Merge pull request #490 from EmileMaras/NEB-Change

added several features to the NEB
This commit is contained in:
sjplimp 2017-06-15 08:23:04 -06:00 committed by GitHub
commit 34cfc7bd51
12 changed files with 1789 additions and 376 deletions

View File

@ -10,68 +10,156 @@ fix neb command :h3
[Syntax:]
fix ID group-ID neb Kspring :pre
fix ID group-ID neb Kspring keyword value :pre
ID, group-ID are documented in "fix"_fix.html command
neb = style name of this fix command
Kspring = inter-replica spring constant (force/distance units) :ul
ID, group-ID are documented in "fix"_fix.html command :ulb,l
neb = style name of this fix command :l
Kspring = parallel spring constant (force/distance units or force units) :l
zero or more keyword/value pairs may be appended :l
keyword = {nudg_style} or {perp} or {freend} or {freend_k_spring} :l
{nudg_style} value = {neigh} or {idealpos}
{neigh} = the parallel nudging force is calculated from the distances to neighbouring replicas (in this case, Kspring is in force/distance units)
{idealpos} = the parallel nudging force is proportional to the distance between the replica and its interpolated ideal position (in this case Kspring is in force units)
{perp} value {none} or kspring2
{none} = no perpendicular spring force is applied
{kspring2} = spring constant for the perpendicular nudging force (in force/distance units)
{freeend} value = {none} or {ini} or {final} or {finaleini} or {final2eini}
{none} = no nudging force is applied to the first and last replicas
{ini} = set the first replica to be a free end
{final} = set the last replica to be a free end
{finaleini} = set the last replica to be a free end and set its target energy as that of the first replica
{final2eini} = same as {finaleini} plus prevent intermediate replicas to have a lower energy than the first replica
{freeend_kspring} value = kspring3
kspring3 = spring constant of the perpendicular spring force (per distance units)
:pre
[Examples:]
fix 1 active neb 10.0 :pre
fix 1 active neb 10.0
fix 2 all neb 1.0 perp 1.0 freeend final
fix 1 all neb 1.0 nudg_style idealpos freeend final2eini freend_kspring 1:pre
[Description:]
Add inter-replica forces to atoms in the group for a multi-replica
Add a nudging force to atoms in the group for a multi-replica
simulation run via the "neb"_neb.html command to perform a nudged
elastic band (NEB) calculation for transition state finding. Hi-level
explanations of NEB are given with the "neb"_neb.html command and in
"Section 6.5"_Section_howto.html#howto_5 of the manual. The fix
neb command must be used with the "neb" command to define how
inter-replica forces are computed.
elastic band (NEB) calculation for finding the transition state.
Hi-level explanations of NEB are given with the "neb"_neb.html command
and in "Section_howto 5"_Section_howto.html#howto_5 of the manual.
The fix neb command must be used with the "neb" command and defines
how nudging inter-replica forces are computed. A NEB calculation is
divided in two stages. In the first stage n replicas are relaxed
toward a MEP and in a second stage, the climbing image scheme (see
"(Henkelman2)"_#Henkelman2) is turned on so that the replica having
the highest energy relaxes toward the saddle point (i.e. the point of
highest energy along the MEP).
Only the N atoms in the fix group experience inter-replica forces.
Atoms in the two end-point replicas do not experience these forces,
but those in intermediate replicas do. During the initial stage of
NEB, the 3N-length vector of interatomic forces Fi = -Grad(V) acting
on the atoms of each intermediate replica I is altered, as described
in the "(Henkelman1)"_#Henkelman1 paper, to become:
One purpose of the nudging forces is to keep the replicas equally
spaced. During the NEB, the 3N-length vector of interatomic force Fi
= -Grad(V) of replicas i is altered. For all intermediate replicas
(i.e. for 1<i<n) but the climbing replica the force vector
becomes:
Fi = -Grad(V) + (Grad(V) dot That) That + Kspring (| Ri+i - Ri | - | Ri - Ri-1 |) That :pre
Fi = -Grad(V) + (Grad(V) dot That) That + Fnudgparallel + Fspringperp :pre
Ri are the atomic coordinates of replica I; Ri-1 and Ri+1 are the
coordinates of its neighbor replicas. That (t with a hat over it) is
the unit "tangent" vector for replica I which is a function of Ri,
Ri-1, Ri+1, and the potential energy of the 3 replicas; it points
roughly in the direction of (Ri+i - Ri-1); see the
"(Henkelman1)"_#Henkelman1 paper for details.
That is the unit "tangent" vector for replica i and is a function of
Ri, Ri-1, Ri+1, and the potential energy of the 3 replicas; it points
roughly in the direction of (Ri+i - Ri-1) (see the
"(Henkelman1)"_#Henkelman1 paper for details). Ri are the atomic
coordinates of replica i; Ri-1 and Ri+1 are the coordinates of its
neighbor replicas. The term (Grad(V) dot That) is used to remove the
component of the gradient parallel to the path which would tend to
distribute the replica unevenly along the path. Fnudgparallel is an
artificial nudging force which is applied only in the tangent direction
and which maintains the replicas equally spaced (see below for more
information). Fspringperp is an optinal artificial spring which is
applied only perpendicular to the tangent and which prevent the paths
from forming too acute kinks (see below for more information).
The first two terms in the above equation are the component of the
interatomic forces perpendicular to the tangent vector. The last term
is a spring force between replica I and its neighbors, parallel to the
tangent vector direction with the specified spring constant {Kspring}.
The keyword {nudg_style} allow to specify how to parallel
nudging force is computed. With a value of idealpos, the spring
force is computed as suggested in "(E)"_#E :
Fnudgparallel=-{Kspring}* (RD-RDideal)/(2 meanDist) :pre
The effect of the first two terms is to push the atoms of each replica
toward the minimum energy path (MEP) of conformational states that
transition over the energy barrier. The MEP for an energy barrier is
defined as a sequence of 3N-dimensional states which cross the barrier
at its saddle point, each of which has a potential energy gradient
parallel to the MEP itself.
where RD is the "reaction coordinate" see "neb"_neb.html section, and
RDideal is the ideal RD for which all the images are equally spaced
(i.e. RDideal = (i-1)*meanDist when the climbing image is off, where i
is the replica number). The meanDist is the average distance between
replicas.
The effect of the last term is to push each replica away from its two
neighbors in a direction along the MEP, so that the final set of
states are equidistant from each other.
When {nudg_style} has a value of neigh (or by default), the parallel
nudging force is computed as in "(Henkelman1)"_#Henkelman1 by
connecting each intermediate replica with the previous and the next
image:
During the second stage of NEB, the forces on the N atoms in the
replica nearest the top of the energy barrier are altered so that it
climbs to the top of the barrier and finds the saddle point. The
forces on atoms in this replica are described in the
"(Henkelman2)"_#Henkelman2 paper, and become:
Fnudgparallel= {Kspring}* (|Ri+1 - Ri| - |Ri - Ri-1|) :pre
The parallel nudging force associated with the key word idealpos should
usually be more efficient at keeping the images equally spaced.
:line
The keyword {perp} allows to add a spring force perpendicular to the
path in order to prevent the path from becoming too kinky. It can
improve significantly the convergence of the NEB when the resolution
is poor (i.e. when too few images are used) (see "(Maras)"_#Maras1).
The perpendicular spring force is given by
Fspringperp = {Kspringperp} * f(Ri-1,Ri,Ri+1) (Ri+1 + Ri-1 - 2 Ri) :pre
f(Ri-1 Ri R+1) is a smooth scalar function of the angle Ri-1 Ri
Ri+1. It is equal to 0 when the path is straight and is equal to 1
when the angle Ri-1 Ri Ri+1 is accute. f(Ri-1 Ri R+1) is defined in
"(Jonsson)"_#Jonsson
:line
By default, the force acting on the first and last replicas is not
altered so that during the NEB relaxation, these ending replicas relax
toward local minima. However it is possible to use the key word
{freeend} to allow either the initial or the final replica to relax
toward a MEP while constraining its energy. The interatomic force Fi
for the free end image becomes :
Fi = -Grad(V)+ (Grad(V) dot That + (E-ETarget)*kspring3) That, {when} Grad(V) dot That < 0
Fi = -Grad(V)+ (Grad(V) dot That + (ETarget- E)*kspring3) That, {when} Grad(V) dot That > 0
:pre
where E is the energy of the free end replica and ETarget is the
target energy.
When the value {ini} ({final}) is used after the keyword {freeend},
the first (last) replica is considered as a free end. The target
energy is set to the energy of the replica at starting of the NEB
calculation. When the value {finaleini} or {final2eini} is used the
last image is considered as a free end and the target energy is equal
to the energy of the first replica (which can evolve during the NEB
relaxation). With the value {finaleini}, when the initial path is too
far from the MEP, an intermediate repilica might relax "faster" and
get a lower energy than the last replica. The benefit of the free end
is then lost since this intermediate replica will relax toward a local
minima. This behavior can be prevented by using the value {final2eini}
which remove entirely the contribution of the gradient for all
intermediate replica which have a lower energy than the initial one
thus preventing these replicae to over-relax. After converging a NEB
with the {final2eini} value it is recommended to check that all
intermediate replica have a larger energy than the initial
replica. Finally note that if the last replica converges toward a
local minimum with a larger energy than the energy of the first
replica, a free end neb calculation with the value {finaleini} or
{final2eini} cannot reach the convergence criteria.
:line
In the second stage of the NEB, the interatomic force Fi for the
climbing replica (which is the replica of highest energy) becomes:
Fi = -Grad(V) + 2 (Grad(V) dot That) That :pre
The inter-replica forces for the other replicas are unchanged from the
first equation.
[Restart, fix_modify, output, run start/stop, minimize info:]
@ -96,7 +184,11 @@ for more info on packages.
"neb"_neb.html
[Default:] none
[Default:]
The option defaults are nudg_style = neigh, perp = none, freeend = none and freend_kspring = 1.
:line
:link(Henkelman1)
[(Henkelman1)] Henkelman and Jonsson, J Chem Phys, 113, 9978-9985 (2000).
@ -104,3 +196,15 @@ for more info on packages.
:link(Henkelman2)
[(Henkelman2)] Henkelman, Uberuaga, Jonsson, J Chem Phys, 113,
9901-9904 (2000).
:link(E)
[(E)] E, Ren, Vanden-Eijnden, Phys Rev B, 66, 052301 (2002)
:link(Jonsson)
[(Jonsson)] Jonsson, Mills and Jacobsen, in Classical and Quantum
Dynamics in Condensed Phase Simulations, edited by Berne, Ciccotti, and Coker
World Scientific, Singapore, 1998, p. 385
:link(Maras1)
[(Maras)] Maras, Trushin, Stukowski, Ala-Nissila, Jonsson,
Comp Phys Comm, 205, 13-21 (2016)

View File

@ -10,28 +10,31 @@ neb command :h3
[Syntax:]
neb etol ftol N1 N2 Nevery file-style arg :pre
neb etol ftol N1 N2 Nevery file-style arg keyword :pre
etol = stopping tolerance for energy (energy units) :ulb,l
ftol = stopping tolerance for force (force units) :l
N1 = max # of iterations (timesteps) to run initial NEB :l
N2 = max # of iterations (timesteps) to run barrier-climbing NEB :l
Nevery = print replica energies and reaction coordinates every this many timesteps :l
file-style= {final} or {each} or {none} :l
file-style = {final} or {each} or {none} :l
{final} arg = filename
filename = file with initial coords for final replica
coords for intermediate replicas are linearly interpolated between first and last replica
coords for intermediate replicas are linearly interpolated
between first and last replica
{each} arg = filename
filename = unique filename for each replica (except first) with its initial coords
{none} arg = no argument
all replicas assumed to already have their initial coords :pre
filename = unique filename for each replica (except first)
with its initial coords
{none} arg = no argument all replicas assumed to already have
their initial coords :pre
keyword = {verbose}
:ule
[Examples:]
neb 0.1 0.0 1000 500 50 final coords.final
neb 0.0 0.001 1000 500 50 each coords.initial.$i
neb 0.0 0.001 1000 500 50 none :pre
neb 0.0 0.001 1000 500 50 none verbose :pre
[Description:]
@ -43,8 +46,8 @@ NEB is a method for finding both the atomic configurations and height
of the energy barrier associated with a transition state, e.g. for an
atom to perform a diffusive hop from one energy basin to another in a
coordinated fashion with its neighbors. The implementation in LAMMPS
follows the discussion in these 3 papers: "(HenkelmanA)"_#HenkelmanA,
"(HenkelmanB)"_#HenkelmanB, and "(Nakano)"_#Nakano3.
follows the discussion in these 4 papers: "(HenkelmanA)"_#HenkelmanA,
"(HenkelmanB)"_#HenkelmanB, "(Nakano)"_#Nakano3 and "(Maras)"_#Maras2.
Each replica runs on a partition of one or more processors. Processor
partitions are defined at run-time using the -partition command-line
@ -70,18 +73,17 @@ I.e. the simulation domain, the number of atoms, the interaction
potentials, and the starting configuration when the neb command is
issued should be the same for every replica.
In a NEB calculation each atom in a replica is connected to the same
atom in adjacent replicas by springs, which induce inter-replica
forces. These forces are imposed by the "fix neb"_fix_neb.html
command, which must be used in conjunction with the neb command. The
group used to define the fix neb command defines the NEB atoms which
are the only ones that inter-replica springs are applied to. If the
group does not include all atoms, then non-NEB atoms have no
inter-replica springs and the forces they feel and their motion is
computed in the usual way due only to other atoms within their
replica. Conceptually, the non-NEB atoms provide a background force
field for the NEB atoms. They can be allowed to move during the NEB
minimization procedure (which will typically induce different
In a NEB calculation each replica is connected to other replicas by
inter-replica nudging forces. These forces are imposed by the "fix
neb"_fix_neb.html command, which must be used in conjunction with the
neb command. The group used to define the fix neb command defines the
NEB atoms which are the only ones that inter-replica springs are
applied to. If the group does not include all atoms, then non-NEB
atoms have no inter-replica springs and the forces they feel and their
motion is computed in the usual way due only to other atoms within
their replica. Conceptually, the non-NEB atoms provide a background
force field for the NEB atoms. They can be allowed to move during the
NEB minimization procedure (which will typically induce different
coordinates for non-NEB atoms in different replicas), or held fixed
using other LAMMPS commands such as "fix setforce"_fix_setforce.html.
Note that the "partition"_partition.html command can be used to invoke
@ -93,33 +95,18 @@ specified in different manners via the {file-style} setting, as
discussed below. Only atoms whose initial coordinates should differ
from the current configuration need be specified.
Conceptually, the initial configuration for the first replica should
be a state with all the atoms (NEB and non-NEB) having coordinates on
one side of the energy barrier. A perfect energy minimum is not
required, since atoms in the first replica experience no spring forces
from the 2nd replica. Thus the damped dynamics minimization will
drive the first replica to an energy minimum if it is not already
there. However, you will typically get better convergence if the
initial state is already at a minimum. For example, for a system with
a free surface, the surface should be fully relaxed before attempting
a NEB calculation.
Likewise, the initial configuration of the final replica should be a
state with all the atoms (NEB and non-NEB) on the other side of the
energy barrier. Again, a perfect energy minimum is not required,
since the atoms in the last replica also experience no spring forces
from the next-to-last replica, and thus the damped dynamics
minimization will drive it to an energy minimum.
Conceptually, the initial and final configurations for the first
replica should be states on either side of an energy barrier.
As explained below, the initial configurations of intermediate
replicas can be atomic coordinates interpolated in a linear fashion
between the first and last replicas. This is often adequate state for
between the first and last replicas. This is often adequate for
simple transitions. For more complex transitions, it may lead to slow
convergence or even bad results if the minimum energy path (MEP, see
below) of states over the barrier cannot be correctly converged to
from such an initial configuration. In this case, you will want to
generate initial states for the intermediate replicas that are
geometrically closer to the MEP and read them in.
from such an initial path. In this case, you will want to generate
initial states for the intermediate replicas that are geometrically
closer to the MEP and read them in.
:line
@ -135,10 +122,11 @@ is assigned to be a fraction of the distance. E.g. if there are 10
replicas, the 2nd replica will assign a position that is 10% of the
distance along a line between the starting and final point, and the
9th replica will assign a position that is 90% of the distance along
the line. Note that this procedure to produce consistent coordinates
across all the replicas, the current coordinates need to be the same
in all replicas. LAMMPS does not check for this, but invalid initial
configurations will likely result if it is not the case.
the line. Note that for this procedure to produce consistent
coordinates across all the replicas, the current coordinates need to
be the same in all replicas. LAMMPS does not check for this, but
invalid initial configurations will likely result if it is not the
case.
NOTE: The "distance" between the starting and final point is
calculated in a minimum-image sense for a periodic simulation box.
@ -150,8 +138,8 @@ interpolation is outside the periodic box, the atom will be wrapped
back into the box when the NEB calculation begins.
For a {file-style} setting of {each}, a filename is specified which is
assumed to be unique to each replica. This can be done by
using a variable in the filename, e.g.
assumed to be unique to each replica. This can be done by using a
variable in the filename, e.g.
variable i equal part
neb 0.0 0.001 1000 500 50 each coords.initial.$i :pre
@ -198,11 +186,10 @@ The minimizer tolerances for energy and force are set by {etol} and
A non-zero {etol} means that the NEB calculation will terminate if the
energy criterion is met by every replica. The energies being compared
to {etol} do not include any contribution from the inter-replica
forces, since these are non-conservative. A non-zero {ftol} means
that the NEB calculation will terminate if the force criterion is met
by every replica. The forces being compared to {ftol} include the
inter-replica forces between an atom and its images in adjacent
replicas.
nudging forces, since these are non-conservative. A non-zero {ftol}
means that the NEB calculation will terminate if the force criterion
is met by every replica. The forces being compared to {ftol} include
the inter-replica nudging forces.
The maximum number of iterations in each stage is set by {N1} and
{N2}. These are effectively timestep counts since each iteration of
@ -220,27 +207,27 @@ finding a good energy barrier. {N1} and {N2} must both be multiples
of {Nevery}.
In the first stage of NEB, the set of replicas should converge toward
the minimum energy path (MEP) of conformational states that transition
over the barrier. The MEP for a barrier is defined as a sequence of
3N-dimensional states that cross the barrier at its saddle point, each
of which has a potential energy gradient parallel to the MEP itself.
The replica states will also be roughly equally spaced along the MEP
due to the inter-replica spring force added by the "fix
neb"_fix_neb.html command.
a minimum energy path (MEP) of conformational states that transition
over a barrier. The MEP for a transition is defined as a sequence of
3N-dimensional states, each of which has a potential energy gradient
parallel to the MEP itself. The configuration of highest energy along
a MEP corresponds to a saddle point. The replica states will also be
roughly equally spaced along the MEP due to the inter-replica nugding
force added by the "fix neb"_fix_neb.html command.
In the second stage of NEB, the replica with the highest energy
is selected and the inter-replica forces on it are converted to a
force that drives its atom coordinates to the top or saddle point of
the barrier, via the barrier-climbing calculation described in
In the second stage of NEB, the replica with the highest energy is
selected and the inter-replica forces on it are converted to a force
that drives its atom coordinates to the top or saddle point of the
barrier, via the barrier-climbing calculation described in
"(HenkelmanB)"_#HenkelmanB. As before, the other replicas rearrange
themselves along the MEP so as to be roughly equally spaced.
When both stages are complete, if the NEB calculation was successful,
one of the replicas should be an atomic configuration at the top or
saddle point of the barrier, the potential energies for the set of
replicas should represent the energy profile of the barrier along the
MEP, and the configurations of the replicas should be a sequence of
configurations along the MEP.
the configurations of the replicas should be along (close to) the MEP
and the replica with the highest energy should be an atomic
configuration at (close to) the saddle point of the transition. The
potential energies for the set of replicas represents the energy
profile of the transition along the MEP.
:line
@ -284,9 +271,9 @@ ID2 x2 y2 z2
...
IDN xN yN zN :pre
The fields are the atom ID, followed by the x,y,z coordinates.
The lines can be listed in any order. Additional trailing information
on the line is OK, such as a comment.
The fields are the atom ID, followed by the x,y,z coordinates. The
lines can be listed in any order. Additional trailing information on
the line is OK, such as a comment.
Note that for a typical NEB calculation you do not need to specify
initial coordinates for very many atoms to produce differing starting
@ -310,38 +297,54 @@ this case), the print-out to the screen and master log.lammps file
contains a line of output, printed once every {Nevery} timesteps. It
contains the timestep, the maximum force per replica, the maximum
force per atom (in any replica), potential gradients in the initial,
final, and climbing replicas, the forward and backward energy barriers,
the total reaction coordinate (RDT), and the normalized reaction
coordinate and potential energy of each replica.
final, and climbing replicas, the forward and backward energy
barriers, the total reaction coordinate (RDT), and the normalized
reaction coordinate and potential energy of each replica.
The "maximum force per replica" is
the two-norm of the 3N-length force vector for the atoms in each
replica, maximized across replicas, which is what the {ftol} setting
is checking against. In this case, N is all the atoms in each
replica. The "maximum force per atom" is the maximum force component
of any atom in any replica. The potential gradients are the two-norm
of the 3N-length force vector solely due to the interaction potential i.e.
without adding in inter-replica forces. Note that inter-replica forces
are zero in the initial and final replicas, and only affect
the direction in the climbing replica. For this reason, the "maximum
force per replica" is often equal to the potential gradient in the
climbing replica. In the first stage of NEB, there is no climbing
replica, and so the potential gradient in the highest energy replica
is reported, since this replica will become the climbing replica
in the second stage of NEB.
The "maximum force per replica" is the two-norm of the 3N-length force
vector for the atoms in each replica, maximized across replicas, which
is what the {ftol} setting is checking against. In this case, N is
all the atoms in each replica. The "maximum force per atom" is the
maximum force component of any atom in any replica. The potential
gradients are the two-norm of the 3N-length force vector solely due to
the interaction potential i.e. without adding in inter-replica
forces.
The "reaction coordinate" (RD) for each
replica is the two-norm of the 3N-length vector of distances between
its atoms and the preceding replica's atoms, added to the RD of the
preceding replica. The RD of the first replica RD1 = 0.0;
the RD of the final replica RDN = RDT, the total reaction coordinate.
The normalized RDs are divided by RDT,
so that they form a monotonically increasing sequence
from zero to one. When computing RD, N only includes the atoms
being operated on by the fix neb command.
The "reaction coordinate" (RD) for each replica is the two-norm of the
3N-length vector of distances between its atoms and the preceding
replica's atoms, added to the RD of the preceding replica. The RD of
the first replica RD1 = 0.0; the RD of the final replica RDN = RDT,
the total reaction coordinate. The normalized RDs are divided by RDT,
so that they form a monotonically increasing sequence from zero to
one. When computing RD, N only includes the atoms being operated on by
the fix neb command.
The forward (reverse) energy barrier is the potential energy of the highest
replica minus the energy of the first (last) replica.
The forward (reverse) energy barrier is the potential energy of the
highest replica minus the energy of the first (last) replica.
Supplementary informations for all replicas can be printed out to the
screen and master log.lammps file by adding the verbose keyword. These
informations include the following. The "path angle" (pathangle) for
the replica i which is the angle between the 3N-length vectors (Ri-1 -
Ri) and (Ri+1 - Ri) (where Ri is the atomic coordinates of replica
i). A "path angle" of 180 indicates that replicas i-1, i and i+1 are
aligned. "angletangrad" is the angle between the 3N-length tangent
vector and the 3N-length force vector at image i. The tangent vector
is calculated as in "(HenkelmanA)"_#HenkelmanA for all intermediate
replicas and at R2 - R1 and RM - RM-1 for the first and last replica,
respectively. "anglegrad" is the angle between the 3N-length energy
gradient vector of replica i and that of replica i+1. It is not
defined for the final replica and reads nan. gradV is the norm of the
energy gradient of image i. ReplicaForce is the two-norm of the
3N-length force vector (including nudging forces) for replica i.
MaxAtomForce is the maximum force component of any atom in replica i.
When a NEB calculation does not converge properly, these suplementary
informations can help understanding what is going wrong. For instance
when the path angle becomes accute the definition of tangent used in
the NEB calculation is questionable and the NEB cannot may diverge
"(Maras)"_#Maras2.
When running on multiple partitions, LAMMPS produces additional log
files for each partition, e.g. log.lammps.0, log.lammps.1, etc. For a
@ -396,12 +399,16 @@ This command can only be used if LAMMPS was built with the REPLICA
package. See the "Making LAMMPS"_Section_start.html#start_3 section
for more info on packages.
:line
[Related commands:]
"prd"_prd.html, "temper"_temper.html, "fix
langevin"_fix_langevin.html, "fix viscous"_fix_viscous.html
"prd"_prd.html, "temper"_temper.html, "fix langevin"_fix_langevin.html,
"fix viscous"_fix_viscous.html
[Default:] none
[Default:]
none
:line
@ -414,3 +421,7 @@ langevin"_fix_langevin.html, "fix viscous"_fix_viscous.html
:link(Nakano3)
[(Nakano)] Nakano, Comp Phys Comm, 178, 280-289 (2008).
:link(Maras2)
[(Maras)] Maras, Trushin, Stukowski, Ala-Nissila, Jonsson,
Comp Phys Comm, 205, 13-21 (2016)

View File

@ -2,13 +2,19 @@ Run these examples as:
mpirun -np 4 lmp_g++ -partition 4x1 -in in.neb.hop1
mpirun -np 4 lmp_g++ -partition 4x1 -in in.neb.hop2
mpirun -np 4 lmp_g++ -partition 4x1 -in in.neb.hop1freeend
mpirun -np 3 lmp_g++ -partition 3x1 -in in.neb.sivac
mpirun -np 8 lmp_g++ -partition 4x2 -in in.neb.hop1
mpirun -np 8 lmp_g++ -partition 4x2 -in in.neb.hop2
mpirun -np 8 lmp_g++ -partition 4x2 -in in.neb.hop1freeend
mpirun -np 6 lmp_g++ -partition 3x2 -in in.neb.sivac
mpirun -np 9 lmp_g++ -partition 3x3 -in in.neb.sivac
Note that more than 4 replicas should be used for a precise estimate
of the activation energy corresponding to a transition.
If you uncomment the dump command lines in the input scripts, you can
create dump files to do visualization from via Python tools: (see
lammps/tools/README and lammps/tools/python/README for more info on

View File

@ -51,7 +51,7 @@ set group nebatoms type 3
group nonneb subtract all nebatoms
fix 1 lower setforce 0.0 0.0 0.0
fix 2 nebatoms neb 1.0
fix 2 nebatoms neb 1.0 nudg_style idealpos
fix 3 all enforce2d
thermo 100

View File

@ -0,0 +1,56 @@
# 2d NEB surface simulation, hop from surface to become adatom
dimension 2
boundary p s p
atom_style atomic
neighbor 0.3 bin
neigh_modify delay 5
atom_modify map array sort 0 0.0
variable u uloop 20
# create geometry with flat surface
lattice hex 0.9
region box block 0 20 0 10 -0.25 0.25
read_data initial.hop1freeend
# LJ potentials
pair_style lj/cut 2.5
pair_coeff * * 1.0 1.0 2.5
pair_modify shift yes
# define groups
region 1 block INF INF INF 1.25 INF INF
group lower region 1
group mobile subtract all lower
set group lower type 2
timestep 0.05
# group of NEB atoms - either block or single atom ID 412
region surround block 10 18 17 20 0 0 units box
group nebatoms region surround
#group nebatoms id 412
set group nebatoms type 3
group nonneb subtract all nebatoms
fix 1 lower setforce 0.0 0.0 0.0
fix 2 nebatoms neb 1.0 nudg_style idealpos freeend ini
fix 3 all enforce2d
thermo 100
#dump 1 nebatoms atom 10 dump.neb.$u
#dump 2 nonneb atom 10 dump.nonneb.$u
# run NEB for 2000 steps or to force tolerance
min_style quickmin
neb 0.0 0.1 1000 1000 100 final final.hop1

View File

@ -53,7 +53,7 @@ set group nebatoms type 3
group nonneb subtract all nebatoms
fix 1 lower setforce 0.0 0.0 0.0
fix 2 nebatoms neb 1.0
fix 2 nebatoms neb 1.0
fix 3 all enforce2d
thermo 100

View File

@ -66,7 +66,7 @@ minimize 1.0e-6 1.0e-4 1000 10000
reset_timestep 0
fix 1 all neb 1.0
fix 1 all neb 1.0
thermo 100

View File

@ -0,0 +1,860 @@
LAMMPS data file via write_data, version 4 May 2017, timestep = 155
420 atoms
3 atom types
0.0000000000000000e+00 2.2653923264628304e+01 xlo xhi
2.1918578738841410e-01 1.9932852254455714e+01 ylo yhi
-2.8317404080785380e-01 2.8317404080785380e-01 zlo zhi
Masses
1 1
2 1
3 1
Atoms # atomic
1 2 0.0000000000000000e+00 2.2114806707013038e-01 0.0000000000000000e+00 0 0 0
2 2 5.6634808161570760e-01 1.1832938184587634e+00 0.0000000000000000e+00 0 0 0
3 2 1.1326961632314152e+00 2.2114806707013018e-01 0.0000000000000000e+00 0 0 0
4 2 1.6990442448471228e+00 1.1832938184587634e+00 0.0000000000000000e+00 0 0 0
5 2 2.2653923264628304e+00 2.2114806707013032e-01 0.0000000000000000e+00 0 0 0
6 2 2.8317404080785380e+00 1.1832938184587634e+00 0.0000000000000000e+00 0 0 0
7 2 3.3980884896942456e+00 2.2114806707013024e-01 0.0000000000000000e+00 0 0 0
8 2 3.9644365713099532e+00 1.1832938184587636e+00 0.0000000000000000e+00 0 0 0
9 2 4.5307846529256608e+00 2.2114806707013010e-01 0.0000000000000000e+00 0 0 0
10 2 5.0971327345413684e+00 1.1832938184587636e+00 0.0000000000000000e+00 0 0 0
11 2 5.6634808161570760e+00 2.2114806707013010e-01 0.0000000000000000e+00 0 0 0
12 2 6.2298288977727836e+00 1.1832938184587636e+00 0.0000000000000000e+00 0 0 0
13 2 6.7961769793884912e+00 2.2114806707013010e-01 0.0000000000000000e+00 0 0 0
14 2 7.3625250610041988e+00 1.1832938184587636e+00 0.0000000000000000e+00 0 0 0
15 2 7.9288731426199064e+00 2.2114806707013010e-01 0.0000000000000000e+00 0 0 0
16 2 8.4952212242356140e+00 1.1832938184587636e+00 0.0000000000000000e+00 0 0 0
17 2 9.0615693058513216e+00 2.2114806707013010e-01 0.0000000000000000e+00 0 0 0
18 2 9.6279173874670292e+00 1.1832938184587636e+00 0.0000000000000000e+00 0 0 0
19 2 1.0194265469082737e+01 2.2114806707013010e-01 0.0000000000000000e+00 0 0 0
20 2 1.0760613550698444e+01 1.1832938184587636e+00 0.0000000000000000e+00 0 0 0
21 2 1.1326961632314152e+01 2.2114806707013010e-01 0.0000000000000000e+00 0 0 0
22 2 1.1893309713929860e+01 1.1832938184587636e+00 0.0000000000000000e+00 0 0 0
23 2 1.2459657795545567e+01 2.2114806707013010e-01 0.0000000000000000e+00 0 0 0
24 2 1.3026005877161275e+01 1.1832938184587636e+00 0.0000000000000000e+00 0 0 0
25 2 1.3592353958776982e+01 2.2114806707013010e-01 0.0000000000000000e+00 0 0 0
26 2 1.4158702040392690e+01 1.1832938184587636e+00 0.0000000000000000e+00 0 0 0
27 2 1.4725050122008398e+01 2.2114806707013010e-01 0.0000000000000000e+00 0 0 0
28 2 1.5291398203624105e+01 1.1832938184587636e+00 0.0000000000000000e+00 0 0 0
29 2 1.5857746285239813e+01 2.2114806707013010e-01 0.0000000000000000e+00 0 0 0
30 2 1.6424094366855520e+01 1.1832938184587636e+00 0.0000000000000000e+00 0 0 0
31 2 1.6990442448471228e+01 2.2114806707013010e-01 0.0000000000000000e+00 0 0 0
32 2 1.7556790530086936e+01 1.1832938184587636e+00 0.0000000000000000e+00 0 0 0
33 2 1.8123138611702643e+01 2.2114806707013010e-01 0.0000000000000000e+00 0 0 0
34 2 1.8689486693318351e+01 1.1832938184587636e+00 0.0000000000000000e+00 0 0 0
35 2 1.9255834774934058e+01 2.2114806707013010e-01 0.0000000000000000e+00 0 0 0
36 2 1.9822182856549766e+01 1.1832938184587636e+00 0.0000000000000000e+00 0 0 0
37 2 2.0388530938165474e+01 2.2114806707013024e-01 0.0000000000000000e+00 0 0 0
38 2 2.0954879019781181e+01 1.1832938184587634e+00 0.0000000000000000e+00 0 0 0
39 2 2.1521227101396889e+01 2.2114806707013043e-01 0.0000000000000000e+00 0 0 0
40 2 2.2087575183012596e+01 1.1832938184587634e+00 0.0000000000000000e+00 0 0 0
41 2 5.5197595012095140e-17 2.1414943053865136e+00 0.0000000000000000e+00 0 0 0
42 1 5.6653050195082300e-01 3.1000166664180786e+00 0.0000000000000000e+00 0 0 0
43 2 1.1326961632314152e+00 2.1414943053865136e+00 0.0000000000000000e+00 0 0 0
44 1 1.6992713312703549e+00 3.1000339212153092e+00 0.0000000000000000e+00 0 0 0
45 2 2.2653923264628304e+00 2.1414943053865136e+00 0.0000000000000000e+00 0 0 0
46 1 2.8319979330663916e+00 3.1000568858502824e+00 0.0000000000000000e+00 0 0 0
47 2 3.3980884896942456e+00 2.1414943053865136e+00 0.0000000000000000e+00 0 0 0
48 1 3.9647072056144004e+00 3.1000829051868171e+00 0.0000000000000000e+00 0 0 0
49 2 4.5307846529256608e+00 2.1414943053865132e+00 0.0000000000000000e+00 0 0 0
50 1 5.0973978903306154e+00 3.1001089282984520e+00 0.0000000000000000e+00 0 0 0
51 2 5.6634808161570760e+00 2.1414943053865132e+00 0.0000000000000000e+00 0 0 0
52 1 6.2300706856774344e+00 3.1001320005511488e+00 0.0000000000000000e+00 0 0 0
53 2 6.7961769793884912e+00 2.1414943053865132e+00 0.0000000000000000e+00 0 0 0
54 1 7.3627281418365298e+00 3.1001497026412643e+00 0.0000000000000000e+00 0 0 0
55 2 7.9288731426199064e+00 2.1414943053865132e+00 0.0000000000000000e+00 0 0 0
56 1 8.4953743353575657e+00 3.1001604410839558e+00 0.0000000000000000e+00 0 0 0
57 2 9.0615693058513216e+00 2.1414943053865132e+00 0.0000000000000000e+00 0 0 0
58 1 9.6280143647524650e+00 3.1001635457640377e+00 0.0000000000000000e+00 0 0 0
59 2 1.0194265469082737e+01 2.1414943053865132e+00 0.0000000000000000e+00 0 0 0
60 1 1.0760653757776259e+01 3.1001591904894030e+00 0.0000000000000000e+00 0 0 0
61 2 1.1326961632314152e+01 2.1414943053865132e+00 0.0000000000000000e+00 0 0 0
62 1 1.1893297897551465e+01 3.1001481997229781e+00 0.0000000000000000e+00 0 0 0
63 2 1.2459657795545567e+01 2.1414943053865132e+00 0.0000000000000000e+00 0 0 0
64 1 1.3025951551034638e+01 3.1001318239711781e+00 0.0000000000000000e+00 0 0 0
65 2 1.3592353958776982e+01 2.1414943053865132e+00 0.0000000000000000e+00 0 0 0
66 1 1.4158618530491893e+01 3.1001115545681470e+00 0.0000000000000000e+00 0 0 0
67 2 1.4725050122008398e+01 2.1414943053865132e+00 0.0000000000000000e+00 0 0 0
68 1 1.5291301468763761e+01 3.1000890162853869e+00 0.0000000000000000e+00 0 0 0
69 2 1.5857746285239813e+01 2.1414943053865132e+00 0.0000000000000000e+00 0 0 0
70 1 1.6424001663467980e+01 3.1000659357603495e+00 0.0000000000000000e+00 0 0 0
71 2 1.6990442448471228e+01 2.1414943053865132e+00 0.0000000000000000e+00 0 0 0
72 1 1.7556718955895743e+01 3.1000441476131195e+00 0.0000000000000000e+00 0 0 0
73 2 1.8123138611702643e+01 2.1414943053865132e+00 0.0000000000000000e+00 0 0 0
74 1 1.8689451647636982e+01 3.1000255781755963e+00 0.0000000000000000e+00 0 0 0
75 2 1.9255834774934058e+01 2.1414943053865132e+00 0.0000000000000000e+00 0 0 0
76 1 1.9822196505112320e+01 3.1000121466922494e+00 0.0000000000000000e+00 0 0 0
77 2 2.0388530938165474e+01 2.1414943053865136e+00 0.0000000000000000e+00 0 0 0
78 1 2.0954948927196146e+01 3.1000055506449713e+00 0.0000000000000000e+00 0 0 0
79 2 2.1521227101396889e+01 2.1414943053865141e+00 0.0000000000000000e+00 0 0 0
80 1 2.2087703334137267e+01 3.1000069547492535e+00 0.0000000000000000e+00 0 0 0
81 1 3.1056926716504509e-04 4.0585004644184055e+00 0.0000000000000000e+00 0 0 0
82 1 5.6689331628382078e-01 5.0169857265632762e+00 0.0000000000000000e+00 0 0 0
83 1 1.1331010876667682e+00 4.0585336877518543e+00 0.0000000000000000e+00 0 0 0
84 1 1.6997107179473134e+00 5.0170595571637469e+00 0.0000000000000000e+00 0 0 0
85 1 2.2658691471408239e+00 4.0585832735991989e+00 0.0000000000000000e+00 0 0 0
86 1 2.8324913387275488e+00 5.0171576059016481e+00 0.0000000000000000e+00 0 0 0
87 1 3.3986077265334802e+00 4.0586437183143182e+00 0.0000000000000000e+00 0 0 0
88 1 3.9652274946581523e+00 5.0172690174612651e+00 0.0000000000000000e+00 0 0 0
89 1 4.5313127263524615e+00 4.0587080892871539e+00 0.0000000000000000e+00 0 0 0
90 1 5.0979153202534064e+00 5.0173813990872880e+00 0.0000000000000000e+00 0 0 0
91 1 5.6639833195247755e+00 4.0587690704404489e+00 0.0000000000000000e+00 0 0 0
92 1 6.2305551824295442e+00 5.0174824868813017e+00 0.0000000000000000e+00 0 0 0
93 1 6.7966220748571669e+00 4.0588200390400129e+00 0.0000000000000000e+00 0 0 0
94 1 7.3631519876339633e+00 5.0175617795367824e+00 0.0000000000000000e+00 0 0 0
95 1 7.9292347620768062e+00 4.0588559557915787e+00 0.0000000000000000e+00 0 0 0
96 1 8.4957150696300925e+00 5.0176118394895646e+00 0.0000000000000000e+00 0 0 0
97 1 9.0618297669257259e+00 4.0588738859603266e+00 0.0000000000000000e+00 0 0 0
98 1 9.6282574219214077e+00 5.0176289672989007e+00 0.0000000000000000e+00 0 0 0
99 1 1.0194417159454611e+01 4.0588730767572860e+00 0.0000000000000000e+00 0 0 0
100 1 1.0760794315385466e+01 5.0176131474245498e+00 0.0000000000000000e+00 0 0 0
101 1 1.1327007580768864e+01 4.0588546552053515e+00 0.0000000000000000e+00 0 0 0
102 1 1.1893341583868121e+01 5.0175674119454996e+00 0.0000000000000000e+00 0 0 0
103 1 1.2459611156068675e+01 4.0588211205885418e+00 0.0000000000000000e+00 0 0 0
104 1 1.3025913928919357e+01 5.0174969437432848e+00 0.0000000000000000e+00 0 0 0
105 1 1.3592236588154931e+01 4.0587758328652299e+00 0.0000000000000000e+00 0 0 0
106 1 1.4158523495745847e+01 5.0174082592346645e+00 0.0000000000000000e+00 0 0 0
107 1 1.4724890484932756e+01 4.0587226477181808e+00 0.0000000000000000e+00 0 0 0
108 1 1.5291178803597106e+01 5.0173086870307237e+00 0.0000000000000000e+00 0 0 0
109 1 1.5857576888353359e+01 4.0586657476126140e+00 0.0000000000000000e+00 0 0 0
110 1 1.6423884000624799e+01 5.0172061640888863e+00 0.0000000000000000e+00 0 0 0
111 1 1.6990296946466405e+01 4.0586096139851531e+00 0.0000000000000000e+00 0 0 0
112 1 1.7556638404998214e+01 5.0171091825602536e+00 0.0000000000000000e+00 0 0 0
113 1 1.8123048711157228e+01 4.0585590083330025e+00 0.0000000000000000e+00 0 0 0
114 1 1.8689436384449273e+01 5.0170266065355777e+00 0.0000000000000000e+00 0 0 0
115 1 1.9255827121600600e+01 4.0585188068824696e+00 0.0000000000000000e+00 0 0 0
116 1 1.9822267727126505e+01 5.0169670887341100e+00 0.0000000000000000e+00 0 0 0
117 1 2.0388624292977298e+01 4.0584935738800203e+00 0.0000000000000000e+00 0 0 0
118 1 2.0955118660666272e+01 5.0169379847636248e+00 0.0000000000000000e+00 0 0 0
119 1 2.1521430213723754e+01 4.0584868720623906e+00 0.0000000000000000e+00 0 0 0
120 1 2.2087973498256840e+01 5.0169439545250629e+00 0.0000000000000000e+00 0 0 0
121 1 6.5693888433665819e-04 5.9753894955957820e+00 0.0000000000000000e+00 0 0 0
122 1 5.6732815172745055e-01 6.9338399304063270e+00 0.0000000000000000e+00 0 0 0
123 1 1.1335287178365945e+00 5.9754794631117711e+00 0.0000000000000000e+00 0 0 0
124 1 1.7002170239497103e+00 6.9340002985609068e+00 0.0000000000000000e+00 0 0 0
125 1 2.2663607603415961e+00 5.9756128140497200e+00 0.0000000000000000e+00 0 0 0
126 1 2.8330530781363672e+00 6.9342120448719999e+00 0.0000000000000000e+00 0 0 0
127 1 3.3991419489134609e+00 5.9757753571666763e+00 0.0000000000000000e+00 0 0 0
128 1 3.9658260192240613e+00 6.9344537679961507e+00 0.0000000000000000e+00 0 0 0
129 1 4.5318648361825700e+00 5.9759497256682410e+00 0.0000000000000000e+00 0 0 0
130 1 5.0985283212441441e+00 6.9347011709619251e+00 0.0000000000000000e+00 0 0 0
131 1 5.6645260085061278e+00 5.9761173336292988e+00 0.0000000000000000e+00 0 0 0
132 1 6.2311560978848899e+00 6.9349290616610286e+00 0.0000000000000000e+00 0 0 0
133 1 6.7971269443565747e+00 5.9762605495489280e+00 0.0000000000000000e+00 0 0 0
134 1 7.3637111409380722e+00 6.9351139899270322e+00 0.0000000000000000e+00 0 0 0
135 1 7.9296749255956041e+00 5.9763649377635293e+00 0.0000000000000000e+00 0 0 0
136 1 8.4962030194710927e+00 6.9352373287964380e+00 0.0000000000000000e+00 0 0 0
137 1 9.0621832354873675e+00 5.9764210443253543e+00 0.0000000000000000e+00 0 0 0
138 1 9.6286498073427680e+00 6.9352878316174378e+00 0.0000000000000000e+00 0 0 0
139 1 1.0194670187278859e+01 5.9764252099845692e+00 0.0000000000000000e+00 0 0 0
140 1 1.0761076657788550e+01 6.9352626758233988e+00 0.0000000000000000e+00 0 0 0
141 1 1.1327157075090911e+01 5.9763792530010624e+00 0.0000000000000000e+00 0 0 0
142 1 1.1893512574619942e+01 6.9351667929726579e+00 0.0000000000000000e+00 0 0 0
143 1 1.2459665575239395e+01 5.9762893326393627e+00 0.0000000000000000e+00 0 0 0
144 1 1.3025986375565017e+01 6.9350110693313853e+00 0.0000000000000000e+00 0 0 0
145 1 1.3592215193397568e+01 5.9761645662970668e+00 0.0000000000000000e+00 0 0 0
146 1 1.4158522852873338e+01 6.9348103731164086e+00 0.0000000000000000e+00 0 0 0
147 1 1.4724821146400661e+01 5.9760159211600943e+00 0.0000000000000000e+00 0 0 0
148 1 1.5291139696354101e+01 6.9345821426564456e+00 0.0000000000000000e+00 0 0 0
149 1 1.5857492801384174e+01 5.9758556179168476e+00 0.0000000000000000e+00 0 0 0
150 1 1.6423845342403485e+01 6.9343457083902562e+00 0.0000000000000000e+00 0 0 0
151 1 1.6990232659392920e+01 5.9756969240409656e+00 0.0000000000000000e+00 0 0 0
152 1 1.7556637811168688e+01 6.9341219348234606e+00 0.0000000000000000e+00 0 0 0
153 1 1.8123035927190724e+01 5.9755539362099377e+00 0.0000000000000000e+00 0 0 0
154 1 1.8689504786395585e+01 6.9339324030079297e+00 0.0000000000000000e+00 0 0 0
155 1 1.9255890870078105e+01 5.9754408656724385e+00 0.0000000000000000e+00 0 0 0
156 1 1.9822425360651039e+01 6.9337974543626846e+00 0.0000000000000000e+00 0 0 0
157 1 2.0388780199969101e+01 5.9753705251759808e+00 0.0000000000000000e+00 0 0 0
158 1 2.0955373611320280e+01 6.9337330661143222e+00 0.0000000000000000e+00 0 0 0
159 1 2.1521683507254988e+01 5.9753521824721574e+00 0.0000000000000000e+00 0 0 0
160 1 2.2088323232189435e+01 6.9337475792566039e+00 0.0000000000000000e+00 0 0 0
161 1 1.1151815023353693e-03 7.8921416571122727e+00 0.0000000000000000e+00 0 0 0
162 1 5.6789887436851039e-01 8.8505576275120745e+00 0.0000000000000000e+00 0 0 0
163 1 1.1340615020344891e+00 7.8923152028921146e+00 0.0000000000000000e+00 0 0 0
164 1 1.7008494977197184e+00 8.8508369646616227e+00 0.0000000000000000e+00 0 0 0
165 1 2.2669564852467339e+00 7.8925678787693965e+00 0.0000000000000000e+00 0 0 0
166 1 2.8337429988374914e+00 8.8512007799959171e+00 0.0000000000000000e+00 0 0 0
167 1 3.3997890834793392e+00 7.8928753791925752e+00 0.0000000000000000e+00 0 0 0
168 1 3.9665700017177907e+00 8.8516188392723496e+00 0.0000000000000000e+00 0 0 0
169 1 4.5325491541722158e+00 7.8932093579911635e+00 0.0000000000000000e+00 0 0 0
170 1 5.0993179760197034e+00 8.8520570451664753e+00 0.0000000000000000e+00 0 0 0
171 1 5.6652272696563086e+00 7.8935385042762318e+00 0.0000000000000000e+00 0 0 0
172 1 6.2319722558852177e+00 8.8524768944511472e+00 0.0000000000000000e+00 0 0 0
173 1 6.7978170214800082e+00 7.8938302754648539e+00 0.0000000000000000e+00 0 0 0
174 1 7.3645207249719933e+00 8.8528366651387476e+00 0.0000000000000000e+00 0 0 0
175 1 7.9303191911043118e+00 7.8940542651579788e+00 0.0000000000000000e+00 0 0 0
176 1 8.4969615618418324e+00 8.8530963542120293e+00 0.0000000000000000e+00 0 0 0
177 1 9.0627458585593441e+00 7.8941868850969135e+00 0.0000000000000000e+00 0 0 0
178 1 9.6293104463590424e+00 8.8532254399208412e+00 0.0000000000000000e+00 0 0 0
179 1 1.0195121730902658e+01 7.8942152485172352e+00 0.0000000000000000e+00 0 0 0
180 1 1.0761602408503441e+01 8.8532092085980238e+00 0.0000000000000000e+00 0 0 0
181 1 1.1327481649719793e+01 7.8941385508356099e+00 0.0000000000000000e+00 0 0 0
182 1 1.1893886870241856e+01 8.8530505445055354e+00 0.0000000000000000e+00 0 0 0
183 1 1.2459865179342737e+01 7.8939667557582798e+00 0.0000000000000000e+00 0 0 0
184 1 1.3026218291904378e+01 8.8527674547956821e+00 0.0000000000000000e+00 0 0 0
185 1 1.3592310202433307e+01 7.8937178025905181e+00 0.0000000000000000e+00 0 0 0
186 1 1.4158645900042497e+01 8.8523887379317436e+00 0.0000000000000000e+00 0 0 0
187 1 1.4724847145311326e+01 7.8934149070498600e+00 0.0000000000000000e+00 0 0 0
188 1 1.5291205081244327e+01 8.8519503874602243e+00 0.0000000000000000e+00 0 0 0
189 1 1.5857494607334019e+01 7.8930848995638652e+00 0.0000000000000000e+00 0 0 0
190 1 1.6423911366860466e+01 8.8514936483282209e+00 0.0000000000000000e+00 0 0 0
191 1 1.6990256625068444e+01 7.8927574412240151e+00 0.0000000000000000e+00 0 0 0
192 1 1.7556757521848787e+01 8.8510636099500459e+00 0.0000000000000000e+00 0 0 0
193 1 1.8123121878813144e+01 7.8924640508501298e+00 0.0000000000000000e+00 0 0 0
194 1 1.8689714850348466e+01 8.8507060559423465e+00 0.0000000000000000e+00 0 0 0
195 1 1.9256065579477248e+01 7.8922356001392169e+00 0.0000000000000000e+00 0 0 0
196 1 1.9822740225596814e+01 8.8504608774193994e+00 0.0000000000000000e+00 0 0 0
197 1 2.0389054599310764e+01 7.8920977743942782e+00 0.0000000000000000e+00 0 0 0
198 1 2.0955788196198530e+01 8.8503534864083591e+00 0.0000000000000000e+00 0 0 0
199 1 2.1522054950758765e+01 7.8920658349416701e+00 0.0000000000000000e+00 0 0 0
200 1 2.2088823030833748e+01 8.8503894045591807e+00 0.0000000000000000e+00 0 0 0
201 1 1.7402898961801966e-03 9.8087331458102049e+00 0.0000000000000000e+00 0 0 0
202 1 5.6862550253253785e-01 1.0767129063577668e+01 0.0000000000000000e+00 0 0 0
203 1 1.1347351125604563e+00 9.8090210312609756e+00 0.0000000000000000e+00 0 0 0
204 1 1.7016010961270076e+00 1.0767553944884048e+01 0.0000000000000000e+00 0 0 0
205 1 2.2676800733457139e+00 9.8094251915038573e+00 0.0000000000000000e+00 0 0 0
206 1 2.8345388558320415e+00 1.0768094021206529e+01 0.0000000000000000e+00 0 0 0
207 1 3.4005711921286008e+00 9.8099146303251388e+00 0.0000000000000000e+00 0 0 0
208 1 3.9674359888022686e+00 1.0768719604543580e+01 0.0000000000000000e+00 0 0 0
209 1 4.5333977826109315e+00 9.8104561733570019e+00 0.0000000000000000e+00 0 0 0
210 1 5.1002760963180327e+00 1.0769398202643465e+01 0.0000000000000000e+00 0 0 0
211 1 5.6661407887052828e+00 9.8110111848429966e+00 0.0000000000000000e+00 0 0 0
212 1 6.2330282022400469e+00 1.0770087202120337e+01 0.0000000000000000e+00 0 0 0
213 1 6.7987755062394477e+00 9.8115326503110527e+00 0.0000000000000000e+00 0 0 0
214 1 7.3656514287550623e+00 1.0770727843890981e+01 0.0000000000000000e+00 0 0 0
215 1 7.9312798141889260e+00 9.8119658218493768e+00 0.0000000000000000e+00 0 0 0
216 1 8.4981076412551477e+00 1.0771244633836279e+01 0.0000000000000000e+00 0 0 0
217 1 9.0636474998261161e+00 9.8122560909429151e+00 0.0000000000000000e+00 0 0 0
218 1 9.6303843877347930e+00 1.0771559046035311e+01 0.0000000000000000e+00 0 0 0
219 1 1.0195900672859819e+01 9.8123627359180627e+00 0.0000000000000000e+00 0 0 0
220 1 1.0762516251278290e+01 1.0771614844517241e+01 0.0000000000000000e+00 0 0 0
221 1 1.1328091472906591e+01 9.8122692653101016e+00 0.0000000000000000e+00 0 0 0
222 1 1.1894584725285364e+01 1.0771394980275380e+01 0.0000000000000000e+00 0 0 0
223 1 1.2460291956550108e+01 9.8119854743716211e+00 0.0000000000000000e+00 0 0 0
224 1 1.3026697175518089e+01 1.0770922584297365e+01 0.0000000000000000e+00 0 0 0
225 1 1.3592577560562113e+01 9.8115426529845742e+00 0.0000000000000000e+00 0 0 0
226 1 1.4158957523975143e+01 1.0770251678533704e+01 0.0000000000000000e+00 0 0 0
227 1 1.4725010595311739e+01 9.8109868569230709e+00 0.0000000000000000e+00 0 0 0
228 1 1.5291439665423439e+01 1.0769456959141509e+01 0.0000000000000000e+00 0 0 0
229 1 1.5857627568713173e+01 9.8103742214932304e+00 0.0000000000000000e+00 0 0 0
230 1 1.6424169320270668e+01 1.0768628052568168e+01 0.0000000000000000e+00 0 0 0
231 1 1.6990431516954079e+01 9.8097684628141781e+00 0.0000000000000000e+00 0 0 0
232 1 1.7557116532362020e+01 1.0767864432631596e+01 0.0000000000000000e+00 0 0 0
233 1 1.8123390991250901e+01 9.8092369760472078e+00 0.0000000000000000e+00 0 0 0
234 1 1.8690204705628890e+01 1.0767262063551410e+01 0.0000000000000000e+00 0 0 0
235 1 1.9256448808830498e+01 9.8088413825519911e+00 0.0000000000000000e+00 0 0 0
236 1 1.9823340586830241e+01 1.0766888821404979e+01 0.0000000000000000e+00 0 0 0
237 1 2.0389541413400988e+01 9.8086229912274785e+00 0.0000000000000000e+00 0 0 0
238 1 2.0956458511796701e+01 1.0766759511236279e+01 0.0000000000000000e+00 0 0 0
239 1 2.1522621458778595e+01 9.8085916713182311e+00 0.0000000000000000e+00 0 0 0
240 1 2.2089529168272502e+01 1.0766851883618157e+01 0.0000000000000000e+00 0 0 0
241 1 2.5440858595377333e-03 1.1725176449724485e+01 0.0000000000000000e+00 0 0 0
242 1 5.6945959459694062e-01 1.2683596360703445e+01 0.0000000000000000e+00 0 0 0
243 1 1.1355189649219313e+00 1.1725603142335736e+01 0.0000000000000000e+00 0 0 0
244 1 1.7023827890664067e+00 1.2684167657575470e+01 0.0000000000000000e+00 0 0 0
245 1 2.2684713496063051e+00 1.1726169790097240e+01 0.0000000000000000e+00 0 0 0
246 1 2.8353214317297493e+00 1.2684869845626739e+01 0.0000000000000000e+00 0 0 0
247 1 3.4014115221528614e+00 1.1726849793467629e+01 0.0000000000000000e+00 0 0 0
248 1 3.9682847366436711e+00 1.2685690043118647e+01 0.0000000000000000e+00 0 0 0
249 1 4.5343333925353440e+00 1.1727620546655658e+01 0.0000000000000000e+00 0 0 0
250 1 5.1012595788864648e+00 1.2686617936467927e+01 0.0000000000000000e+00 0 0 0
251 1 5.6672100999124009e+00 1.1728453321807010e+01 0.0000000000000000e+00 0 0 0
252 1 6.2342050679378476e+00 1.2687631443781253e+01 0.0000000000000000e+00 0 0 0
253 1 6.7999929539663801e+00 1.1729301393807379e+01 0.0000000000000000e+00 0 0 0
254 1 7.3670487632296053e+00 1.2688678524169049e+01 0.0000000000000000e+00 0 0 0
255 1 7.9326168577620031e+00 1.1730088752185795e+01 0.0000000000000000e+00 0 0 0
256 1 8.4996909972151879e+00 1.2689657545646673e+01 0.0000000000000000e+00 0 0 0
257 1 9.0650186324858186e+00 1.1730705889838760e+01 0.0000000000000000e+00 0 0 0
258 1 9.6320279172941738e+00 1.2690401359419884e+01 0.0000000000000000e+00 0 0 0
259 1 1.0197176988949883e+01 1.1731033591325737e+01 0.0000000000000000e+00 0 0 0
260 1 1.0764025265158372e+01 1.2690719979755405e+01 0.0000000000000000e+00 0 0 0
261 1 1.1329151471753224e+01 1.1730992082437087e+01 0.0000000000000000e+00 0 0 0
262 1 1.1895793457864773e+01 1.2690499952724066e+01 0.0000000000000000e+00 0 0 0
263 1 1.2461074954083520e+01 1.1730568008302011e+01 0.0000000000000000e+00 0 0 0
264 1 1.3027557263784812e+01 1.2689744664661927e+01 0.0000000000000000e+00 0 0 0
265 1 1.3593109813371450e+01 1.1729811224797992e+01 0.0000000000000000e+00 0 0 0
266 1 1.4159562461497188e+01 1.2688557996910490e+01 0.0000000000000000e+00 0 0 0
267 1 1.4725395146103379e+01 1.1728816806025771e+01 0.0000000000000000e+00 0 0 0
268 1 1.5291979336937130e+01 1.2687112353846338e+01 0.0000000000000000e+00 0 0 0
269 1 1.5858003969640130e+01 1.1727709969544065e+01 0.0000000000000000e+00 0 0 0
270 1 1.6424834380846097e+01 1.2685627373535834e+01 0.0000000000000000e+00 0 0 0
271 1 1.6990919595491782e+01 1.1726637864021814e+01 0.0000000000000000e+00 0 0 0
272 1 1.7557997576834389e+01 1.2684345428666392e+01 0.0000000000000000e+00 0 0 0
273 1 1.8124040077451223e+01 1.1725751812758334e+01 0.0000000000000000e+00 0 0 0
274 1 1.8691233014266899e+01 1.2683475493290855e+01 0.0000000000000000e+00 0 0 0
275 1 1.9257221467828444e+01 1.1725167602985902e+01 0.0000000000000000e+00 0 0 0
276 1 1.9824402296022900e+01 1.2683041511515679e+01 0.0000000000000000e+00 0 0 0
277 1 2.0390369399207284e+01 1.1724905550220807e+01 0.0000000000000000e+00 0 0 0
278 1 2.0957468093457749e+01 1.2682973372169659e+01 0.0000000000000000e+00 0 0 0
279 1 2.1523449818304549e+01 1.1724927159323300e+01 0.0000000000000000e+00 0 0 0
280 1 2.2090449109149038e+01 1.2683182366055206e+01 0.0000000000000000e+00 0 0 0
281 1 3.4599372752678664e-03 1.3641562113178441e+01 0.0000000000000000e+00 0 0 0
282 1 5.7026645299712297e-01 1.4600072778762289e+01 0.0000000000000000e+00 0 0 0
283 1 1.1363018176625184e+00 1.3642122621820601e+01 0.0000000000000000e+00 0 0 0
284 1 1.7030304397851530e+00 1.4600744808517264e+01 0.0000000000000000e+00 0 0 0
285 1 2.2691832178537314e+00 1.3642819174389231e+01 0.0000000000000000e+00 0 0 0
286 1 2.8358920720180945e+00 1.4601540713388465e+01 0.0000000000000000e+00 0 0 0
287 1 3.4021290160499604e+00 1.3643644649633430e+01 0.0000000000000000e+00 0 0 0
288 1 3.9688713598453158e+00 1.4602477110803298e+01 0.0000000000000000e+00 0 0 0
289 1 4.5351441054704758e+00 1.3644605343002951e+01 0.0000000000000000e+00 0 0 0
290 1 5.1019693529741863e+00 1.4603583498422479e+01 0.0000000000000000e+00 0 0 0
291 1 5.6682074099496385e+00 1.3645707993168530e+01 0.0000000000000000e+00 0 0 0
292 1 6.2351598742721581e+00 1.4604888485699654e+01 0.0000000000000000e+00 0 0 0
293 1 6.8012626955016664e+00 1.3646941178415421e+01 0.0000000000000000e+00 0 0 0
294 1 7.3683745276621622e+00 1.4606397643582930e+01 0.0000000000000000e+00 0 0 0
295 1 7.9342088141787288e+00 1.3648248663869856e+01 0.0000000000000000e+00 0 0 0
296 1 8.5014805494154277e+00 1.4608055299059714e+01 0.0000000000000000e+00 0 0 0
297 1 9.0668968877652869e+00 1.3649493406156790e+01 0.0000000000000000e+00 0 0 0
298 1 9.6342620410232698e+00 1.4609684783907733e+01 0.0000000000000000e+00 0 0 0
299 1 1.0199152905272882e+01 1.3650407439181874e+01 0.0000000000000000e+00 0 0 0
300 1 1.0766413330496736e+01 1.4610836305969919e+01 0.0000000000000000e+00 0 0 0
301 1 1.1330921232704116e+01 1.3650669393063648e+01 0.0000000000000000e+00 0 0 0
302 1 1.1897841502623006e+01 1.4610930556808350e+01 0.0000000000000000e+00 0 0 0
303 1 1.2462421601307861e+01 1.3650120591395567e+01 0.0000000000000000e+00 0 0 0
304 1 1.3029018938638984e+01 1.4609761134444172e+01 0.0000000000000000e+00 0 0 0
305 1 1.3594046992755665e+01 1.3648816127477271e+01 0.0000000000000000e+00 0 0 0
306 1 1.4160647838817273e+01 1.4607529632893289e+01 0.0000000000000000e+00 0 0 0
307 1 1.4726158301286814e+01 1.3646976680611393e+01 0.0000000000000000e+00 0 0 0
308 1 1.5293172565463893e+01 1.4604737496674128e+01 0.0000000000000000e+00 0 0 0
309 1 1.5858902039329786e+01 1.3644935977195637e+01 0.0000000000000000e+00 0 0 0
310 1 1.6426542400228328e+01 1.4602024837155536e+01 0.0000000000000000e+00 0 0 0
311 1 1.6992136000094352e+01 1.3643085312965626e+01 0.0000000000000000e+00 0 0 0
312 1 1.7559955069272618e+01 1.4600235886953440e+01 0.0000000000000000e+00 0 0 0
313 1 1.8125444003110619e+01 1.3641827838397322e+01 0.0000000000000000e+00 0 0 0
314 1 1.8693119558449155e+01 1.4599324386000902e+01 0.0000000000000000e+00 0 0 0
315 1 1.9258622464532973e+01 1.3641178402937728e+01 0.0000000000000000e+00 0 0 0
316 1 1.9826034884164418e+01 1.4599040434292966e+01 0.0000000000000000e+00 0 0 0
317 1 2.0391639577074734e+01 1.3641005830730871e+01 0.0000000000000000e+00 0 0 0
318 1 2.0958793244869717e+01 1.4599158580846662e+01 0.0000000000000000e+00 0 0 0
319 1 2.1524539566888354e+01 1.3641168546895004e+01 0.0000000000000000e+00 0 0 0
320 1 2.2091487241099536e+01 1.4599530965127977e+01 0.0000000000000000e+00 0 0 0
321 1 4.3165808837657372e-03 1.5558056864296654e+01 0.0000000000000000e+00 0 0 0
322 1 5.7083714563799326e-01 1.6516708751979007e+01 0.0000000000000000e+00 0 0 0
323 1 1.1369032012442155e+00 1.5558694023524415e+01 0.0000000000000000e+00 0 0 0
324 1 1.7033478671452040e+00 1.6517390053019362e+01 0.0000000000000000e+00 0 0 0
325 1 2.2696166894760093e+00 1.5559438272441989e+01 0.0000000000000000e+00 0 0 0
326 1 2.8360390517176817e+00 1.6518173675862919e+01 0.0000000000000000e+00 0 0 0
327 1 3.4024835472607537e+00 1.5560308985846410e+01 0.0000000000000000e+00 0 0 0
328 1 3.9689280293273477e+00 1.6519102391285173e+01 0.0000000000000000e+00 0 0 0
329 1 4.5355194771089229e+00 1.5561347597079759e+01 0.0000000000000000e+00 0 0 0
330 1 5.1020300316691811e+00 1.6520241802728972e+01 0.0000000000000000e+00 0 0 0
331 1 5.6687261068083830e+00 1.5562609975559823e+01 0.0000000000000000e+00 0 0 0
332 1 6.2353553251066147e+00 1.6521676870813170e+01 0.0000000000000000e+00 0 0 0
333 1 6.8020803209306022e+00 1.5564154380715671e+01 0.0000000000000000e+00 0 0 0
334 1 7.3688969132482525e+00 1.6523504940606951e+01 0.0000000000000000e+00 0 0 0
335 1 7.9355107433004930e+00 1.5566016713593251e+01 0.0000000000000000e+00 0 0 0
336 1 8.5025988576228730e+00 1.6525815249413437e+01 0.0000000000000000e+00 0 0 0
337 1 9.0688572861916743e+00 1.5568159644275148e+01 0.0000000000000000e+00 0 0 0
338 1 9.6362867759002064e+00 1.6528628994685398e+01 0.0000000000000000e+00 0 0 0
339 1 1.0201819017728946e+01 1.5570385216229328e+01 0.0000000000000000e+00 0 0 0
340 1 1.0769583800973923e+01 1.6531845844888416e+01 0.0000000000000000e+00 0 0 0
341 1 1.1333827071325254e+01 1.5571891707346142e+01 0.0000000000000000e+00 0 0 0
342 1 1.1901384079738815e+01 1.6533906438348030e+01 0.0000000000000000e+00 0 0 0
343 1 1.2464735369608531e+01 1.5571536667850689e+01 0.0000000000000000e+00 0 0 0
344 1 1.3031616332415751e+01 1.6532264065445577e+01 0.0000000000000000e+00 0 0 0
345 1 1.3595655007692846e+01 1.5569123466092078e+01 0.0000000000000000e+00 0 0 0
346 1 1.4162673858547034e+01 1.6527452690896975e+01 0.0000000000000000e+00 0 0 0
347 1 1.4727720485417455e+01 1.5565353830287787e+01 0.0000000000000000e+00 0 0 0
348 1 1.5296922688141537e+01 1.6520776714395723e+01 0.0000000000000000e+00 0 0 0
349 1 1.5861362778086731e+01 1.5561222799294468e+01 0.0000000000000000e+00 0 0 0
350 1 1.6430601172841506e+01 1.6517208583528205e+01 0.0000000000000000e+00 0 0 0
351 1 1.6994922716392164e+01 1.5558699760506759e+01 0.0000000000000000e+00 0 0 0
352 1 1.7563499738678178e+01 1.6515675589984340e+01 0.0000000000000000e+00 0 0 0
353 1 1.8128019408521833e+01 1.5557486534354460e+01 0.0000000000000000e+00 0 0 0
354 1 1.8695872352982320e+01 1.6515215010141834e+01 0.0000000000000000e+00 0 0 0
355 1 1.9260742856192188e+01 1.5557098710840322e+01 0.0000000000000000e+00 0 0 0
356 1 1.9828039670247652e+01 1.6515278710047973e+01 0.0000000000000000e+00 0 0 0
357 1 2.0393271644052639e+01 1.5557181842904438e+01 0.0000000000000000e+00 0 0 0
358 1 2.0960186167839215e+01 1.6515618076673135e+01 0.0000000000000000e+00 0 0 0
359 1 2.1525740973565441e+01 1.5557536533469163e+01 0.0000000000000000e+00 0 0 0
360 1 2.2092409007659992e+01 1.6516113225524911e+01 0.0000000000000000e+00 0 0 0
361 1 4.8529541639103424e-03 1.7474826118864232e+01 0.0000000000000000e+00 0 0 0
362 1 5.7093835977538809e-01 1.8433654344787417e+01 0.0000000000000000e+00 0 0 0
363 1 1.1371184592334547e+00 1.7475436697267657e+01 0.0000000000000000e+00 0 0 0
364 1 1.7031721612449391e+00 1.8434245395923575e+01 0.0000000000000000e+00 0 0 0
365 1 2.2695912343467985e+00 1.7476125500853652e+01 0.0000000000000000e+00 0 0 0
366 1 2.8356286616018873e+00 1.8434926390559969e+01 0.0000000000000000e+00 0 0 0
367 1 3.4022762478393873e+00 1.7476929029147396e+01 0.0000000000000000e+00 0 0 0
368 1 3.9683006032101118e+00 1.8435747821965681e+01 0.0000000000000000e+00 0 0 0
369 1 4.5351848152653442e+00 1.7477909278192492e+01 0.0000000000000000e+00 0 0 0
370 1 5.1011966627212457e+00 1.8436786379097875e+01 0.0000000000000000e+00 0 0 0
371 1 5.6683370882181823e+00 1.7479154484464996e+01 0.0000000000000000e+00 0 0 0
372 1 6.2343468444568826e+00 1.8438149387991913e+01 0.0000000000000000e+00 0 0 0
373 1 6.8017614989468314e+00 1.7480782103907771e+01 0.0000000000000000e+00 0 0 0
374 1 7.3678106610096554e+00 1.8439986240742563e+01 0.0000000000000000e+00 0 0 0
375 1 7.9354841298542631e+00 1.7482944033551004e+01 0.0000000000000000e+00 0 0 0
376 1 8.5016878917981664e+00 1.8442513240991936e+01 0.0000000000000000e+00 0 0 0
377 1 9.0694835466447152e+00 1.7485826099637269e+01 0.0000000000000000e+00 0 0 0
378 1 9.6361298737773780e+00 1.8446058020412732e+01 0.0000000000000000e+00 0 0 0
379 3 1.0203552137528503e+01 1.7489611887918201e+01 0.0000000000000000e+00 0 0 0
380 3 1.0771411102042309e+01 1.8452757080501815e+01 0.0000000000000000e+00 0 0 0
381 3 1.1337379036649208e+01 1.7494680029430171e+01 0.0000000000000000e+00 0 0 0
382 3 1.1906745469447291e+01 1.8462022833637111e+01 0.0000000000000000e+00 0 0 0
383 3 1.2469280552911147e+01 1.7497259990645460e+01 0.0000000000000000e+00 0 0 0
384 3 1.3036336275216634e+01 1.8467761987124586e+01 0.0000000000000000e+00 0 0 0
385 3 1.3598327635293121e+01 1.7492598542232617e+01 0.0000000000000000e+00 0 0 0
386 3 1.4175415687021504e+01 1.8442378825657116e+01 0.0000000000000000e+00 0 0 0
387 3 1.4734039006741700e+01 1.7480807237018496e+01 0.0000000000000000e+00 0 0 0
388 3 1.5307067776131944e+01 1.8435324828663727e+01 0.0000000000000000e+00 0 0 0
389 3 1.5867533841026015e+01 1.7475841850521086e+01 0.0000000000000000e+00 0 0 0
390 3 1.6437492616293390e+01 1.8432690656917494e+01 0.0000000000000000e+00 0 0 0
391 3 1.6999775067986949e+01 1.7473899503923125e+01 0.0000000000000000e+00 0 0 0
392 3 1.7567888910690055e+01 1.8431965422256074e+01 0.0000000000000000e+00 0 0 0
393 1 1.8131542880564929e+01 1.7473449678636637e+01 0.0000000000000000e+00 0 0 0
394 1 1.8698655140485940e+01 1.8432031695013379e+01 0.0000000000000000e+00 0 0 0
395 1 1.9263155459010161e+01 1.7473512474723787e+01 0.0000000000000000e+00 0 0 0
396 1 1.9829735002682860e+01 1.8432284732233299e+01 0.0000000000000000e+00 0 0 0
397 1 2.0394851027090610e+01 1.7473827778588312e+01 0.0000000000000000e+00 0 0 0
398 1 2.0961149629160545e+01 1.8432663919612150e+01 0.0000000000000000e+00 0 0 0
399 1 2.1526715232103822e+01 1.7474283624212315e+01 0.0000000000000000e+00 0 0 0
400 1 2.2092870034810801e+01 1.8433127631588540e+01 0.0000000000000000e+00 0 0 0
401 1 4.8013042136807321e-03 1.9396043340320471e+01 0.0000000000000000e+00 0 0 0
402 1 1.1367941837037772e+00 1.9396530996055038e+01 0.0000000000000000e+00 0 0 0
403 1 2.2690256110731926e+00 1.9397098404349112e+01 0.0000000000000000e+00 0 0 0
404 1 3.4014603716469214e+00 1.9397780714315690e+01 0.0000000000000000e+00 0 0 0
405 1 4.5340819027961929e+00 1.9398637844588755e+01 0.0000000000000000e+00 0 0 0
406 1 5.6668967352607975e+00 1.9399756780683603e+01 0.0000000000000000e+00 0 0 0
407 1 6.7999442980869498e+00 1.9401258783163115e+01 0.0000000000000000e+00 0 0 0
408 1 7.9333186797521877e+00 1.9403316975932661e+01 0.0000000000000000e+00 0 0 0
409 1 9.0672196895765094e+00 1.9406194727028712e+01 0.0000000000000000e+00 0 0 0
410 3 1.0202094493927524e+01 1.9410357283161499e+01 0.0000000000000000e+00 0 0 0
411 3 1.1344493619984819e+01 1.9424786980556338e+01 0.0000000000000000e+00 0 0 0
412 3 1.2637742177785299e+01 1.9930889974773997e+01 0.0000000000000000e+00 0 0 0
413 3 1.3631034994726834e+01 1.9413135103231994e+01 0.0000000000000000e+00 0 0 0
414 3 1.4752642655140622e+01 1.9401337789912994e+01 0.0000000000000000e+00 0 0 0
415 3 1.5877850085888255e+01 1.9396855373999653e+01 0.0000000000000000e+00 0 0 0
416 3 1.7005401679016000e+01 1.9395287677046394e+01 0.0000000000000000e+00 0 0 0
417 1 1.8134615217150579e+01 1.9394983390043944e+01 0.0000000000000000e+00 0 0 0
418 1 1.9264825666738730e+01 1.9395059679793604e+01 0.0000000000000000e+00 0 0 0
419 1 2.0395687437852093e+01 1.9395286212420899e+01 0.0000000000000000e+00 0 0 0
420 1 2.1527023164623820e+01 1.9395624428209523e+01 0.0000000000000000e+00 0 0 0
Velocities
1 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
2 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
3 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
4 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
5 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
6 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
7 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
8 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
9 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
10 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
11 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
12 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
13 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
14 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
15 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
16 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
17 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
18 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
19 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
20 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
21 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
22 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
23 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
24 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
25 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
26 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
27 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
28 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
29 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
30 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
31 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
32 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
33 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
34 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
35 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
36 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
37 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
38 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
39 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
40 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
41 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
42 1.4582830912290846e-05 8.8846352819582645e-06 0.0000000000000000e+00
43 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
44 1.7312859198533731e-05 8.9315474912415886e-06 0.0000000000000000e+00
45 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
46 1.9675072488620216e-05 9.1850485538530490e-06 0.0000000000000000e+00
47 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
48 2.1433074233334628e-05 9.6286706528260491e-06 0.0000000000000000e+00
49 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
50 2.2405931370299284e-05 1.0203419110643709e-05 0.0000000000000000e+00
51 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
52 2.2491059900157929e-05 1.0820884817441812e-05 0.0000000000000000e+00
53 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
54 2.1681031416712071e-05 1.1392109985469690e-05 0.0000000000000000e+00
55 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
56 2.0060641760669130e-05 1.1861625865799975e-05 0.0000000000000000e+00
57 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
58 1.7796484401635950e-05 1.2218953480137158e-05 0.0000000000000000e+00
59 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
60 1.5112094617093786e-05 1.2477438154365889e-05 0.0000000000000000e+00
61 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
62 1.2267198630926124e-05 1.2639445999779870e-05 0.0000000000000000e+00
63 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
64 9.5350822789358476e-06 1.2675742401072055e-05 0.0000000000000000e+00
65 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
66 7.1824119616190063e-06 1.2539493069881058e-05 0.0000000000000000e+00
67 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
68 5.4428729520064613e-06 1.2202930059423273e-05 0.0000000000000000e+00
69 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
70 4.4916342132800272e-06 1.1686680302800539e-05 0.0000000000000000e+00
71 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
72 4.4211188598874964e-06 1.1059784694772424e-05 0.0000000000000000e+00
73 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
74 5.2335171901646275e-06 1.0413115381938121e-05 0.0000000000000000e+00
75 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
76 6.8418345483267640e-06 9.8270961040952689e-06 0.0000000000000000e+00
77 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
78 9.0862581078626780e-06 9.3562441357185347e-06 0.0000000000000000e+00
79 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
80 1.1750898218046424e-05 9.0341536486321376e-06 0.0000000000000000e+00
81 2.6507896911975861e-05 1.6371545140358991e-05 0.0000000000000000e+00
82 4.4071318998573086e-05 2.1693750644120881e-05 0.0000000000000000e+00
83 3.1968282279407066e-05 1.6236651087870452e-05 0.0000000000000000e+00
84 5.1796828963389391e-05 2.2204255617741203e-05 0.0000000000000000e+00
85 3.6954144790935994e-05 1.6513220966131449e-05 0.0000000000000000e+00
86 5.8466837911599906e-05 2.3765145047455889e-05 0.0000000000000000e+00
87 4.0988263449448856e-05 1.7195597287912591e-05 0.0000000000000000e+00
88 6.3421700984930829e-05 2.6202560196158383e-05 0.0000000000000000e+00
89 4.3676514981254302e-05 1.8262201659237366e-05 0.0000000000000000e+00
90 6.6189231995872341e-05 2.9208208903089284e-05 0.0000000000000000e+00
91 4.4757820844412710e-05 1.9680681285465242e-05 0.0000000000000000e+00
92 6.6503049702947023e-05 3.2363912757959332e-05 0.0000000000000000e+00
93 4.4112984955796063e-05 2.1371026788621213e-05 0.0000000000000000e+00
94 6.4345177020566643e-05 3.5287785267920645e-05 0.0000000000000000e+00
95 4.1787976800244936e-05 2.3162941413835267e-05 0.0000000000000000e+00
96 5.9928744845970383e-05 3.7723007380205399e-05 0.0000000000000000e+00
97 3.7995079634412303e-05 2.4792875906820557e-05 0.0000000000000000e+00
98 5.3679482622744082e-05 3.9576112916242527e-05 0.0000000000000000e+00
99 3.3102802347870566e-05 2.5962643816709875e-05 0.0000000000000000e+00
100 4.6196928202386916e-05 4.0841431876258162e-05 0.0000000000000000e+00
101 2.7604731797030090e-05 2.6452929465938663e-05 0.0000000000000000e+00
102 3.8198605610544056e-05 4.1488731650403403e-05 0.0000000000000000e+00
103 2.2062125644364829e-05 2.6211631192676194e-05 0.0000000000000000e+00
104 3.0461532031511585e-05 4.1405446569862951e-05 0.0000000000000000e+00
105 1.7036890410487144e-05 2.5367151114186193e-05 0.0000000000000000e+00
106 2.3743747198513856e-05 4.0442707371844690e-05 0.0000000000000000e+00
107 1.3025410253023063e-05 2.4148417954514280e-05 0.0000000000000000e+00
108 1.8714618137705143e-05 3.8535713097978544e-05 0.0000000000000000e+00
109 1.0408634299164180e-05 2.2777378345262281e-05 0.0000000000000000e+00
110 1.5879886471080462e-05 3.5803991688099920e-05 0.0000000000000000e+00
111 9.4236282619897256e-06 2.1395799353203516e-05 0.0000000000000000e+00
112 1.5528508660313246e-05 3.2559849894401442e-05 0.0000000000000000e+00
113 1.0151636970505765e-05 2.0069631778223131e-05 0.0000000000000000e+00
114 1.7697076907652322e-05 2.9219489273322326e-05 0.0000000000000000e+00
115 1.2515393741428794e-05 1.8835255026813244e-05 0.0000000000000000e+00
116 2.2166639673992795e-05 2.6190973817683679e-05 0.0000000000000000e+00
117 1.6287686218571795e-05 1.7749195377506077e-05 0.0000000000000000e+00
118 2.8490182736201632e-05 2.3793837746782787e-05 0.0000000000000000e+00
119 2.1107512829311378e-05 1.6897890319175769e-05 0.0000000000000000e+00
120 3.6037837106045466e-05 2.2245603004594772e-05 0.0000000000000000e+00
121 5.3754680927831089e-05 2.5818243561840512e-05 0.0000000000000000e+00
122 7.3852984703953750e-05 2.7472934391924166e-05 0.0000000000000000e+00
123 6.4028996009385391e-05 2.5673459200729887e-05 0.0000000000000000e+00
124 8.5908169593167111e-05 2.8779655657983422e-05 0.0000000000000000e+00
125 7.3452059594226324e-05 2.6972883064637495e-05 0.0000000000000000e+00
126 9.6325597970378315e-05 3.2438649799599460e-05 0.0000000000000000e+00
127 8.1100712408732978e-05 2.9661132010523619e-05 0.0000000000000000e+00
128 1.0416393664254911e-04 3.7996059391476322e-05 0.0000000000000000e+00
129 8.6279187735689372e-05 3.3655093070911189e-05 0.0000000000000000e+00
130 1.0867812733907078e-04 4.4662561906767820e-05 0.0000000000000000e+00
131 8.8474833676771911e-05 3.8743354165649700e-05 0.0000000000000000e+00
132 1.0953332540892396e-04 5.1642519960343192e-05 0.0000000000000000e+00
133 8.7489301482666931e-05 4.4565301821478113e-05 0.0000000000000000e+00
134 1.0664519563149365e-04 5.8191926603172465e-05 0.0000000000000000e+00
135 8.3386685919597045e-05 5.0496180582897816e-05 0.0000000000000000e+00
136 1.0029664202627839e-04 6.3854180722835299e-05 0.0000000000000000e+00
137 7.6554421387387345e-05 5.5724916856637890e-05 0.0000000000000000e+00
138 9.1026233328924885e-05 6.8337584627018583e-05 0.0000000000000000e+00
139 6.7636782318513533e-05 5.9415263115523977e-05 0.0000000000000000e+00
140 7.9687801662836277e-05 7.1465060890868459e-05 0.0000000000000000e+00
141 5.7497112140338785e-05 6.0967609586633220e-05 0.0000000000000000e+00
142 6.7357844628560681e-05 7.3031410372387953e-05 0.0000000000000000e+00
143 4.7129030804640708e-05 6.0212629249287861e-05 0.0000000000000000e+00
144 5.5250218292995579e-05 7.2797466423152327e-05 0.0000000000000000e+00
145 3.7563119690651669e-05 5.7436898093437411e-05 0.0000000000000000e+00
146 4.4567659752612482e-05 7.0555413628180241e-05 0.0000000000000000e+00
147 2.9761856381290211e-05 5.3240161725660877e-05 0.0000000000000000e+00
148 3.6379968408071024e-05 6.6254587745984145e-05 0.0000000000000000e+00
149 2.4507249328654254e-05 4.8297754292616488e-05 0.0000000000000000e+00
150 3.1513287993668526e-05 6.0149614548130757e-05 0.0000000000000000e+00
151 2.2321658045569226e-05 4.3171432510556026e-05 0.0000000000000000e+00
152 3.0489149535510922e-05 5.2826430989590112e-05 0.0000000000000000e+00
153 2.3406691442805219e-05 3.8251620084219645e-05 0.0000000000000000e+00
154 3.3434005351227340e-05 4.5149642749209296e-05 0.0000000000000000e+00
155 2.7646263937105427e-05 3.3806816567877322e-05 0.0000000000000000e+00
156 4.0072022728543377e-05 3.8051851023877120e-05 0.0000000000000000e+00
157 3.4612453095456479e-05 3.0084179504664271e-05 0.0000000000000000e+00
158 4.9715995320497382e-05 3.2366348850974144e-05 0.0000000000000000e+00
159 4.3610755492928814e-05 2.7338724794948033e-05 0.0000000000000000e+00
160 6.1380291935873857e-05 2.8717537667974358e-05 0.0000000000000000e+00
161 8.1494982491825407e-05 2.8148953219575557e-05 0.0000000000000000e+00
162 1.0332280599497646e-04 2.6201503829225565e-05 0.0000000000000000e+00
163 9.5761847160871774e-05 2.7946357434336516e-05 0.0000000000000000e+00
164 1.1864695815872809e-04 2.8356135457834722e-05 0.0000000000000000e+00
165 1.0885399470738391e-04 3.0748146450938071e-05 0.0000000000000000e+00
166 1.3196232705661449e-04 3.4623883717438410e-05 0.0000000000000000e+00
167 1.1960145227112585e-04 3.6566084099414615e-05 0.0000000000000000e+00
168 1.4195026861275745e-04 4.3922046815628174e-05 0.0000000000000000e+00
169 1.2694731664409029e-04 4.5104351462522260e-05 0.0000000000000000e+00
170 1.4795217588335909e-04 5.5130340832613979e-05 0.0000000000000000e+00
171 1.3031757484079781e-04 5.5906601170376687e-05 0.0000000000000000e+00
172 1.4942385512754647e-04 6.7008660580344934e-05 0.0000000000000000e+00
173 1.2933895493945637e-04 6.7959205844179285e-05 0.0000000000000000e+00
174 1.4640862693120205e-04 7.8808347871067721e-05 0.0000000000000000e+00
175 1.2418770632620368e-04 7.9948632905278019e-05 0.0000000000000000e+00
176 1.3899686227644703e-04 8.9704374162949410e-05 0.0000000000000000e+00
177 1.1530175670323509e-04 9.0294899930563893e-05 0.0000000000000000e+00
178 1.2781482749801704e-04 9.8919094420893419e-05 0.0000000000000000e+00
179 1.0353662297703481e-04 9.7655023731693666e-05 0.0000000000000000e+00
180 1.1373191796318627e-04 1.0541969215504335e-04 0.0000000000000000e+00
181 8.9924310567240939e-05 1.0107679026970171e-04 0.0000000000000000e+00
182 9.8144155759054283e-05 1.0842945197242355e-04 0.0000000000000000e+00
183 7.5715426026251240e-05 1.0020899633485792e-04 0.0000000000000000e+00
184 8.2585472575644195e-05 1.0759497773947524e-04 0.0000000000000000e+00
185 6.2273313315312773e-05 9.5280171371694988e-05 0.0000000000000000e+00
186 6.8676150395344254e-05 1.0303784847881596e-04 0.0000000000000000e+00
187 5.0970916505555661e-05 8.7088088473526171e-05 0.0000000000000000e+00
188 5.7773431465618642e-05 9.5162943772818259e-05 0.0000000000000000e+00
189 4.3046171895633206e-05 7.6794608467548045e-05 0.0000000000000000e+00
190 5.1018825812688962e-05 8.4471826448580955e-05 0.0000000000000000e+00
191 3.9350805046373119e-05 6.5685772521718177e-05 0.0000000000000000e+00
192 4.9118794840322114e-05 7.1798478806600616e-05 0.0000000000000000e+00
193 4.0296544731752153e-05 5.4848218154306130e-05 0.0000000000000000e+00
194 5.2373823993379091e-05 5.8337807582076184e-05 0.0000000000000000e+00
195 4.5754994278033105e-05 4.5116316024063770e-05 0.0000000000000000e+00
196 6.0480102795976155e-05 4.5653533328626764e-05 0.0000000000000000e+00
197 5.5147574075957093e-05 3.7092945765346277e-05 0.0000000000000000e+00
198 7.2607642712602124e-05 3.5308098903458904e-05 0.0000000000000000e+00
199 6.7490113431981086e-05 3.1302088338741595e-05 0.0000000000000000e+00
200 8.7399794370653100e-05 2.8568976378293145e-05 0.0000000000000000e+00
201 1.0893722215793989e-04 2.3548242675947018e-05 0.0000000000000000e+00
202 1.3096734611020011e-04 1.8222479559561189e-05 0.0000000000000000e+00
203 1.2587405764826476e-04 2.3075086083653581e-05 0.0000000000000000e+00
204 1.4794813469964918e-04 2.1310741972757686e-05 0.0000000000000000e+00
205 1.4140062010542452e-04 2.7813335553710658e-05 0.0000000000000000e+00
206 1.6232505969042551e-04 3.0392445992766945e-05 0.0000000000000000e+00
207 1.5397074924697088e-04 3.7554013992723016e-05 0.0000000000000000e+00
208 1.7307084911688810e-04 4.3967269632201604e-05 0.0000000000000000e+00
209 1.6265299884253917e-04 5.1975640619979227e-05 0.0000000000000000e+00
210 1.7920198664424654e-04 6.0190020213309052e-05 0.0000000000000000e+00
211 1.6652150024137926e-04 6.9718144800536699e-05 0.0000000000000000e+00
212 1.8081789854731273e-04 7.8360099041392683e-05 0.0000000000000000e+00
213 1.6556181720350750e-04 8.9018344965798718e-05 0.0000000000000000e+00
214 1.7752817256212197e-04 9.7575999242155437e-05 0.0000000000000000e+00
215 1.5977208852566740e-04 1.0737397867986304e-04 0.0000000000000000e+00
216 1.6979140654165145e-04 1.1697357648400367e-04 0.0000000000000000e+00
217 1.4991716557360079e-04 1.2288188040735228e-04 0.0000000000000000e+00
218 1.5773246565703171e-04 1.3407831270088809e-04 0.0000000000000000e+00
219 1.3669127604115129e-04 1.3409320273816903e-04 0.0000000000000000e+00
220 1.4251229678068216e-04 1.4611735938454550e-04 0.0000000000000000e+00
221 1.2122307334826826e-04 1.4035076438954076e-04 0.0000000000000000e+00
222 1.2529950168048559e-04 1.5081786662543979e-04 0.0000000000000000e+00
223 1.0469592755885001e-04 1.4095013503932427e-04 0.0000000000000000e+00
224 1.0808583047877408e-04 1.4794462550140816e-04 0.0000000000000000e+00
225 8.8627241500263001e-05 1.3548056521811501e-04 0.0000000000000000e+00
226 9.2458332531887566e-05 1.3885968265358318e-04 0.0000000000000000e+00
227 7.4741877098264211e-05 1.2401626995789950e-04 0.0000000000000000e+00
228 8.0205883060811833e-05 1.2520982577425913e-04 0.0000000000000000e+00
229 6.4625586397733592e-05 1.0787656142000266e-04 0.0000000000000000e+00
230 7.2455365263725255e-05 1.0828209149006050e-04 0.0000000000000000e+00
231 5.9588283630412220e-05 8.9170324651604443e-05 0.0000000000000000e+00
232 7.0192628935414336e-05 8.8909581629389317e-05 0.0000000000000000e+00
233 6.0204784194593798e-05 7.0300012127155753e-05 0.0000000000000000e+00
234 7.3736654845263383e-05 6.8446290010432812e-05 0.0000000000000000e+00
235 6.6430610182749772e-05 5.3155748135392397e-05 0.0000000000000000e+00
236 8.2877314926921305e-05 4.8905829630990080e-05 0.0000000000000000e+00
237 7.7513488386102286e-05 3.9091588598701160e-05 0.0000000000000000e+00
238 9.6520171103331445e-05 3.2781173935459572e-05 0.0000000000000000e+00
239 9.2232416915701703e-05 2.8983592081175541e-05 0.0000000000000000e+00
240 1.1323768745207866e-04 2.2099480605147771e-05 0.0000000000000000e+00
241 1.3459865563319741e-04 1.2703227752398906e-05 0.0000000000000000e+00
242 1.5474472990034682e-04 4.9028952578147883e-06 0.0000000000000000e+00
243 1.5215092550023015e-04 1.2097129719583488e-05 0.0000000000000000e+00
244 1.7049283829256650e-04 9.1706083284784945e-06 0.0000000000000000e+00
245 1.6776008627299133e-04 1.9099097427610624e-05 0.0000000000000000e+00
246 1.8333367243371162e-04 2.1604042292807520e-05 0.0000000000000000e+00
247 1.8008195062651708e-04 3.3615378061081087e-05 0.0000000000000000e+00
248 1.9189650531499411e-04 3.9685789135164573e-05 0.0000000000000000e+00
249 1.8783573502138761e-04 5.4407048131235179e-05 0.0000000000000000e+00
250 1.9614236422538478e-04 6.1776442206818580e-05 0.0000000000000000e+00
251 1.9089458289321614e-04 7.9516349638183995e-05 0.0000000000000000e+00
252 1.9558796322159504e-04 8.6892146170328155e-05 0.0000000000000000e+00
253 1.8874887732394583e-04 1.0500710476222600e-04 0.0000000000000000e+00
254 1.9152092472987035e-04 1.1597519058197392e-04 0.0000000000000000e+00
255 1.8256170726520249e-04 1.2813543516461412e-04 0.0000000000000000e+00
256 1.8317412822647789e-04 1.4660018932962857e-04 0.0000000000000000e+00
257 1.7255263462072589e-04 1.4676532692364173e-04 0.0000000000000000e+00
258 1.7180488878385214e-04 1.7463142934331309e-04 0.0000000000000000e+00
259 1.5968255923162790e-04 1.6112886872639011e-04 0.0000000000000000e+00
260 1.5736418072846288e-04 1.9373036611985696e-04 0.0000000000000000e+00
261 1.4438478717201006e-04 1.7104686393958903e-04 0.0000000000000000e+00
262 1.4172732865070544e-04 1.9993397606046031e-04 0.0000000000000000e+00
263 1.2780764883044244e-04 1.7581062997197168e-04 0.0000000000000000e+00
264 1.2551429537422006e-04 1.9326020335803872e-04 0.0000000000000000e+00
265 1.1143818436667695e-04 1.7279653463973672e-04 0.0000000000000000e+00
266 1.1129339275113247e-04 1.7696772682632424e-04 0.0000000000000000e+00
267 9.7026315827934351e-05 1.6059526683700199e-04 0.0000000000000000e+00
268 1.0011077369688101e-04 1.5518094661065159e-04 0.0000000000000000e+00
269 8.6522173578507114e-05 1.3949676203897713e-04 0.0000000000000000e+00
270 9.3664351269599769e-05 1.3012327167812935e-04 0.0000000000000000e+00
271 8.1291625785936272e-05 1.1272276579557331e-04 0.0000000000000000e+00
272 9.2500602391673231e-05 1.0286100151558550e-04 0.0000000000000000e+00
273 8.2174156364853157e-05 8.4321872533994066e-05 0.0000000000000000e+00
274 9.7130125497925732e-05 7.4496044974704109e-05 0.0000000000000000e+00
275 8.9034151680274584e-05 5.8030339746749375e-05 0.0000000000000000e+00
276 1.0678389790186836e-04 4.7638087115883802e-05 0.0000000000000000e+00
277 1.0119535639935181e-04 3.6303198355693708e-05 0.0000000000000000e+00
278 1.2094537118731950e-04 2.5060744325496045e-05 0.0000000000000000e+00
279 1.1693017924424426e-04 2.0976803055913763e-05 0.0000000000000000e+00
280 1.3749539877318216e-04 1.0260590705305633e-05 0.0000000000000000e+00
281 1.5664700963922696e-04 -2.3143582219387062e-06 0.0000000000000000e+00
282 1.7213521099798126e-04 -1.0893217653461935e-05 0.0000000000000000e+00
283 1.7163725578470403e-04 -2.7032144307298500e-06 0.0000000000000000e+00
284 1.8302101438290170e-04 -4.7015876043674941e-06 0.0000000000000000e+00
285 1.8408986700031230e-04 7.3762135624856621e-06 0.0000000000000000e+00
286 1.9034465344562048e-04 1.1634737927368466e-05 0.0000000000000000e+00
287 1.9261711656854316e-04 2.7002357232706195e-05 0.0000000000000000e+00
288 1.9361558083412500e-04 3.5128829947321527e-05 0.0000000000000000e+00
289 1.9675951681764233e-04 5.4504542291358708e-05 0.0000000000000000e+00
290 1.9229119872704733e-04 6.3160704993402156e-05 0.0000000000000000e+00
291 1.9589287639141945e-04 8.5624062570252574e-05 0.0000000000000000e+00
292 1.8763172746254775e-04 9.5926064062507038e-05 0.0000000000000000e+00
293 1.9144012028784324e-04 1.1574950605207010e-04 0.0000000000000000e+00
294 1.7925388721026504e-04 1.3336630569376064e-04 0.0000000000000000e+00
295 1.8325338492376081e-04 1.3941523897602475e-04 0.0000000000000000e+00
296 1.7111384196688562e-04 1.7606151476373124e-04 0.0000000000000000e+00
297 1.7441139798144990e-04 1.5854503282415543e-04 0.0000000000000000e+00
298 1.6032326888461984e-04 2.1446583056531008e-04 0.0000000000000000e+00
299 1.6387438500404321e-04 1.7460023770546828e-04 0.0000000000000000e+00
300 1.5074052192984994e-04 2.4020838682409438e-04 0.0000000000000000e+00
301 1.5148519378157811e-04 1.8980377776341359e-04 0.0000000000000000e+00
302 1.3966552521236660e-04 2.4774151750977874e-04 0.0000000000000000e+00
303 1.3793365457372421e-04 2.0064007271268226e-04 0.0000000000000000e+00
304 1.2999175496236775e-04 2.3635880684653166e-04 0.0000000000000000e+00
305 1.2445809284142433e-04 2.0319207617434042e-04 0.0000000000000000e+00
306 1.2058479570330461e-04 2.1223162942725083e-04 0.0000000000000000e+00
307 1.1335261202324864e-04 1.9202689248144918e-04 0.0000000000000000e+00
308 1.1489966476687653e-04 1.8116775432026056e-04 0.0000000000000000e+00
309 1.0607147008139182e-04 1.6763704556867280e-04 0.0000000000000000e+00
310 1.1336585045824133e-04 1.4707143380834897e-04 0.0000000000000000e+00
311 1.0344655043634243e-04 1.3351953844142965e-04 0.0000000000000000e+00
312 1.1682664536528110e-04 1.1117223278055075e-04 0.0000000000000000e+00
313 1.0584011765559926e-04 9.5633260364903774e-05 0.0000000000000000e+00
314 1.2284574193182076e-04 7.5987122603626839e-05 0.0000000000000000e+00
315 1.1395109003961985e-04 5.9134539871496392e-05 0.0000000000000000e+00
316 1.3307867183720012e-04 4.1776312299002252e-05 0.0000000000000000e+00
317 1.2588269209880162e-04 2.9470198058979825e-05 0.0000000000000000e+00
318 1.4544292811228404e-04 1.3605886591663147e-05 0.0000000000000000e+00
319 1.4084591944156649e-04 8.4739193403876596e-06 0.0000000000000000e+00
320 1.5916834934516234e-04 -4.8366910892216897e-06 0.0000000000000000e+00
321 1.7356992275325834e-04 -1.8042780077684453e-05 0.0000000000000000e+00
322 1.8147503918697350e-04 -2.4540925551368165e-05 0.0000000000000000e+00
323 1.8163463266840930e-04 -1.7130129888846129e-05 0.0000000000000000e+00
324 1.8253898079463108e-04 -1.5598547575766951e-05 0.0000000000000000e+00
325 1.8657806229653399e-04 -3.4133038182733444e-06 0.0000000000000000e+00
326 1.8037702210949025e-04 5.3434050311440554e-06 0.0000000000000000e+00
327 1.8771879764928681e-04 2.1715518823040016e-05 0.0000000000000000e+00
328 1.7471074558026713e-04 3.4539745108762290e-05 0.0000000000000000e+00
329 1.8460873128030577e-04 5.4984524671188725e-05 0.0000000000000000e+00
330 1.6600292929781353e-04 6.9008728811924969e-05 0.0000000000000000e+00
331 1.7796512641162431e-04 9.1385034689547154e-05 0.0000000000000000e+00
332 1.5410918238014520e-04 1.0736588228516046e-04 0.0000000000000000e+00
333 1.6795483683047752e-04 1.2318778434343078e-04 0.0000000000000000e+00
334 1.4157775831030313e-04 1.5014040855437159e-04 0.0000000000000000e+00
335 1.5785083269945281e-04 1.4650075439474400e-04 0.0000000000000000e+00
336 1.2665633684184470e-04 1.9516493438247949e-04 0.0000000000000000e+00
337 1.4652933492756114e-04 1.5825492457397368e-04 0.0000000000000000e+00
338 1.2214547186144981e-04 2.4167794353872549e-04 0.0000000000000000e+00
339 1.4180074826065196e-04 1.7604592446691659e-04 0.0000000000000000e+00
340 1.1255092108513610e-04 2.7260123374319155e-04 0.0000000000000000e+00
341 1.3761399094902802e-04 1.9706727165017120e-04 0.0000000000000000e+00
342 1.1522842530577449e-04 2.7911375117613133e-04 0.0000000000000000e+00
343 1.2918411829601699e-04 2.1803343236056900e-04 0.0000000000000000e+00
344 1.1734351128622201e-04 2.6571681944023359e-04 0.0000000000000000e+00
345 1.2254276275087787e-04 2.2432204295978476e-04 0.0000000000000000e+00
346 1.1974443872507096e-04 2.3680090433102696e-04 0.0000000000000000e+00
347 1.2071540692597284e-04 2.1269652219509870e-04 0.0000000000000000e+00
348 1.2270101616137648e-04 1.9743779542515523e-04 0.0000000000000000e+00
349 1.2264642729289398e-04 1.8508739809863369e-04 0.0000000000000000e+00
350 1.3383017178927455e-04 1.5156768459346495e-04 0.0000000000000000e+00
351 1.2577540617175406e-04 1.4740321111045147e-04 0.0000000000000000e+00
352 1.4340773421068627e-04 1.1293118958385223e-04 0.0000000000000000e+00
353 1.3341749813102418e-04 1.0072504549123244e-04 0.0000000000000000e+00
354 1.5386164243670204e-04 7.2227623415051933e-05 0.0000000000000000e+00
355 1.4204167491417043e-04 5.6498808092830119e-05 0.0000000000000000e+00
356 1.6279824866213127e-04 3.3429940217178515e-05 0.0000000000000000e+00
357 1.5267578941533281e-04 1.9709016910970241e-05 0.0000000000000000e+00
358 1.7110318234027366e-04 1.1467794122178855e-06 0.0000000000000000e+00
359 1.6340539277356244e-04 -5.5189289771696855e-06 0.0000000000000000e+00
360 1.7740714701955653e-04 -1.8977834327990608e-05 0.0000000000000000e+00
361 1.8452802730369313e-04 -2.8832061973687458e-05 0.0000000000000000e+00
362 1.8186625712888205e-04 -2.9558136605260799e-05 0.0000000000000000e+00
363 1.8024969476821697e-04 -2.5772260635909678e-05 0.0000000000000000e+00
364 1.6761747789816595e-04 -1.7724478134172529e-05 0.0000000000000000e+00
365 1.7295655435232461e-04 -8.2023972909357763e-06 0.0000000000000000e+00
366 1.5167563906890865e-04 7.1136721706312189e-06 0.0000000000000000e+00
367 1.6300729193455892e-04 2.1421261796460145e-05 0.0000000000000000e+00
368 1.3513262146713916e-04 4.1132163185070293e-05 0.0000000000000000e+00
369 1.5092813590493438e-04 5.9201618093873702e-05 0.0000000000000000e+00
370 1.1841008358865480e-04 8.0419467894957835e-05 0.0000000000000000e+00
371 1.3728404354778657e-04 9.8997396367778159e-05 0.0000000000000000e+00
372 1.0207956567589023e-04 1.2179874114308306e-04 0.0000000000000000e+00
373 1.2285830843381253e-04 1.3408468250307866e-04 0.0000000000000000e+00
374 8.5374614775879387e-05 1.6300686953091837e-04 0.0000000000000000e+00
375 1.0823800239604665e-04 1.5689628308888026e-04 0.0000000000000000e+00
376 7.0794245443767117e-05 2.0076846781781206e-04 0.0000000000000000e+00
377 9.4916240542002045e-05 1.6757505383186989e-04 0.0000000000000000e+00
378 5.3305776376960658e-05 2.3409206018084466e-04 0.0000000000000000e+00
379 9.7006448817647123e-05 1.6923635825827552e-04 0.0000000000000000e+00
380 7.3465624650027872e-05 2.8247344576399282e-04 0.0000000000000000e+00
381 1.0549927592481066e-04 2.0928780749128950e-04 0.0000000000000000e+00
382 8.2435739649036618e-05 2.8810010190574649e-04 0.0000000000000000e+00
383 1.0402453921892486e-04 2.4985200604758925e-04 0.0000000000000000e+00
384 1.0698549586748876e-04 2.9499323828433428e-04 0.0000000000000000e+00
385 1.0406074064549273e-04 2.4902814952768373e-04 0.0000000000000000e+00
386 1.2548092418124016e-04 2.5651719838597350e-04 0.0000000000000000e+00
387 1.2351646868146525e-04 2.1977784401163054e-04 0.0000000000000000e+00
388 1.5004190410192569e-04 2.0137571208681400e-04 0.0000000000000000e+00
389 1.3393580166351108e-04 1.9255393507981809e-04 0.0000000000000000e+00
390 1.6295883087441844e-04 1.5199213302359484e-04 0.0000000000000000e+00
391 1.5063751113547077e-04 1.4694859067203417e-04 0.0000000000000000e+00
392 1.8000897081745795e-04 1.0619343548646192e-04 0.0000000000000000e+00
393 1.6561309378602883e-04 9.7037670677296156e-05 0.0000000000000000e+00
394 1.9382745100814531e-04 6.5648980655922534e-05 0.0000000000000000e+00
395 1.7695741527044807e-04 4.9716511735790200e-05 0.0000000000000000e+00
396 2.0065188597728214e-04 2.5746708320466968e-05 0.0000000000000000e+00
397 1.8297867804266331e-04 1.0615003992406336e-05 0.0000000000000000e+00
398 1.9982611540716595e-04 -6.5682876870518107e-06 0.0000000000000000e+00
399 1.8556554896400902e-04 -1.6509803537161082e-05 0.0000000000000000e+00
400 1.9312536581833663e-04 -2.5912353602364910e-05 0.0000000000000000e+00
401 1.9023801410824606e-04 -2.7464462701394523e-05 0.0000000000000000e+00
402 1.6698242474704196e-04 -2.2099770957974276e-05 0.0000000000000000e+00
403 1.4243470745724796e-04 -2.3480099448894497e-06 0.0000000000000000e+00
404 1.1876992118927330e-04 2.8893674554990122e-05 0.0000000000000000e+00
405 9.7519654816455303e-05 6.7473438674861880e-05 0.0000000000000000e+00
406 7.9406575250692843e-05 1.0857040090545463e-04 0.0000000000000000e+00
407 6.4539515581651943e-05 1.4692649268945184e-04 0.0000000000000000e+00
408 5.1587395282262643e-05 1.7813848972085620e-04 0.0000000000000000e+00
409 3.9112490387149122e-05 1.9658956051422694e-04 0.0000000000000000e+00
410 5.0646024795521216e-05 2.1400372314275622e-04 0.0000000000000000e+00
411 5.0846759072495365e-05 2.4269431977691632e-04 0.0000000000000000e+00
412 -1.1482904584733112e-04 -1.4373303263865990e-04 0.0000000000000000e+00
413 1.5511043799162975e-04 2.5875085720661746e-04 0.0000000000000000e+00
414 1.6626514293530906e-04 2.1735425519646309e-04 0.0000000000000000e+00
415 1.8641734272053080e-04 1.7687638118890660e-04 0.0000000000000000e+00
416 2.0380463041431767e-04 1.3085055646827544e-04 0.0000000000000000e+00
417 2.1756044245783355e-04 8.4550353671555104e-05 0.0000000000000000e+00
418 2.2486305540664193e-04 4.3653832482456800e-05 0.0000000000000000e+00
419 2.2188236489361566e-04 7.6524745655054321e-06 0.0000000000000000e+00
420 2.0949238720629205e-04 -1.7218568434280989e-05 0.0000000000000000e+00

View File

@ -27,24 +27,75 @@
#include "memory.h"
#include "error.h"
#include "force.h"
#include "math_const.h"
using namespace LAMMPS_NS;
using namespace FixConst;
using namespace MathConst;
enum{SINGLE_PROC_DIRECT,SINGLE_PROC_MAP,MULTI_PROC};
/* ---------------------------------------------------------------------- */
FixNEB::FixNEB(LAMMPS *lmp, int narg, char **arg) :
Fix(lmp, narg, arg), id_pe(NULL), pe(NULL), xprev(NULL), xnext(NULL),
tangent(NULL), xsend(NULL), xrecv(NULL), tagsend(NULL), tagrecv(NULL),
xsendall(NULL), xrecvall(NULL), tagsendall(NULL), tagrecvall(NULL),
counts(NULL), displacements(NULL)
Fix(lmp, narg, arg),
id_pe(NULL), pe(NULL), nlenall(NULL), xprev(NULL), xnext(NULL),
fnext(NULL), springF(NULL), tangent(NULL), xsend(NULL), xrecv(NULL),
fsend(NULL), frecv(NULL), tagsend(NULL), tagrecv(NULL),
xsendall(NULL), xrecvall(NULL), fsendall(NULL), frecvall(NULL),
tagsendall(NULL), tagrecvall(NULL), counts(NULL),
displacements(NULL)
{
if (narg != 4) error->all(FLERR,"Illegal fix neb command");
NEBLongRange=false;
StandardNEB=true;
PerpSpring=FreeEndIni=FreeEndFinal=false;
FreeEndFinalWithRespToEIni=FinalAndInterWithRespToEIni=false;
kspringPerp=0.0;
kspring2=1.0;
if (narg < 4)
error->all(FLERR,"Illegal fix neb command, argument missing");
kspring = force->numeric(FLERR,arg[3]);
if (kspring <= 0.0) error->all(FLERR,"Illegal fix neb command");
if (kspring <= 0.0)
error->all(FLERR,"Illegal fix neb command."
" The spring force was not provided properly");
int iarg =4;
while (iarg < narg) {
if (strcmp (arg[iarg],"nudg_style")==0) {
if (strcmp (arg[iarg+1],"idealpos")==0) {
NEBLongRange = true;
iarg+=2;}
else if (strcmp (arg[iarg+1],"neigh")==0) {
NEBLongRange = false;
StandardNEB = true;
iarg+=2;}
else error->all(FLERR,"Illegal fix neb command. Unknown keyword");}
else if (strcmp (arg[iarg],"perp")==0) {
PerpSpring=true;
kspringPerp = force->numeric(FLERR,arg[iarg+1]);
if (kspringPerp < 0.0)
error->all(FLERR,"Illegal fix neb command. "
"The perpendicular spring force was not provided properly");
iarg+=2;}
else if (strcmp (arg[iarg],"freeend")==0) {
if (strcmp (arg[iarg+1],"ini")==0)
FreeEndIni=true;
else if (strcmp (arg[iarg+1],"final")==0)
FreeEndFinal=true;
else if (strcmp (arg[iarg+1],"finaleini")==0)
FreeEndFinalWithRespToEIni=true;
else if (strcmp (arg[iarg+1],"final2eini")==0) {
FinalAndInterWithRespToEIni=true;
FreeEndFinalWithRespToEIni=true;}
else if (strcmp (arg[iarg+1],"none")!=0) error->all(FLERR,"Illegal fix neb command. Unknown keyword");
iarg+=2;}
else if (strcmp (arg[iarg],"freeend_kspring")==0) {
kspring2=force->numeric(FLERR,arg[iarg+1]);
iarg+=2; }
else error->all(FLERR,"Illegal fix neb command. Unknown keyword");
}
// nreplica = number of partitions
// ireplica = which world I am in universe
@ -62,7 +113,18 @@ FixNEB::FixNEB(LAMMPS *lmp, int narg, char **arg) :
else procprev = -1;
if (ireplica < nreplica-1) procnext = universe->root_proc[ireplica+1];
else procnext = -1;
uworld = universe->uworld;
int *iroots = new int[nreplica];
MPI_Group uworldgroup,rootgroup;
if (NEBLongRange) {
for (int i=0; i<nreplica; i++)
iroots[i]=universe->root_proc[i];
MPI_Comm_group(uworld, &uworldgroup);
MPI_Group_incl(uworldgroup, nreplica, iroots, &rootgroup);
MPI_Comm_create(uworld, rootgroup, &rootworld);
}
delete[] iroots;
// create a new compute pe style
// id = fix-ID + pe, compute group = all
@ -81,15 +143,8 @@ FixNEB::FixNEB(LAMMPS *lmp, int narg, char **arg) :
// initialize local storage
maxlocal = 0;
ntotal = 0;
xprev = xnext = tangent = NULL;
xsend = xrecv = NULL;
tagsend = tagrecv = NULL;
xsendall = xrecvall = NULL;
tagsendall = tagrecvall = NULL;
counts = displacements = NULL;
maxlocal = -1;
ntotal = -1;
}
/* ---------------------------------------------------------------------- */
@ -102,19 +157,29 @@ FixNEB::~FixNEB()
memory->destroy(xprev);
memory->destroy(xnext);
memory->destroy(tangent);
memory->destroy(fnext);
memory->destroy(springF);
memory->destroy(xsend);
memory->destroy(xrecv);
memory->destroy(fsend);
memory->destroy(frecv);
memory->destroy(tagsend);
memory->destroy(tagrecv);
memory->destroy(xsendall);
memory->destroy(xrecvall);
memory->destroy(fsendall);
memory->destroy(frecvall);
memory->destroy(tagsendall);
memory->destroy(tagrecvall);
memory->destroy(counts);
memory->destroy(displacements);
if (NEBLongRange) {
if (rootworld != MPI_COMM_NULL) MPI_Comm_free(&rootworld);
memory->destroy(nlenall);
}
}
/* ---------------------------------------------------------------------- */
@ -148,7 +213,7 @@ void FixNEB::init()
// comm mode for inter-replica exchange of coords
if (nreplica == nprocs_universe &&
nebatoms == atom->natoms && atom->sortfreq == 0)
nebatoms == atom->natoms && atom->sortfreq == 0)
cmode = SINGLE_PROC_DIRECT;
else if (nreplica == nprocs_universe) cmode = SINGLE_PROC_MAP;
else cmode = MULTI_PROC;
@ -158,11 +223,13 @@ void FixNEB::init()
if (atom->natoms > MAXSMALLINT) error->all(FLERR,"Too many atoms for NEB");
ntotal = atom->natoms;
if (atom->nlocal > maxlocal) reallocate();
if (atom->nmax > maxlocal) reallocate();
if (MULTI_PROC && counts == NULL) {
memory->create(xsendall,ntotal,3,"neb:xsendall");
memory->create(xrecvall,ntotal,3,"neb:xrecvall");
memory->create(fsendall,ntotal,3,"neb:fsendall");
memory->create(frecvall,ntotal,3,"neb:frecvall");
memory->create(tagsendall,ntotal,"neb:tagsendall");
memory->create(tagrecvall,ntotal,"neb:tagrecvall");
memory->create(counts,nprocs,"neb:counts");
@ -185,19 +252,15 @@ void FixNEB::min_setup(int vflag)
void FixNEB::min_post_force(int vflag)
{
double vprev,vnext,vmax,vmin;
double delx,dely,delz;
double delta1[3],delta2[3];
double vprev,vnext;
double delxp,delyp,delzp,delxn,delyn,delzn;
double vIni=0.0;
// veng = PE of this replica
// vprev,vnext = PEs of adjacent replicas
// only proc 0 in each replica communicates
vprev=vnext=veng=pe->compute_scalar();
vprev = vnext = veng = pe->compute_scalar();
if (ireplica < nreplica-1 && me == 0)
if (ireplica < nreplica-1 && me ==0)
MPI_Send(&veng,1,MPI_DOUBLE,procnext,0,uworld);
if (ireplica > 0 && me == 0)
if (ireplica > 0 && me ==0)
MPI_Recv(&vprev,1,MPI_DOUBLE,procprev,0,uworld,MPI_STATUS_IGNORE);
if (ireplica > 0 && me == 0)
@ -210,116 +273,177 @@ void FixNEB::min_post_force(int vflag)
MPI_Bcast(&vnext,1,MPI_DOUBLE,0,world);
}
// communicate atoms to/from adjacent replicas to fill xprev,xnext
if (FreeEndFinal && (update->ntimestep == 0)) EFinalIni = veng;
if (ireplica == 0) vIni=veng;
if (FreeEndFinalWithRespToEIni) {
if (me == 0) {
int procFirst;
procFirst=universe->root_proc[0];
MPI_Bcast(&vIni,1,MPI_DOUBLE,procFirst,uworld);
}
if (cmode == MULTI_PROC) {
MPI_Bcast(&vIni,1,MPI_DOUBLE,0,world);
}
}
if (FreeEndIni && ireplica == 0) {
if (me == 0 )
if (update->ntimestep == 0) {
EIniIni = veng;
if (cmode == MULTI_PROC)
MPI_Bcast(&EIniIni,1,MPI_DOUBLE,0,world);
}
}
// communicate atoms to/from adjacent replicas to fill xprev,xnext
inter_replica_comm();
// trigger potential energy computation on next timestep
pe->addstep(update->ntimestep+1);
// compute norm of GradV for log output
double **x = atom->x;
int *mask = atom->mask;
double dot = 0.0;
double prefactor = 0.0;
double **f = atom->f;
int nlocal = atom->nlocal;
double fsq = 0.0;
for (int i = 0; i < nlocal; i++)
fsq += f[i][0]*f[i][0] + f[i][1]*f[i][1] + f[i][2]*f[i][2];
//calculating separation between images
MPI_Allreduce(&fsq,&gradvnorm,1,MPI_DOUBLE,MPI_SUM,world);
gradvnorm = sqrt(gradvnorm);
// first or last replica has no change to forces, just return
if (ireplica == 0 || ireplica == nreplica-1) {
plen = nlen = 0.0;
return;
}
// tangent = unit tangent vector in 3N space
// based on delta vectors between atoms and their images in adjacent replicas
// use one or two delta vecs to compute tangent,
// depending on relative PEs of 3 replicas
// see Henkelman & Jonsson 2000 paper, eqs 8-11
double **x = atom->x;
int *mask = atom->mask;
if (vnext > veng && veng > vprev) {
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
tangent[i][0] = xnext[i][0] - x[i][0];
tangent[i][1] = xnext[i][1] - x[i][1];
tangent[i][2] = xnext[i][2] - x[i][2];
domain->minimum_image(tangent[i]);
}
} else if (vnext < veng && veng < vprev) {
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
tangent[i][0] = x[i][0] - xprev[i][0];
tangent[i][1] = x[i][1] - xprev[i][1];
tangent[i][2] = x[i][2] - xprev[i][2];
domain->minimum_image(tangent[i]);
}
} else {
vmax = MAX(fabs(vnext-veng),fabs(vprev-veng));
vmin = MIN(fabs(vnext-veng),fabs(vprev-veng));
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
delta1[0] = xnext[i][0] - x[i][0];
delta1[1] = xnext[i][1] - x[i][1];
delta1[2] = xnext[i][2] - x[i][2];
domain->minimum_image(delta1);
delta2[0] = x[i][0] - xprev[i][0];
delta2[1] = x[i][1] - xprev[i][1];
delta2[2] = x[i][2] - xprev[i][2];
domain->minimum_image(delta2);
if (vnext > vprev) {
tangent[i][0] = vmax*delta1[0] + vmin*delta2[0];
tangent[i][1] = vmax*delta1[1] + vmin*delta2[1];
tangent[i][2] = vmax*delta1[2] + vmin*delta2[2];
} else {
tangent[i][0] = vmin*delta1[0] + vmax*delta2[0];
tangent[i][1] = vmin*delta1[1] + vmax*delta2[1];
tangent[i][2] = vmin*delta1[2] + vmax*delta2[2];
}
}
}
// tlen,plen,nlen = lengths of tangent, prev, next vectors
double tlen = 0.0;
plen = 0.0;
nlen = 0.0;
double tlen = 0.0;
double gradnextlen = 0.0;
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
tlen += tangent[i][0]*tangent[i][0] + tangent[i][1]*tangent[i][1] +
tangent[i][2]*tangent[i][2];
dotgrad = gradlen = dotpath = dottangrad = 0.0;
delx = x[i][0] - xprev[i][0];
dely = x[i][1] - xprev[i][1];
delz = x[i][2] - xprev[i][2];
domain->minimum_image(delx,dely,delz);
plen += delx*delx + dely*dely + delz*delz;
if (ireplica == nreplica-1) {
delx = xnext[i][0] - x[i][0];
dely = xnext[i][1] - x[i][1];
delz = xnext[i][2] - x[i][2];
domain->minimum_image(delx,dely,delz);
nlen += delx*delx + dely*dely + delz*delz;
}
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
delxp = x[i][0] - xprev[i][0];
delyp = x[i][1] - xprev[i][1];
delzp = x[i][2] - xprev[i][2];
domain->minimum_image(delxp,delyp,delzp);
plen += delxp*delxp + delyp*delyp + delzp*delzp;
dottangrad += delxp* f[i][0]+ delyp*f[i][1]+delzp*f[i][2];
gradlen += f[i][0]*f[i][0] + f[i][1]*f[i][1] + f[i][2]*f[i][2];
if (FreeEndFinal||FreeEndFinalWithRespToEIni) {
tangent[i][0]=delxp;
tangent[i][1]=delyp;
tangent[i][2]=delzp;
tlen += tangent[i][0]*tangent[i][0]
+ tangent[i][1]*tangent[i][1] + tangent[i][2]*tangent[i][2];
dot += f[i][0]*tangent[i][0]
+ f[i][1]*tangent[i][1] + f[i][2]*tangent[i][2];
}
}
double lenall;
MPI_Allreduce(&tlen,&lenall,1,MPI_DOUBLE,MPI_SUM,world);
tlen = sqrt(lenall);
} else if (ireplica == 0) {
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
delxn = xnext[i][0] - x[i][0];
delyn = xnext[i][1] - x[i][1];
delzn = xnext[i][2] - x[i][2];
domain->minimum_image(delxn,delyn,delzn);
nlen += delxn*delxn + delyn*delyn + delzn*delzn;
gradnextlen += fnext[i][0]*fnext[i][0]
+ fnext[i][1]*fnext[i][1] +fnext[i][2] * fnext[i][2];
dotgrad += f[i][0]*fnext[i][0]
+ f[i][1]*fnext[i][1] + f[i][2]*fnext[i][2];
dottangrad += delxn*f[i][0]+ delyn*f[i][1] + delzn*f[i][2];
gradlen += f[i][0]*f[i][0] + f[i][1]*f[i][1] + f[i][2]*f[i][2];
if (FreeEndIni) {
tangent[i][0]=delxn;
tangent[i][1]=delyn;
tangent[i][2]=delzn;
tlen += tangent[i][0]*tangent[i][0]
+ tangent[i][1]*tangent[i][1] + tangent[i][2]*tangent[i][2];
dot += f[i][0]*tangent[i][0]
+ f[i][1]*tangent[i][1] + f[i][2]*tangent[i][2];
}
}
} else {
MPI_Allreduce(&plen,&lenall,1,MPI_DOUBLE,MPI_SUM,world);
plen = sqrt(lenall);
// not the first or last replica
MPI_Allreduce(&nlen,&lenall,1,MPI_DOUBLE,MPI_SUM,world);
nlen = sqrt(lenall);
double vmax = MAX(fabs(vnext-veng),fabs(vprev-veng));
double vmin = MIN(fabs(vnext-veng),fabs(vprev-veng));
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
delxp = x[i][0] - xprev[i][0];
delyp = x[i][1] - xprev[i][1];
delzp = x[i][2] - xprev[i][2];
domain->minimum_image(delxp,delyp,delzp);
plen += delxp*delxp + delyp*delyp + delzp*delzp;
delxn = xnext[i][0] - x[i][0];
delyn = xnext[i][1] - x[i][1];
delzn = xnext[i][2] - x[i][2];
domain->minimum_image(delxn,delyn,delzn);
if (vnext > veng && veng > vprev) {
tangent[i][0]=delxn;
tangent[i][1]=delyn;
tangent[i][2]=delzn;
} else if (vnext < veng && veng < vprev) {
tangent[i][0]=delxp;
tangent[i][1]=delyp;
tangent[i][2]=delzp;
} else {
if (vnext > vprev) {
tangent[i][0] = vmax*delxn + vmin*delxp;
tangent[i][1] = vmax*delyn + vmin*delyp;
tangent[i][2] = vmax*delzn + vmin*delzp;
} else {
tangent[i][0] = vmin*delxn + vmax*delxp;
tangent[i][1] = vmin*delyn + vmax*delyp;
tangent[i][2] = vmin*delzn + vmax*delzp;
}
}
nlen += delxn*delxn + delyn*delyn + delzn*delzn;
tlen += tangent[i][0]*tangent[i][0]
+ tangent[i][1]*tangent[i][1] + tangent[i][2]*tangent[i][2];
gradlen += f[i][0]*f[i][0] + f[i][1]*f[i][1] + f[i][2]*f[i][2];
dotpath += delxp*delxn + delyp*delyn + delzp*delzn;
dottangrad += tangent[i][0]* f[i][0]
+ tangent[i][1]*f[i][1] + tangent[i][2]*f[i][2];
gradnextlen += fnext[i][0]*fnext[i][0]
+ fnext[i][1]*fnext[i][1] +fnext[i][2] * fnext[i][2];
dotgrad += f[i][0]*fnext[i][0]
+ f[i][1]*fnext[i][1] + f[i][2]*fnext[i][2];
springF[i][0]=kspringPerp*(delxn-delxp);
springF[i][1]=kspringPerp*(delyn-delyp);
springF[i][2]=kspringPerp*(delzn-delzp);
}
}
#define BUFSIZE 8
double bufin[BUFSIZE], bufout[BUFSIZE];
bufin[0] = nlen;
bufin[1] = plen;
bufin[2] = tlen;
bufin[3] = gradlen;
bufin[4] = gradnextlen;
bufin[5] = dotpath;
bufin[6] = dottangrad;
bufin[7] = dotgrad;
MPI_Allreduce(bufin,bufout,BUFSIZE,MPI_DOUBLE,MPI_SUM,world);
nlen = sqrt(bufout[0]);
plen = sqrt(bufout[1]);
tlen = sqrt(bufout[2]);
gradlen = sqrt(bufout[3]);
gradnextlen = sqrt(bufout[4]);
dotpath = bufout[5];
dottangrad = bufout[6];
dotgrad = bufout[7];
// normalize tangent vector
@ -333,37 +457,158 @@ void FixNEB::min_post_force(int vflag)
}
}
// reset force on each atom in this replica
// regular NEB for all replicas except rclimber does hill-climbing NEB
// currently have F = -Grad(V) = -Grad(V)_perp - Grad(V)_parallel
// want F = -Grad(V)_perp + Fspring for regular NEB
// thus Fdelta = Grad(V)_parallel + Fspring for regular NEB
// want F = -Grad(V) + 2 Grad(V)_parallel for hill-climbing NEB
// thus Fdelta = 2 Grad(V)_parallel for hill-climbing NEB
// Grad(V)_parallel = (Grad(V) . utan) * utangent = -(F . utan) * utangent
// Fspring = k (nlen - plen) * utangent
// see Henkelman & Jonsson 2000 paper, eqs 3,4,12
// see Henkelman & Jonsson 2000a paper, eq 5
// first or last replica has no change to forces, just return
double dot = 0.0;
for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit)
dot += f[i][0]*tangent[i][0] + f[i][1]*tangent[i][1] +
f[i][2]*tangent[i][2];
if(ireplica>0 && ireplica<nreplica-1)
dottangrad = dottangrad/(tlen*gradlen);
if (ireplica == 0)
dottangrad = dottangrad/(nlen*gradlen);
if (ireplica == nreplica-1)
dottangrad = dottangrad/(plen*gradlen);
if (ireplica < nreplica-1)
dotgrad = dotgrad /(gradlen*gradnextlen);
if (FreeEndIni && ireplica == 0) {
if (tlen > 0.0) {
double dotall;
MPI_Allreduce(&dot,&dotall,1,MPI_DOUBLE,MPI_SUM,world);
dot=dotall/tlen;
if (dot<0) prefactor = -dot - kspring2*(veng-EIniIni);
else prefactor = -dot + kspring2*(veng-EIniIni);
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
f[i][0] += prefactor *tangent[i][0];
f[i][1] += prefactor *tangent[i][1];
f[i][2] += prefactor *tangent[i][2];
}
}
}
if (FreeEndFinal && ireplica == nreplica -1) {
if (tlen > 0.0) {
double dotall;
MPI_Allreduce(&dot,&dotall,1,MPI_DOUBLE,MPI_SUM,world);
dot=dotall/tlen;
if (dot<0) prefactor = -dot - kspring2*(veng-EFinalIni);
else prefactor = -dot + kspring2*(veng-EFinalIni);
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
f[i][0] += prefactor *tangent[i][0];
f[i][1] += prefactor *tangent[i][1];
f[i][2] += prefactor *tangent[i][2];
}
}
}
if (FreeEndFinalWithRespToEIni&&ireplica == nreplica -1) {
if (tlen > 0.0) {
double dotall;
MPI_Allreduce(&dot,&dotall,1,MPI_DOUBLE,MPI_SUM,world);
dot=dotall/tlen;
if (dot<0) prefactor = -dot - kspring2*(veng-vIni);
else prefactor = -dot + kspring2*(veng-vIni);
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
f[i][0] += prefactor *tangent[i][0];
f[i][1] += prefactor *tangent[i][1];
f[i][2] += prefactor *tangent[i][2];
}
}
}
double lentot = 0;
double meanDist,idealPos,lenuntilIm,lenuntilClimber;
lenuntilClimber=0;
if (NEBLongRange) {
if (cmode == SINGLE_PROC_DIRECT || cmode == SINGLE_PROC_MAP) {
MPI_Allgather(&nlen,1,MPI_DOUBLE,&nlenall[0],1,MPI_DOUBLE,uworld);
} else {
if (me == 0)
MPI_Allgather(&nlen,1,MPI_DOUBLE,&nlenall[0],1,MPI_DOUBLE,rootworld);
MPI_Bcast(nlenall,nreplica,MPI_DOUBLE,0,world);
}
lenuntilIm = 0;
for (int i = 0; i < ireplica; i++)
lenuntilIm += nlenall[i];
for (int i = 0; i < nreplica; i++)
lentot += nlenall[i];
meanDist = lentot/(nreplica -1);
if (rclimber>0) {
for (int i = 0; i < rclimber; i++)
lenuntilClimber += nlenall[i];
double meanDistBeforeClimber = lenuntilClimber/rclimber;
double meanDistAfterClimber =
(lentot-lenuntilClimber)/(nreplica-rclimber-1);
if (ireplica<rclimber)
idealPos = ireplica * meanDistBeforeClimber;
else
idealPos = lenuntilClimber+ (ireplica-rclimber)*meanDistAfterClimber;
} else idealPos = ireplica * meanDist;
}
if (ireplica == 0 || ireplica == nreplica-1) return ;
double AngularContr;
dotpath = dotpath/(plen*nlen);
AngularContr = 0.5 *(1+cos(MY_PI * dotpath));
double dotSpringTangent;
dotSpringTangent=0;
for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) {
dot += f[i][0]*tangent[i][0]
+ f[i][1]*tangent[i][1] + f[i][2]*tangent[i][2];
dotSpringTangent += springF[i][0]*tangent[i][0]
+springF[i][1]*tangent[i][1]+springF[i][2]*tangent[i][2];}
}
double dotSpringTangentall;
MPI_Allreduce(&dotSpringTangent,&dotSpringTangentall,1,MPI_DOUBLE,MPI_SUM,world);
dotSpringTangent=dotSpringTangentall;
double dotall;
MPI_Allreduce(&dot,&dotall,1,MPI_DOUBLE,MPI_SUM,world);
dot=dotall;
double prefactor;
if (ireplica == rclimber) prefactor = -2.0*dotall;
else prefactor = -dotall + kspring*(nlen-plen);
if (ireplica == rclimber) prefactor = -2.0*dot;
else {
if (NEBLongRange) {
prefactor = -dot - kspring*(lenuntilIm-idealPos)/(2*meanDist);
} else if (StandardNEB) {
prefactor = -dot + kspring*(nlen-plen);
}
if (FinalAndInterWithRespToEIni&& veng<vIni) {
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
f[i][0] = 0;
f[i][1] = 0;
f[i][2] = 0;
}
prefactor = kspring*(nlen-plen);
AngularContr=0;
}
}
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
f[i][0] += prefactor*tangent[i][0];
f[i][1] += prefactor*tangent[i][1];
f[i][2] += prefactor*tangent[i][2];
f[i][0] += prefactor*tangent[i][0]
+AngularContr*(springF[i][0] -dotSpringTangent*tangent[i][0]);
f[i][1] += prefactor*tangent[i][1]
+ AngularContr*(springF[i][1] - dotSpringTangent*tangent[i][1]);
f[i][2] += prefactor*tangent[i][2]
+ AngularContr*(springF[i][2] - dotSpringTangent*tangent[i][2]);
}
}
@ -373,6 +618,7 @@ void FixNEB::min_post_force(int vflag)
replicas 0 and N-1 send but do not receive any atoms
------------------------------------------------------------------------- */
void FixNEB::inter_replica_comm()
{
int i,m;
@ -382,9 +628,10 @@ void FixNEB::inter_replica_comm()
// reallocate memory if necessary
if (atom->nlocal > maxlocal) reallocate();
if (atom->nmax > maxlocal) reallocate();
double **x = atom->x;
double **f = atom->f;
tagint *tag = atom->tag;
int *mask = atom->mask;
int nlocal = atom->nlocal;
@ -395,7 +642,7 @@ void FixNEB::inter_replica_comm()
// -----------------------------------------------------
// single proc per replica
// all atoms are NEB atoms and no atom sorting is enabled
// all atoms are NEB atoms and no atom sorting
// direct comm of x -> xprev and x -> xnext
if (cmode == SINGLE_PROC_DIRECT) {
@ -404,13 +651,18 @@ void FixNEB::inter_replica_comm()
if (ireplica < nreplica-1)
MPI_Send(x[0],3*nlocal,MPI_DOUBLE,procnext,0,uworld);
if (ireplica > 0) MPI_Wait(&request,MPI_STATUS_IGNORE);
if (ireplica < nreplica-1)
MPI_Irecv(xnext[0],3*nlocal,MPI_DOUBLE,procnext,0,uworld,&request);
if (ireplica > 0)
MPI_Send(x[0],3*nlocal,MPI_DOUBLE,procprev,0,uworld);
if (ireplica < nreplica-1) MPI_Wait(&request,MPI_STATUS_IGNORE);
if (ireplica < nreplica-1)
MPI_Irecv(fnext[0],3*nlocal,MPI_DOUBLE,procnext,0,uworld,&request);
if (ireplica > 0)
MPI_Send(f[0],3*nlocal,MPI_DOUBLE,procprev,0,uworld);
if (ireplica < nreplica-1) MPI_Wait(&request,MPI_STATUS_IGNORE);
return;
}
@ -427,6 +679,9 @@ void FixNEB::inter_replica_comm()
xsend[m][0] = x[i][0];
xsend[m][1] = x[i][1];
xsend[m][2] = x[i][2];
fsend[m][0] = f[i][0];
fsend[m][1] = f[i][1];
fsend[m][2] = f[i][2];
m++;
}
@ -448,13 +703,14 @@ void FixNEB::inter_replica_comm()
xprev[m][2] = xrecv[i][2];
}
}
if (ireplica < nreplica-1) {
MPI_Irecv(xrecv[0],3*nebatoms,MPI_DOUBLE,procnext,0,uworld,&requests[0]);
MPI_Irecv(frecv[0],3*nebatoms,MPI_DOUBLE,procnext,0,uworld,&requests[0]);
MPI_Irecv(tagrecv,nebatoms,MPI_LMP_TAGINT,procnext,0,uworld,&requests[1]);
}
if (ireplica > 0) {
MPI_Send(xsend[0],3*nebatoms,MPI_DOUBLE,procprev,0,uworld);
MPI_Send(fsend[0],3*nebatoms,MPI_DOUBLE,procprev,0,uworld);
MPI_Send(tagsend,nebatoms,MPI_LMP_TAGINT,procprev,0,uworld);
}
@ -465,6 +721,9 @@ void FixNEB::inter_replica_comm()
xnext[m][0] = xrecv[i][0];
xnext[m][1] = xrecv[i][1];
xnext[m][2] = xrecv[i][2];
fnext[m][0] = frecv[i][0];
fnext[m][1] = frecv[i][1];
fnext[m][2] = frecv[i][2];
}
}
@ -484,6 +743,9 @@ void FixNEB::inter_replica_comm()
xsend[m][0] = x[i][0];
xsend[m][1] = x[i][1];
xsend[m][2] = x[i][2];
fsend[m][0] = f[i][0];
fsend[m][1] = f[i][1];
fsend[m][2] = f[i][2];
m++;
}
@ -496,12 +758,17 @@ void FixNEB::inter_replica_comm()
for (i = 0; i < nprocs; i++) counts[i] *= 3;
for (i = 0; i < nprocs-1; i++)
displacements[i+1] = displacements[i] + counts[i];
if (xsend)
if (xsend) {
MPI_Gatherv(xsend[0],3*m,MPI_DOUBLE,
xsendall[0],counts,displacements,MPI_DOUBLE,0,world);
else
MPI_Gatherv(fsend[0],3*m,MPI_DOUBLE,
fsendall[0],counts,displacements,MPI_DOUBLE,0,world);
} else {
MPI_Gatherv(NULL,3*m,MPI_DOUBLE,
xsendall[0],counts,displacements,MPI_DOUBLE,0,world);
MPI_Gatherv(NULL,3*m,MPI_DOUBLE,
fsendall[0],counts,displacements,MPI_DOUBLE,0,world);
}
if (ireplica > 0 && me == 0) {
MPI_Irecv(xrecvall[0],3*nebatoms,MPI_DOUBLE,procprev,0,uworld,&requests[0]);
@ -530,11 +797,13 @@ void FixNEB::inter_replica_comm()
if (ireplica < nreplica-1 && me == 0) {
MPI_Irecv(xrecvall[0],3*nebatoms,MPI_DOUBLE,procnext,0,uworld,&requests[0]);
MPI_Irecv(frecvall[0],3*nebatoms,MPI_DOUBLE,procnext,0,uworld,&requests[0]);
MPI_Irecv(tagrecvall,nebatoms,MPI_LMP_TAGINT,procnext,0,uworld,
&requests[1]);
}
if (ireplica > 0 && me == 0) {
MPI_Send(xsendall[0],3*nebatoms,MPI_DOUBLE,procprev,0,uworld);
MPI_Send(fsendall[0],3*nebatoms,MPI_DOUBLE,procprev,0,uworld);
MPI_Send(tagsendall,nebatoms,MPI_LMP_TAGINT,procprev,0,uworld);
}
@ -543,6 +812,7 @@ void FixNEB::inter_replica_comm()
MPI_Bcast(tagrecvall,nebatoms,MPI_INT,0,world);
MPI_Bcast(xrecvall[0],3*nebatoms,MPI_DOUBLE,0,world);
MPI_Bcast(frecvall[0],3*nebatoms,MPI_DOUBLE,0,world);
for (i = 0; i < nebatoms; i++) {
m = atom->map(tagrecvall[i]);
@ -550,10 +820,14 @@ void FixNEB::inter_replica_comm()
xnext[m][0] = xrecvall[i][0];
xnext[m][1] = xrecvall[i][1];
xnext[m][2] = xrecvall[i][2];
fnext[m][0] = frecvall[i][0];
fnext[m][1] = frecvall[i][1];
fnext[m][2] = frecvall[i][2];
}
}
}
/* ----------------------------------------------------------------------
reallocate xprev,xnext,tangent arrays if necessary
reallocate communication arrays if necessary
@ -561,27 +835,37 @@ void FixNEB::inter_replica_comm()
void FixNEB::reallocate()
{
maxlocal = atom->nmax;
memory->destroy(xprev);
memory->destroy(xnext);
memory->destroy(tangent);
if (cmode != SINGLE_PROC_DIRECT) {
memory->destroy(xsend);
memory->destroy(xrecv);
memory->destroy(tagsend);
memory->destroy(tagrecv);
}
maxlocal = atom->nmax;
memory->destroy(fnext);
memory->destroy(springF);
memory->create(xprev,maxlocal,3,"neb:xprev");
memory->create(xnext,maxlocal,3,"neb:xnext");
memory->create(tangent,maxlocal,3,"neb:tangent");
memory->create(fnext,maxlocal,3,"neb:fnext");
memory->create(springF,maxlocal,3,"neb:springF");
if (cmode != SINGLE_PROC_DIRECT) {
memory->destroy(xsend);
memory->destroy(fsend);
memory->destroy(xrecv);
memory->destroy(frecv);
memory->destroy(tagsend);
memory->destroy(tagrecv);
memory->create(xsend,maxlocal,3,"neb:xsend");
memory->create(fsend,maxlocal,3,"neb:fsend");
memory->create(xrecv,maxlocal,3,"neb:xrecv");
memory->create(frecv,maxlocal,3,"neb:frecv");
memory->create(tagsend,maxlocal,"neb:tagsend");
memory->create(tagrecv,maxlocal,"neb:tagrecv");
}
if (NEBLongRange) {
memory->destroy(nlenall);
memory->create(nlenall,nreplica,"neb:nlenall");
}
}

View File

@ -26,9 +26,8 @@ namespace LAMMPS_NS {
class FixNEB : public Fix {
public:
double veng,plen,nlen;
double veng,plen,nlen,dotpath,dottangrad,gradlen,dotgrad;
int rclimber;
double gradvnorm;
FixNEB(class LAMMPS *, int, char **);
~FixNEB();
@ -39,27 +38,32 @@ class FixNEB : public Fix {
private:
int me,nprocs,nprocs_universe;
double kspring;
double kspring,kspring2,kspringPerp,EIniIni,EFinalIni;
bool StandardNEB,NEBLongRange,PerpSpring,FreeEndIni,FreeEndFinal;
bool FreeEndFinalWithRespToEIni,FinalAndInterWithRespToEIni;
int ireplica,nreplica;
int procnext,procprev;
int cmode;
MPI_Comm uworld;
MPI_Comm rootworld;
char *id_pe;
class Compute *pe;
int nebatoms; // # of active NEB atoms
int nebatoms;
int ntotal; // total # of atoms, NEB or not
int maxlocal; // size of xprev,xnext,tangent arrays
double **xprev,**xnext; // coords of my owned atoms in neighbor replicas
double **tangent; // work vector for inter-replica forces
double *nlenall;
double **xprev,**xnext,**fnext,**springF;
double **tangent;
double **xsend,**xrecv; // coords to send/recv to/from other replica
double **fsend,**frecv; // coords to send/recv to/from other replica
tagint *tagsend,*tagrecv; // ditto for atom IDs
// info gathered from all procs in my replica
double **xsendall,**xrecvall; // coords to send/recv to/from other replica
double **fsendall,**frecvall; // force to send/recv to/from other replica
tagint *tagsendall,*tagrecvall; // ditto for atom IDs
int *counts,*displacements; // used for MPI_Gather

View File

@ -37,8 +37,10 @@
#include "memory.h"
#include "error.h"
#include "force.h"
#include "math_const.h"
using namespace LAMMPS_NS;
using namespace MathConst;
#define MAXLINE 256
#define CHUNK 1024
@ -143,17 +145,19 @@ void NEB::command(int narg, char **arg)
// process file-style setting to setup initial configs for all replicas
if (strcmp(arg[5],"final") == 0) {
if (narg != 7) error->universe_all(FLERR,"Illegal NEB command");
if (narg != 7 && narg !=8) error->universe_all(FLERR,"Illegal NEB command");
infile = arg[6];
readfile(infile,0);
} else if (strcmp(arg[5],"each") == 0) {
if (narg != 7) error->universe_all(FLERR,"Illegal NEB command");
if (narg != 7 && narg !=8) error->universe_all(FLERR,"Illegal NEB command");
infile = arg[6];
readfile(infile,1);
} else if (strcmp(arg[5],"none") == 0) {
if (narg != 6) error->universe_all(FLERR,"Illegal NEB command");
if (narg != 6 && narg !=7) error->universe_all(FLERR,"Illegal NEB command");
} else error->universe_all(FLERR,"Illegal NEB command");
verbose=false;
if (strcmp(arg[narg-1],"verbose") == 0) verbose=true;
// run the NEB calculation
run();
@ -178,8 +182,9 @@ void NEB::run()
if (ineb == modify->nfix) error->all(FLERR,"NEB requires use of fix neb");
fneb = (FixNEB *) modify->fix[ineb];
nall = 4;
memory->create(all,nreplica,nall,"neb:all");
if (verbose) numall =7;
else numall = 4;
memory->create(all,nreplica,numall,"neb:all");
rdist = new double[nreplica];
// initialize LAMMPS
@ -195,9 +200,11 @@ void NEB::run()
error->all(FLERR,"NEB requires damped dynamics minimizer");
// setup regular NEB minimization
FILE *uscreen = universe->uscreen;
FILE *ulogfile = universe->ulogfile;
if (me_universe == 0 && universe->uscreen)
fprintf(universe->uscreen,"Setting up regular NEB ...\n");
if (me_universe == 0 && uscreen)
fprintf(uscreen,"Setting up regular NEB ...\n");
update->beginstep = update->firststep = update->ntimestep;
update->endstep = update->laststep = update->firststep + n1steps;
@ -209,16 +216,33 @@ void NEB::run()
update->minimize->setup();
if (me_universe == 0) {
if (universe->uscreen)
fprintf(universe->uscreen,"Step MaxReplicaForce MaxAtomForce "
"GradV0 GradV1 GradVc "
"EBF EBR RDT "
"RD1 PE1 RD2 PE2 ... RDN PEN\n");
if (universe->ulogfile)
fprintf(universe->ulogfile,"Step MaxReplicaForce MaxAtomForce "
"GradV0 GradV1 GradVc "
"EBF EBR RDT "
"RD1 PE1 RD2 PE2 ... RDN PEN\n");
if (uscreen) {
if (verbose) {
fprintf(uscreen,"Step MaxReplicaForce MaxAtomForce "
"GradV0 GradV1 GradVc EBF EBR RDT RD1 PE1 RD2 PE2 ... "
"RDN PEN pathangle1 angletangrad1 anglegrad1 gradV1 "
"ReplicaForce1 MaxAtomForce1 pathangle2 angletangrad2 "
"... ReplicaForceN MaxAtomForceN\n");
} else {
fprintf(uscreen,"Step MaxReplicaForce MaxAtomForce "
"GradV0 GradV1 GradVc EBF EBR RDT RD1 PE1 RD2 PE2 ... "
"RDN PEN\n");
}
}
if (ulogfile) {
if (verbose) {
fprintf(ulogfile,"Step MaxReplicaForce MaxAtomForce "
"GradV0 GradV1 GradVc EBF EBR RDT RD1 PE1 RD2 PE2 ... "
"RDN PEN pathangle1 angletangrad1 anglegrad1 gradV1 "
"ReplicaForce1 MaxAtomForce1 pathangle2 angletangrad2 "
"... ReplicaForceN MaxAtomForceN\n");
} else {
fprintf(ulogfile,"Step MaxReplicaForce MaxAtomForce "
"GradV0 GradV1 GradVc EBF EBR RDT RD1 PE1 RD2 PE2 ... "
"RDN PEN\n");
}
}
}
print_status();
@ -257,14 +281,14 @@ void NEB::run()
// setup climbing NEB minimization
// must reinitialize minimizer so it re-creates its fix MINIMIZE
if (me_universe == 0 && universe->uscreen)
fprintf(universe->uscreen,"Setting up climbing ...\n");
if (me_universe == 0 && uscreen)
fprintf(uscreen,"Setting up climbing ...\n");
if (me_universe == 0) {
if (universe->uscreen)
fprintf(universe->uscreen,"Climbing replica = %d\n",top+1);
if (universe->ulogfile)
fprintf(universe->ulogfile,"Climbing replica = %d\n",top+1);
if (uscreen)
fprintf(uscreen,"Climbing replica = %d\n",top+1);
if (ulogfile)
fprintf(ulogfile,"Climbing replica = %d\n",top+1);
}
update->beginstep = update->firststep = update->ntimestep;
@ -279,16 +303,34 @@ void NEB::run()
update->minimize->setup();
if (me_universe == 0) {
if (universe->uscreen)
fprintf(universe->uscreen,"Step MaxReplicaForce MaxAtomForce "
"GradV0 GradV1 GradVc "
"EBF EBR RDT "
"RD1 PE1 RD2 PE2 ... RDN PEN\n");
if (universe->ulogfile)
fprintf(universe->ulogfile,"Step MaxReplicaForce MaxAtomForce "
"GradV0 GradV1 GradVc "
"EBF EBR RDT "
"RD1 PE1 RD2 PE2 ... RDN PEN\n");
if (uscreen)
if (verbose) {
fprintf(uscreen,"Step MaxReplicaForce MaxAtomForce "
"GradV0 GradV1 GradVc EBF EBR RDT "
"RD1 PE1 RD2 PE2 ... RDN PEN "
"pathangle1 angletangrad1 anglegrad1 gradV1 "
"ReplicaForce1 MaxAtomForce1 pathangle2 angletangrad2 "
"... ReplicaForceN MaxAtomForceN\n");
} else {
fprintf(uscreen,"Step MaxReplicaForce MaxAtomForce "
"GradV0 GradV1 GradVc "
"EBF EBR RDT "
"RD1 PE1 RD2 PE2 ... RDN PEN\n");
}
if (ulogfile)
if (verbose) {
fprintf(ulogfile,"Step MaxReplicaForce MaxAtomForce "
"GradV0 GradV1 GradVc EBF EBR RDT "
"RD1 PE1 RD2 PE2 ... RDN PEN "
"pathangle1 angletangrad1 anglegrad1 gradV1 "
"ReplicaForce1 MaxAtomForce1 pathangle2 angletangrad2 "
"... ReplicaForceN MaxAtomForceN\n");
} else {
fprintf(ulogfile,"Step MaxReplicaForce MaxAtomForce "
"GradV0 GradV1 GradVc "
"EBF EBR RDT "
"RD1 PE1 RD2 PE2 ... RDN PEN\n");
}
}
print_status();
@ -321,16 +363,16 @@ void NEB::run()
/* ----------------------------------------------------------------------
read initial config atom coords from file
flag = 0
only first replica opens file and reads it
first replica bcasts lines to all replicas
final replica stores coords
intermediate replicas interpolate from coords
new coord = replica fraction between current and final state
initial replica does nothing
only first replica opens file and reads it
first replica bcasts lines to all replicas
final replica stores coords
intermediate replicas interpolate from coords
new coord = replica fraction between current and final state
initial replica does nothing
flag = 1
each replica (except first) opens file and reads it
each replica stores coords
initial replica does nothing
each replica (except first) opens file and reads it
each replica stores coords
initial replica does nothing
------------------------------------------------------------------------- */
void NEB::readfile(char *file, int flag)
@ -539,16 +581,29 @@ void NEB::print_status()
double fmaxatom;
MPI_Allreduce(&fnorminf,&fmaxatom,1,MPI_DOUBLE,MPI_MAX,roots);
double one[4];
if (verbose) {
freplica = new double[nreplica];
MPI_Allgather(&fnorm2,1,MPI_DOUBLE,&freplica[0],1,MPI_DOUBLE,roots);
fmaxatomInRepl = new double[nreplica];
MPI_Allgather(&fnorminf,1,MPI_DOUBLE,&fmaxatomInRepl[0],1,MPI_DOUBLE,roots);
}
double one[numall];
one[0] = fneb->veng;
one[1] = fneb->plen;
one[2] = fneb->nlen;
one[nall-1] = fneb->gradvnorm;
one[3] = fneb->gradlen;
if (verbose) {
one[4] = fneb->dotpath;
one[5] = fneb->dottangrad;
one[6] = fneb->dotgrad;
}
if (output->thermo->normflag) one[0] /= atom->natoms;
if (me == 0)
MPI_Allgather(one,nall,MPI_DOUBLE,&all[0][0],nall,MPI_DOUBLE,roots);
MPI_Bcast(&all[0][0],nall*nreplica,MPI_DOUBLE,0,world);
MPI_Allgather(one,numall,MPI_DOUBLE,&all[0][0],numall,MPI_DOUBLE,roots);
MPI_Bcast(&all[0][0],numall*nreplica,MPI_DOUBLE,0,world);
rdist[0] = 0.0;
for (int i = 1; i < nreplica; i++)
@ -588,26 +643,56 @@ void NEB::print_status()
}
if (me_universe == 0) {
if (universe->uscreen) {
fprintf(universe->uscreen,BIGINT_FORMAT " %12.8g %12.8g ",
const double todeg=180.0/MY_PI;
FILE *uscreen = universe->uscreen;
FILE *ulogfile = universe->ulogfile;
if (uscreen) {
fprintf(uscreen,BIGINT_FORMAT " %12.8g %12.8g ",
update->ntimestep,fmaxreplica,fmaxatom);
fprintf(universe->uscreen,"%12.8g %12.8g %12.8g ",
fprintf(uscreen,"%12.8g %12.8g %12.8g ",
gradvnorm0,gradvnorm1,gradvnormc);
fprintf(universe->uscreen,"%12.8g %12.8g %12.8g ",ebf,ebr,endpt);
fprintf(uscreen,"%12.8g %12.8g %12.8g ",ebf,ebr,endpt);
for (int i = 0; i < nreplica; i++)
fprintf(universe->uscreen,"%12.8g %12.8g ",rdist[i],all[i][0]);
fprintf(universe->uscreen,"\n");
fprintf(uscreen,"%12.8g %12.8g ",rdist[i],all[i][0]);
if (verbose) {
fprintf(uscreen,"%12.5g %12.5g %12.5g %12.5g %12.5g %12.5g",
NAN,180-acos(all[0][5])*todeg,180-acos(all[0][6])*todeg,
all[0][3],freplica[0],fmaxatomInRepl[0]);
for (int i = 1; i < nreplica-1; i++)
fprintf(uscreen,"%12.5g %12.5g %12.5g %12.5g %12.5g %12.5g",
180-acos(all[i][4])*todeg,180-acos(all[i][5])*todeg,
180-acos(all[i][6])*todeg,all[i][3],freplica[i],
fmaxatomInRepl[i]);
fprintf(uscreen,"%12.5g %12.5g %12.5g %12.5g %12.5g %12.5g",
NAN,180-acos(all[nreplica-1][5])*todeg,NAN,all[nreplica-1][3],
freplica[nreplica-1],fmaxatomInRepl[nreplica-1]);
}
fprintf(uscreen,"\n");
}
if (universe->ulogfile) {
fprintf(universe->ulogfile,BIGINT_FORMAT " %12.8g %12.8g ",
if (ulogfile) {
fprintf(ulogfile,BIGINT_FORMAT " %12.8g %12.8g ",
update->ntimestep,fmaxreplica,fmaxatom);
fprintf(universe->ulogfile,"%12.8g %12.8g %12.8g ",
fprintf(ulogfile,"%12.8g %12.8g %12.8g ",
gradvnorm0,gradvnorm1,gradvnormc);
fprintf(universe->ulogfile,"%12.8g %12.8g %12.8g ",ebf,ebr,endpt);
fprintf(ulogfile,"%12.8g %12.8g %12.8g ",ebf,ebr,endpt);
for (int i = 0; i < nreplica; i++)
fprintf(universe->ulogfile,"%12.8g %12.8g ",rdist[i],all[i][0]);
fprintf(universe->ulogfile,"\n");
fflush(universe->ulogfile);
fprintf(ulogfile,"%12.8g %12.8g ",rdist[i],all[i][0]);
if (verbose) {
fprintf(ulogfile,"%12.5g %12.5g %12.5g %12.5g %12.5g %12.5g",
NAN,180-acos(all[0][5])*todeg,180-acos(all[0][6])*todeg,
all[0][3],freplica[0],fmaxatomInRepl[0]);
for (int i = 1; i < nreplica-1; i++)
fprintf(ulogfile,"%12.5g %12.5g %12.5g %12.5g %12.5g %12.5g",
180-acos(all[i][4])*todeg,180-acos(all[i][5])*todeg,
180-acos(all[i][6])*todeg,all[i][3],freplica[i],
fmaxatomInRepl[i]);
fprintf(ulogfile,"%12.5g %12.5g %12.5g %12.5g %12.5g %12.5g",
NAN,180-acos(all[nreplica-1][5])*todeg,NAN,all[nreplica-1][3],
freplica[nreplica-1],fmaxatomInRepl[nreplica-1]);
}
fprintf(ulogfile,"\n");
fflush(ulogfile);
}
}
}

View File

@ -38,6 +38,7 @@ class NEB : protected Pointers {
private:
int me,me_universe; // my proc ID in world and universe
int ireplica,nreplica;
bool verbose;
MPI_Comm uworld;
MPI_Comm roots; // MPI comm with 1 root proc from each world
FILE *fp;
@ -49,9 +50,11 @@ class NEB : protected Pointers {
char *infile; // name of file containing final state
class FixNEB *fneb;
int nall; // per-replica dimension of array all
int numall; // per-replica dimension of array all
double **all; // PE,plen,nlen,gradvnorm from each replica
double *rdist; // normalize reaction distance, 0 to 1
double *freplica; // force on an image
double *fmaxatomInRepl; // force on an image
void readfile(char *, int);
void open(char *);