q(i)²
------------------------------------------------------------------------- */
/* -------------- N-body forces Calcul --------------- */
@ -3022,7 +3022,7 @@ void PairSMTBQ::groupQEqAllParallel_QEq()
ngp = igp = 0; nelt[ngp] = 0;
// On prend un oxygène
// On prend un oxygène
// printf ("[me %d] On prend un oxygene\n",me);
for (ii = 0; ii < inum; ii++) {