forked from lijiext/lammps
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@9989 f3b2605a-c512-4ea7-a41b-209d697bcdaa
This commit is contained in:
parent
b1430e190f
commit
2a70442035
|
@ -1,23 +1,19 @@
|
|||
# *
|
||||
# *_________________________________________________________________________*
|
||||
# * Minimal BLAS/LAPACK Library for ATC
|
||||
|
||||
# To compile and link LAMMPS to the linalg library generated by this Makefile,
|
||||
# try appending the following definitions to the standard definitions in
|
||||
# whatever LAMMPS Makefile your are using, e.g. in lib/atc/Makefile.lammps
|
||||
|
||||
# CCFLAGS = -I../../lib/linalg
|
||||
# LINKFLAGS = -L../../lib/libalg
|
||||
# USRLIB = -llinalg -lgfortran
|
||||
# * Minimal BLAS/LAPACK Library for use by other LAMMPS packages
|
||||
|
||||
SHELL = /bin/sh
|
||||
|
||||
# ------ FILES ------
|
||||
|
||||
SRC = dasum.f daxpy.f dcopy.f ddot.f dgecon.f dgemm.f dgemv.f dger.f dgetf2.f dgetrf.f dgetri.f dlabad.f dlamch.f dlacn2.f dlange.f dlassq.f dlaswp.f dlatrs.f drscl.f dscal.f dswap.f dtrmm.f dtrmv.f dtrsm.f dtrsv.f dtrti2.f dtrtri.f idamax.f ieeeck.f ilaenv.f iparmq.f lsame.f xerbla.f
|
||||
SRC = dasum.f daxpy.f dcopy.f ddot.f dgecon.f dgemm.f dgemv.f dger.f \
|
||||
dgetf2.f dgetrf.f dgetri.f disnan.f dlabad.f dlaisnan.f dlamch.f\
|
||||
dlacn2.f dlange.f dlassq.f dlaswp.f dlatrs.f drscl.f dscal.f \
|
||||
dswap.f dtrmm.f dtrmv.f dtrsm.f dtrsv.f dtrti2.f dtrtri.f \
|
||||
idamax.f ieeeck.f ilaenv.f iparmq.f lsame.f xerbla.f zdotc.f \
|
||||
zdscal.f zhpr.f zpptrf.f zpptri.f zscal.f ztpmv.f ztpsv.f ztptri.f
|
||||
|
||||
|
||||
FILES = $(SRC) Makefile.*
|
||||
FILES = $(SRC) Makefile.* README
|
||||
|
||||
# ------ DEFINITIONS ------
|
||||
|
||||
|
@ -29,7 +25,7 @@ OBJ = $(SRC:.f=.o)
|
|||
FC = gfortran
|
||||
FFLAGS = -O3 -fPIC -march=native -mpc64 \
|
||||
-ffast-math -funroll-loops -fstrict-aliasing -Wall -W -Wno-uninitialized -fno-second-underscore
|
||||
FFLAGS0 = -O0 -march=native -mpc64 \
|
||||
FFLAGS0 = -O0 -fPIC -march=native -mpc64 \
|
||||
-Wall -W -Wno-uninitialized -fno-second-underscore
|
||||
ARCHIVE = ar
|
||||
AR = ar
|
||||
|
|
|
@ -1,21 +1,17 @@
|
|||
# *
|
||||
# *_________________________________________________________________________*
|
||||
# * Minimal BLAS/LAPACK Library for ATC
|
||||
|
||||
# To compile and link LAMMPS to the linalg library generated by this Makefile,
|
||||
# try appending the following definitions to the standard definitions in
|
||||
# whatever LAMMPS Makefile your are using, e.g. in lib/atc/Makefile.lammps
|
||||
|
||||
# CCFLAGS = -I../../lib/linalg
|
||||
# LINKFLAGS = -L../../lib/libalg
|
||||
# USRLIB = -llinalg -lgfortran
|
||||
# * Minimal BLAS/LAPACK Library for use by other LAMMPS packages
|
||||
|
||||
SHELL = /bin/sh
|
||||
|
||||
# ------ FILES ------
|
||||
|
||||
SRC = dasum.f daxpy.f dcopy.f ddot.f dgecon.f dgemm.f dgemv.f dger.f dgetf2.f dgetrf.f dgetri.f dlabad.f dlamch.f dlacn2.f dlange.f dlassq.f dlaswp.f dlatrs.f drscl.f dscal.f dswap.f dtrmm.f dtrmv.f dtrsm.f dtrsv.f dtrti2.f dtrtri.f idamax.f ieeeck.f ilaenv.f iparmq.f lsame.f xerbla.f
|
||||
|
||||
SRC = dasum.f daxpy.f dcopy.f ddot.f dgecon.f dgemm.f dgemv.f dger.f \
|
||||
dgetf2.f dgetrf.f dgetri.f disnan.f dlabad.f dlaisnan.f dlamch.f\
|
||||
dlacn2.f dlange.f dlassq.f dlaswp.f dlatrs.f drscl.f dscal.f \
|
||||
dswap.f dtrmm.f dtrmv.f dtrsm.f dtrsv.f dtrti2.f dtrtri.f \
|
||||
idamax.f ieeeck.f ilaenv.f iparmq.f lsame.f xerbla.f zdotc.f \
|
||||
zdscal.f zhpr.f zpptrf.f zpptri.f zscal.f ztpmv.f ztpsv.f ztptri.f
|
||||
|
||||
FILES = $(SRC) Makefile
|
||||
|
||||
|
|
|
@ -1,9 +1,13 @@
|
|||
This directory has BLAS and LAPACK files needed by the USER-ATC and
|
||||
USER-AWPMD packages, and possibly by other packages in the future.
|
||||
|
||||
You only need to build and use the files in this directory if you want
|
||||
to build LAMMPS with a package that needs BLAS/LAPACK routines and you
|
||||
do not have the standard BLAS and LAPACK libraries on your system.
|
||||
Note that this is an *incomplete* subset of full BLAS/LAPACK.
|
||||
|
||||
You should only need to build and use the resulting library in this
|
||||
directory if you want to build LAMMPS with the USER-ATC and/or
|
||||
USER-AWPMD packages AND you do not have any other suitable BLAS and
|
||||
LAPACK libraries installed on your system. E.g. ATLAS, GOTO-BLAS,
|
||||
OpenBLAS, ACML, or MKL.
|
||||
|
||||
Build the library using one of the provided Makefile.* files or create
|
||||
your own, specific to your compiler and system. For example:
|
||||
|
|
|
@ -1,4 +1,61 @@
|
|||
*> \brief \b DASUM
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* DOUBLE PRECISION FUNCTION DASUM(N,DX,INCX)
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* INTEGER INCX,N
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
* DOUBLE PRECISION DX(*)
|
||||
* ..
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> DASUM takes the sum of the absolute values.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \date November 2011
|
||||
*
|
||||
*> \ingroup double_blas_level1
|
||||
*
|
||||
*> \par Further Details:
|
||||
* =====================
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> jack dongarra, linpack, 3/11/78.
|
||||
*> modified 3/93 to return if incx .le. 0.
|
||||
*> modified 12/3/93, array(1) declarations changed to array(*)
|
||||
*> \endverbatim
|
||||
*>
|
||||
* =====================================================================
|
||||
DOUBLE PRECISION FUNCTION DASUM(N,DX,INCX)
|
||||
*
|
||||
* -- Reference BLAS level1 routine (version 3.4.0) --
|
||||
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* November 2011
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
INTEGER INCX,N
|
||||
* ..
|
||||
|
@ -6,18 +63,6 @@
|
|||
DOUBLE PRECISION DX(*)
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* DASUM takes the sum of the absolute values.
|
||||
*
|
||||
* Further Details
|
||||
* ===============
|
||||
*
|
||||
* jack dongarra, linpack, 3/11/78.
|
||||
* modified 3/93 to return if incx .le. 0.
|
||||
* modified 12/3/93, array(1) declarations changed to array(*)
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Local Scalars ..
|
||||
|
@ -30,33 +75,37 @@
|
|||
DASUM = 0.0d0
|
||||
DTEMP = 0.0d0
|
||||
IF (N.LE.0 .OR. INCX.LE.0) RETURN
|
||||
IF (INCX.EQ.1) GO TO 20
|
||||
*
|
||||
* code for increment not equal to 1
|
||||
*
|
||||
NINCX = N*INCX
|
||||
DO 10 I = 1,NINCX,INCX
|
||||
DTEMP = DTEMP + DABS(DX(I))
|
||||
10 CONTINUE
|
||||
DASUM = DTEMP
|
||||
RETURN
|
||||
*
|
||||
IF (INCX.EQ.1) THEN
|
||||
* code for increment equal to 1
|
||||
*
|
||||
*
|
||||
* clean-up loop
|
||||
*
|
||||
20 M = MOD(N,6)
|
||||
IF (M.EQ.0) GO TO 40
|
||||
DO 30 I = 1,M
|
||||
DTEMP = DTEMP + DABS(DX(I))
|
||||
30 CONTINUE
|
||||
IF (N.LT.6) GO TO 60
|
||||
40 MP1 = M + 1
|
||||
DO 50 I = MP1,N,6
|
||||
DTEMP = DTEMP + DABS(DX(I)) + DABS(DX(I+1)) + DABS(DX(I+2)) +
|
||||
+ DABS(DX(I+3)) + DABS(DX(I+4)) + DABS(DX(I+5))
|
||||
50 CONTINUE
|
||||
60 DASUM = DTEMP
|
||||
M = MOD(N,6)
|
||||
IF (M.NE.0) THEN
|
||||
DO I = 1,M
|
||||
DTEMP = DTEMP + DABS(DX(I))
|
||||
END DO
|
||||
IF (N.LT.6) THEN
|
||||
DASUM = DTEMP
|
||||
RETURN
|
||||
END IF
|
||||
END IF
|
||||
MP1 = M + 1
|
||||
DO I = MP1,N,6
|
||||
DTEMP = DTEMP + DABS(DX(I)) + DABS(DX(I+1)) +
|
||||
$ DABS(DX(I+2)) + DABS(DX(I+3)) +
|
||||
$ DABS(DX(I+4)) + DABS(DX(I+5))
|
||||
END DO
|
||||
ELSE
|
||||
*
|
||||
* code for increment not equal to 1
|
||||
*
|
||||
NINCX = N*INCX
|
||||
DO I = 1,NINCX,INCX
|
||||
DTEMP = DTEMP + DABS(DX(I))
|
||||
END DO
|
||||
END IF
|
||||
DASUM = DTEMP
|
||||
RETURN
|
||||
END
|
||||
|
|
|
@ -1,4 +1,62 @@
|
|||
*> \brief \b DAXPY
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* SUBROUTINE DAXPY(N,DA,DX,INCX,DY,INCY)
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* DOUBLE PRECISION DA
|
||||
* INTEGER INCX,INCY,N
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
* DOUBLE PRECISION DX(*),DY(*)
|
||||
* ..
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> DAXPY constant times a vector plus a vector.
|
||||
*> uses unrolled loops for increments equal to one.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \date November 2011
|
||||
*
|
||||
*> \ingroup double_blas_level1
|
||||
*
|
||||
*> \par Further Details:
|
||||
* =====================
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> jack dongarra, linpack, 3/11/78.
|
||||
*> modified 12/3/93, array(1) declarations changed to array(*)
|
||||
*> \endverbatim
|
||||
*>
|
||||
* =====================================================================
|
||||
SUBROUTINE DAXPY(N,DA,DX,INCX,DY,INCY)
|
||||
*
|
||||
* -- Reference BLAS level1 routine (version 3.4.0) --
|
||||
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* November 2011
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
DOUBLE PRECISION DA
|
||||
INTEGER INCX,INCY,N
|
||||
|
@ -7,18 +65,6 @@
|
|||
DOUBLE PRECISION DX(*),DY(*)
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* DAXPY constant times a vector plus a vector.
|
||||
* uses unrolled loops for increments equal to one.
|
||||
*
|
||||
* Further Details
|
||||
* ===============
|
||||
*
|
||||
* jack dongarra, linpack, 3/11/78.
|
||||
* modified 12/3/93, array(1) declarations changed to array(*)
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Local Scalars ..
|
||||
|
@ -29,39 +75,41 @@
|
|||
* ..
|
||||
IF (N.LE.0) RETURN
|
||||
IF (DA.EQ.0.0d0) RETURN
|
||||
IF (INCX.EQ.1 .AND. INCY.EQ.1) GO TO 20
|
||||
*
|
||||
* code for unequal increments or equal increments
|
||||
* not equal to 1
|
||||
*
|
||||
IX = 1
|
||||
IY = 1
|
||||
IF (INCX.LT.0) IX = (-N+1)*INCX + 1
|
||||
IF (INCY.LT.0) IY = (-N+1)*INCY + 1
|
||||
DO 10 I = 1,N
|
||||
DY(IY) = DY(IY) + DA*DX(IX)
|
||||
IX = IX + INCX
|
||||
IY = IY + INCY
|
||||
10 CONTINUE
|
||||
RETURN
|
||||
IF (INCX.EQ.1 .AND. INCY.EQ.1) THEN
|
||||
*
|
||||
* code for both increments equal to 1
|
||||
*
|
||||
*
|
||||
* clean-up loop
|
||||
*
|
||||
20 M = MOD(N,4)
|
||||
IF (M.EQ.0) GO TO 40
|
||||
DO 30 I = 1,M
|
||||
DY(I) = DY(I) + DA*DX(I)
|
||||
30 CONTINUE
|
||||
IF (N.LT.4) RETURN
|
||||
40 MP1 = M + 1
|
||||
DO 50 I = MP1,N,4
|
||||
DY(I) = DY(I) + DA*DX(I)
|
||||
DY(I+1) = DY(I+1) + DA*DX(I+1)
|
||||
DY(I+2) = DY(I+2) + DA*DX(I+2)
|
||||
DY(I+3) = DY(I+3) + DA*DX(I+3)
|
||||
50 CONTINUE
|
||||
M = MOD(N,4)
|
||||
IF (M.NE.0) THEN
|
||||
DO I = 1,M
|
||||
DY(I) = DY(I) + DA*DX(I)
|
||||
END DO
|
||||
END IF
|
||||
IF (N.LT.4) RETURN
|
||||
MP1 = M + 1
|
||||
DO I = MP1,N,4
|
||||
DY(I) = DY(I) + DA*DX(I)
|
||||
DY(I+1) = DY(I+1) + DA*DX(I+1)
|
||||
DY(I+2) = DY(I+2) + DA*DX(I+2)
|
||||
DY(I+3) = DY(I+3) + DA*DX(I+3)
|
||||
END DO
|
||||
ELSE
|
||||
*
|
||||
* code for unequal increments or equal increments
|
||||
* not equal to 1
|
||||
*
|
||||
IX = 1
|
||||
IY = 1
|
||||
IF (INCX.LT.0) IX = (-N+1)*INCX + 1
|
||||
IF (INCY.LT.0) IY = (-N+1)*INCY + 1
|
||||
DO I = 1,N
|
||||
DY(IY) = DY(IY) + DA*DX(IX)
|
||||
IX = IX + INCX
|
||||
IY = IY + INCY
|
||||
END DO
|
||||
END IF
|
||||
RETURN
|
||||
END
|
||||
|
|
|
@ -1,4 +1,61 @@
|
|||
*> \brief \b DCOPY
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* SUBROUTINE DCOPY(N,DX,INCX,DY,INCY)
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* INTEGER INCX,INCY,N
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
* DOUBLE PRECISION DX(*),DY(*)
|
||||
* ..
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> DCOPY copies a vector, x, to a vector, y.
|
||||
*> uses unrolled loops for increments equal to one.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \date November 2011
|
||||
*
|
||||
*> \ingroup double_blas_level1
|
||||
*
|
||||
*> \par Further Details:
|
||||
* =====================
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> jack dongarra, linpack, 3/11/78.
|
||||
*> modified 12/3/93, array(1) declarations changed to array(*)
|
||||
*> \endverbatim
|
||||
*>
|
||||
* =====================================================================
|
||||
SUBROUTINE DCOPY(N,DX,INCX,DY,INCY)
|
||||
*
|
||||
* -- Reference BLAS level1 routine (version 3.4.0) --
|
||||
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* November 2011
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
INTEGER INCX,INCY,N
|
||||
* ..
|
||||
|
@ -6,18 +63,6 @@
|
|||
DOUBLE PRECISION DX(*),DY(*)
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* DCOPY copies a vector, x, to a vector, y.
|
||||
* uses unrolled loops for increments equal to one.
|
||||
*
|
||||
* Further Details
|
||||
* ===============
|
||||
*
|
||||
* jack dongarra, linpack, 3/11/78.
|
||||
* modified 12/3/93, array(1) declarations changed to array(*)
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Local Scalars ..
|
||||
|
@ -27,42 +72,44 @@
|
|||
INTRINSIC MOD
|
||||
* ..
|
||||
IF (N.LE.0) RETURN
|
||||
IF (INCX.EQ.1 .AND. INCY.EQ.1) GO TO 20
|
||||
*
|
||||
* code for unequal increments or equal increments
|
||||
* not equal to 1
|
||||
*
|
||||
IX = 1
|
||||
IY = 1
|
||||
IF (INCX.LT.0) IX = (-N+1)*INCX + 1
|
||||
IF (INCY.LT.0) IY = (-N+1)*INCY + 1
|
||||
DO 10 I = 1,N
|
||||
DY(IY) = DX(IX)
|
||||
IX = IX + INCX
|
||||
IY = IY + INCY
|
||||
10 CONTINUE
|
||||
RETURN
|
||||
IF (INCX.EQ.1 .AND. INCY.EQ.1) THEN
|
||||
*
|
||||
* code for both increments equal to 1
|
||||
*
|
||||
*
|
||||
* clean-up loop
|
||||
*
|
||||
20 M = MOD(N,7)
|
||||
IF (M.EQ.0) GO TO 40
|
||||
DO 30 I = 1,M
|
||||
DY(I) = DX(I)
|
||||
30 CONTINUE
|
||||
IF (N.LT.7) RETURN
|
||||
40 MP1 = M + 1
|
||||
DO 50 I = MP1,N,7
|
||||
DY(I) = DX(I)
|
||||
DY(I+1) = DX(I+1)
|
||||
DY(I+2) = DX(I+2)
|
||||
DY(I+3) = DX(I+3)
|
||||
DY(I+4) = DX(I+4)
|
||||
DY(I+5) = DX(I+5)
|
||||
DY(I+6) = DX(I+6)
|
||||
50 CONTINUE
|
||||
M = MOD(N,7)
|
||||
IF (M.NE.0) THEN
|
||||
DO I = 1,M
|
||||
DY(I) = DX(I)
|
||||
END DO
|
||||
IF (N.LT.7) RETURN
|
||||
END IF
|
||||
MP1 = M + 1
|
||||
DO I = MP1,N,7
|
||||
DY(I) = DX(I)
|
||||
DY(I+1) = DX(I+1)
|
||||
DY(I+2) = DX(I+2)
|
||||
DY(I+3) = DX(I+3)
|
||||
DY(I+4) = DX(I+4)
|
||||
DY(I+5) = DX(I+5)
|
||||
DY(I+6) = DX(I+6)
|
||||
END DO
|
||||
ELSE
|
||||
*
|
||||
* code for unequal increments or equal increments
|
||||
* not equal to 1
|
||||
*
|
||||
IX = 1
|
||||
IY = 1
|
||||
IF (INCX.LT.0) IX = (-N+1)*INCX + 1
|
||||
IF (INCY.LT.0) IY = (-N+1)*INCY + 1
|
||||
DO I = 1,N
|
||||
DY(IY) = DX(IX)
|
||||
IX = IX + INCX
|
||||
IY = IY + INCY
|
||||
END DO
|
||||
END IF
|
||||
RETURN
|
||||
END
|
||||
|
|
|
@ -1,4 +1,61 @@
|
|||
*> \brief \b DDOT
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* DOUBLE PRECISION FUNCTION DDOT(N,DX,INCX,DY,INCY)
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* INTEGER INCX,INCY,N
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
* DOUBLE PRECISION DX(*),DY(*)
|
||||
* ..
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> DDOT forms the dot product of two vectors.
|
||||
*> uses unrolled loops for increments equal to one.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \date November 2011
|
||||
*
|
||||
*> \ingroup double_blas_level1
|
||||
*
|
||||
*> \par Further Details:
|
||||
* =====================
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> jack dongarra, linpack, 3/11/78.
|
||||
*> modified 12/3/93, array(1) declarations changed to array(*)
|
||||
*> \endverbatim
|
||||
*>
|
||||
* =====================================================================
|
||||
DOUBLE PRECISION FUNCTION DDOT(N,DX,INCX,DY,INCY)
|
||||
*
|
||||
* -- Reference BLAS level1 routine (version 3.4.0) --
|
||||
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* November 2011
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
INTEGER INCX,INCY,N
|
||||
* ..
|
||||
|
@ -6,18 +63,6 @@
|
|||
DOUBLE PRECISION DX(*),DY(*)
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* DDOT forms the dot product of two vectors.
|
||||
* uses unrolled loops for increments equal to one.
|
||||
*
|
||||
* Further Details
|
||||
* ===============
|
||||
*
|
||||
* jack dongarra, linpack, 3/11/78.
|
||||
* modified 12/3/93, array(1) declarations changed to array(*)
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Local Scalars ..
|
||||
|
@ -30,39 +75,43 @@
|
|||
DDOT = 0.0d0
|
||||
DTEMP = 0.0d0
|
||||
IF (N.LE.0) RETURN
|
||||
IF (INCX.EQ.1 .AND. INCY.EQ.1) GO TO 20
|
||||
*
|
||||
* code for unequal increments or equal increments
|
||||
* not equal to 1
|
||||
*
|
||||
IX = 1
|
||||
IY = 1
|
||||
IF (INCX.LT.0) IX = (-N+1)*INCX + 1
|
||||
IF (INCY.LT.0) IY = (-N+1)*INCY + 1
|
||||
DO 10 I = 1,N
|
||||
DTEMP = DTEMP + DX(IX)*DY(IY)
|
||||
IX = IX + INCX
|
||||
IY = IY + INCY
|
||||
10 CONTINUE
|
||||
DDOT = DTEMP
|
||||
RETURN
|
||||
IF (INCX.EQ.1 .AND. INCY.EQ.1) THEN
|
||||
*
|
||||
* code for both increments equal to 1
|
||||
*
|
||||
*
|
||||
* clean-up loop
|
||||
*
|
||||
20 M = MOD(N,5)
|
||||
IF (M.EQ.0) GO TO 40
|
||||
DO 30 I = 1,M
|
||||
DTEMP = DTEMP + DX(I)*DY(I)
|
||||
30 CONTINUE
|
||||
IF (N.LT.5) GO TO 60
|
||||
40 MP1 = M + 1
|
||||
DO 50 I = MP1,N,5
|
||||
M = MOD(N,5)
|
||||
IF (M.NE.0) THEN
|
||||
DO I = 1,M
|
||||
DTEMP = DTEMP + DX(I)*DY(I)
|
||||
END DO
|
||||
IF (N.LT.5) THEN
|
||||
DDOT=DTEMP
|
||||
RETURN
|
||||
END IF
|
||||
END IF
|
||||
MP1 = M + 1
|
||||
DO I = MP1,N,5
|
||||
DTEMP = DTEMP + DX(I)*DY(I) + DX(I+1)*DY(I+1) +
|
||||
+ DX(I+2)*DY(I+2) + DX(I+3)*DY(I+3) + DX(I+4)*DY(I+4)
|
||||
50 CONTINUE
|
||||
60 DDOT = DTEMP
|
||||
$ DX(I+2)*DY(I+2) + DX(I+3)*DY(I+3) + DX(I+4)*DY(I+4)
|
||||
END DO
|
||||
ELSE
|
||||
*
|
||||
* code for unequal increments or equal increments
|
||||
* not equal to 1
|
||||
*
|
||||
IX = 1
|
||||
IY = 1
|
||||
IF (INCX.LT.0) IX = (-N+1)*INCX + 1
|
||||
IF (INCY.LT.0) IY = (-N+1)*INCY + 1
|
||||
DO I = 1,N
|
||||
DTEMP = DTEMP + DX(IX)*DY(IY)
|
||||
IX = IX + INCX
|
||||
IY = IY + INCY
|
||||
END DO
|
||||
END IF
|
||||
DDOT = DTEMP
|
||||
RETURN
|
||||
END
|
||||
|
|
|
@ -1,12 +1,133 @@
|
|||
*> \brief \b DGECON
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
*> \htmlonly
|
||||
*> Download DGECON + dependencies
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgecon.f">
|
||||
*> [TGZ]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgecon.f">
|
||||
*> [ZIP]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgecon.f">
|
||||
*> [TXT]</a>
|
||||
*> \endhtmlonly
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* SUBROUTINE DGECON( NORM, N, A, LDA, ANORM, RCOND, WORK, IWORK,
|
||||
* INFO )
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* CHARACTER NORM
|
||||
* INTEGER INFO, LDA, N
|
||||
* DOUBLE PRECISION ANORM, RCOND
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
* INTEGER IWORK( * )
|
||||
* DOUBLE PRECISION A( LDA, * ), WORK( * )
|
||||
* ..
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> DGECON estimates the reciprocal of the condition number of a general
|
||||
*> real matrix A, in either the 1-norm or the infinity-norm, using
|
||||
*> the LU factorization computed by DGETRF.
|
||||
*>
|
||||
*> An estimate is obtained for norm(inv(A)), and the reciprocal of the
|
||||
*> condition number is computed as
|
||||
*> RCOND = 1 / ( norm(A) * norm(inv(A)) ).
|
||||
*> \endverbatim
|
||||
*
|
||||
* Arguments:
|
||||
* ==========
|
||||
*
|
||||
*> \param[in] NORM
|
||||
*> \verbatim
|
||||
*> NORM is CHARACTER*1
|
||||
*> Specifies whether the 1-norm condition number or the
|
||||
*> infinity-norm condition number is required:
|
||||
*> = '1' or 'O': 1-norm;
|
||||
*> = 'I': Infinity-norm.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGER
|
||||
*> The order of the matrix A. N >= 0.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] A
|
||||
*> \verbatim
|
||||
*> A is DOUBLE PRECISION array, dimension (LDA,N)
|
||||
*> The factors L and U from the factorization A = P*L*U
|
||||
*> as computed by DGETRF.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] LDA
|
||||
*> \verbatim
|
||||
*> LDA is INTEGER
|
||||
*> The leading dimension of the array A. LDA >= max(1,N).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] ANORM
|
||||
*> \verbatim
|
||||
*> ANORM is DOUBLE PRECISION
|
||||
*> If NORM = '1' or 'O', the 1-norm of the original matrix A.
|
||||
*> If NORM = 'I', the infinity-norm of the original matrix A.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] RCOND
|
||||
*> \verbatim
|
||||
*> RCOND is DOUBLE PRECISION
|
||||
*> The reciprocal of the condition number of the matrix A,
|
||||
*> computed as RCOND = 1/(norm(A) * norm(inv(A))).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] WORK
|
||||
*> \verbatim
|
||||
*> WORK is DOUBLE PRECISION array, dimension (4*N)
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] IWORK
|
||||
*> \verbatim
|
||||
*> IWORK is INTEGER array, dimension (N)
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] INFO
|
||||
*> \verbatim
|
||||
*> INFO is INTEGER
|
||||
*> = 0: successful exit
|
||||
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||||
*> \endverbatim
|
||||
*
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \date November 2011
|
||||
*
|
||||
*> \ingroup doubleGEcomputational
|
||||
*
|
||||
* =====================================================================
|
||||
SUBROUTINE DGECON( NORM, N, A, LDA, ANORM, RCOND, WORK, IWORK,
|
||||
$ INFO )
|
||||
*
|
||||
* -- LAPACK routine (version 3.2) --
|
||||
* -- LAPACK computational routine (version 3.4.0) --
|
||||
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* November 2006
|
||||
*
|
||||
* Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH.
|
||||
* November 2011
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
CHARACTER NORM
|
||||
|
@ -18,52 +139,6 @@
|
|||
DOUBLE PRECISION A( LDA, * ), WORK( * )
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* DGECON estimates the reciprocal of the condition number of a general
|
||||
* real matrix A, in either the 1-norm or the infinity-norm, using
|
||||
* the LU factorization computed by DGETRF.
|
||||
*
|
||||
* An estimate is obtained for norm(inv(A)), and the reciprocal of the
|
||||
* condition number is computed as
|
||||
* RCOND = 1 / ( norm(A) * norm(inv(A)) ).
|
||||
*
|
||||
* Arguments
|
||||
* =========
|
||||
*
|
||||
* NORM (input) CHARACTER*1
|
||||
* Specifies whether the 1-norm condition number or the
|
||||
* infinity-norm condition number is required:
|
||||
* = '1' or 'O': 1-norm;
|
||||
* = 'I': Infinity-norm.
|
||||
*
|
||||
* N (input) INTEGER
|
||||
* The order of the matrix A. N >= 0.
|
||||
*
|
||||
* A (input) DOUBLE PRECISION array, dimension (LDA,N)
|
||||
* The factors L and U from the factorization A = P*L*U
|
||||
* as computed by DGETRF.
|
||||
*
|
||||
* LDA (input) INTEGER
|
||||
* The leading dimension of the array A. LDA >= max(1,N).
|
||||
*
|
||||
* ANORM (input) DOUBLE PRECISION
|
||||
* If NORM = '1' or 'O', the 1-norm of the original matrix A.
|
||||
* If NORM = 'I', the infinity-norm of the original matrix A.
|
||||
*
|
||||
* RCOND (output) DOUBLE PRECISION
|
||||
* The reciprocal of the condition number of the matrix A,
|
||||
* computed as RCOND = 1/(norm(A) * norm(inv(A))).
|
||||
*
|
||||
* WORK (workspace) DOUBLE PRECISION array, dimension (4*N)
|
||||
*
|
||||
* IWORK (workspace) INTEGER array, dimension (N)
|
||||
*
|
||||
* INFO (output) INTEGER
|
||||
* = 0: successful exit
|
||||
* < 0: if INFO = -i, the i-th argument had an illegal value
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
|
@ -149,12 +224,12 @@
|
|||
$ A, LDA, WORK, SU, WORK( 3*N+1 ), INFO )
|
||||
ELSE
|
||||
*
|
||||
* Multiply by inv(U').
|
||||
* Multiply by inv(U**T).
|
||||
*
|
||||
CALL DLATRS( 'Upper', 'Transpose', 'Non-unit', NORMIN, N, A,
|
||||
$ LDA, WORK, SU, WORK( 3*N+1 ), INFO )
|
||||
*
|
||||
* Multiply by inv(L').
|
||||
* Multiply by inv(L**T).
|
||||
*
|
||||
CALL DLATRS( 'Lower', 'Transpose', 'Unit', NORMIN, N, A,
|
||||
$ LDA, WORK, SL, WORK( 2*N+1 ), INFO )
|
||||
|
|
|
@ -1,4 +1,197 @@
|
|||
*> \brief \b DGEMM
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* SUBROUTINE DGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* DOUBLE PRECISION ALPHA,BETA
|
||||
* INTEGER K,LDA,LDB,LDC,M,N
|
||||
* CHARACTER TRANSA,TRANSB
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
* DOUBLE PRECISION A(LDA,*),B(LDB,*),C(LDC,*)
|
||||
* ..
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> DGEMM performs one of the matrix-matrix operations
|
||||
*>
|
||||
*> C := alpha*op( A )*op( B ) + beta*C,
|
||||
*>
|
||||
*> where op( X ) is one of
|
||||
*>
|
||||
*> op( X ) = X or op( X ) = X**T,
|
||||
*>
|
||||
*> alpha and beta are scalars, and A, B and C are matrices, with op( A )
|
||||
*> an m by k matrix, op( B ) a k by n matrix and C an m by n matrix.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Arguments:
|
||||
* ==========
|
||||
*
|
||||
*> \param[in] TRANSA
|
||||
*> \verbatim
|
||||
*> TRANSA is CHARACTER*1
|
||||
*> On entry, TRANSA specifies the form of op( A ) to be used in
|
||||
*> the matrix multiplication as follows:
|
||||
*>
|
||||
*> TRANSA = 'N' or 'n', op( A ) = A.
|
||||
*>
|
||||
*> TRANSA = 'T' or 't', op( A ) = A**T.
|
||||
*>
|
||||
*> TRANSA = 'C' or 'c', op( A ) = A**T.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] TRANSB
|
||||
*> \verbatim
|
||||
*> TRANSB is CHARACTER*1
|
||||
*> On entry, TRANSB specifies the form of op( B ) to be used in
|
||||
*> the matrix multiplication as follows:
|
||||
*>
|
||||
*> TRANSB = 'N' or 'n', op( B ) = B.
|
||||
*>
|
||||
*> TRANSB = 'T' or 't', op( B ) = B**T.
|
||||
*>
|
||||
*> TRANSB = 'C' or 'c', op( B ) = B**T.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] M
|
||||
*> \verbatim
|
||||
*> M is INTEGER
|
||||
*> On entry, M specifies the number of rows of the matrix
|
||||
*> op( A ) and of the matrix C. M must be at least zero.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGER
|
||||
*> On entry, N specifies the number of columns of the matrix
|
||||
*> op( B ) and the number of columns of the matrix C. N must be
|
||||
*> at least zero.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] K
|
||||
*> \verbatim
|
||||
*> K is INTEGER
|
||||
*> On entry, K specifies the number of columns of the matrix
|
||||
*> op( A ) and the number of rows of the matrix op( B ). K must
|
||||
*> be at least zero.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] ALPHA
|
||||
*> \verbatim
|
||||
*> ALPHA is DOUBLE PRECISION.
|
||||
*> On entry, ALPHA specifies the scalar alpha.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] A
|
||||
*> \verbatim
|
||||
*> A is DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is
|
||||
*> k when TRANSA = 'N' or 'n', and is m otherwise.
|
||||
*> Before entry with TRANSA = 'N' or 'n', the leading m by k
|
||||
*> part of the array A must contain the matrix A, otherwise
|
||||
*> the leading k by m part of the array A must contain the
|
||||
*> matrix A.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] LDA
|
||||
*> \verbatim
|
||||
*> LDA is INTEGER
|
||||
*> On entry, LDA specifies the first dimension of A as declared
|
||||
*> in the calling (sub) program. When TRANSA = 'N' or 'n' then
|
||||
*> LDA must be at least max( 1, m ), otherwise LDA must be at
|
||||
*> least max( 1, k ).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] B
|
||||
*> \verbatim
|
||||
*> B is DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is
|
||||
*> n when TRANSB = 'N' or 'n', and is k otherwise.
|
||||
*> Before entry with TRANSB = 'N' or 'n', the leading k by n
|
||||
*> part of the array B must contain the matrix B, otherwise
|
||||
*> the leading n by k part of the array B must contain the
|
||||
*> matrix B.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] LDB
|
||||
*> \verbatim
|
||||
*> LDB is INTEGER
|
||||
*> On entry, LDB specifies the first dimension of B as declared
|
||||
*> in the calling (sub) program. When TRANSB = 'N' or 'n' then
|
||||
*> LDB must be at least max( 1, k ), otherwise LDB must be at
|
||||
*> least max( 1, n ).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] BETA
|
||||
*> \verbatim
|
||||
*> BETA is DOUBLE PRECISION.
|
||||
*> On entry, BETA specifies the scalar beta. When BETA is
|
||||
*> supplied as zero then C need not be set on input.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] C
|
||||
*> \verbatim
|
||||
*> C is DOUBLE PRECISION array of DIMENSION ( LDC, n ).
|
||||
*> Before entry, the leading m by n part of the array C must
|
||||
*> contain the matrix C, except when beta is zero, in which
|
||||
*> case C need not be set on entry.
|
||||
*> On exit, the array C is overwritten by the m by n matrix
|
||||
*> ( alpha*op( A )*op( B ) + beta*C ).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] LDC
|
||||
*> \verbatim
|
||||
*> LDC is INTEGER
|
||||
*> On entry, LDC specifies the first dimension of C as declared
|
||||
*> in the calling (sub) program. LDC must be at least
|
||||
*> max( 1, m ).
|
||||
*> \endverbatim
|
||||
*
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \date November 2011
|
||||
*
|
||||
*> \ingroup double_blas_level3
|
||||
*
|
||||
*> \par Further Details:
|
||||
* =====================
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> Level 3 Blas routine.
|
||||
*>
|
||||
*> -- Written on 8-February-1989.
|
||||
*> Jack Dongarra, Argonne National Laboratory.
|
||||
*> Iain Duff, AERE Harwell.
|
||||
*> Jeremy Du Croz, Numerical Algorithms Group Ltd.
|
||||
*> Sven Hammarling, Numerical Algorithms Group Ltd.
|
||||
*> \endverbatim
|
||||
*>
|
||||
* =====================================================================
|
||||
SUBROUTINE DGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
|
||||
*
|
||||
* -- Reference BLAS level3 routine (version 3.4.0) --
|
||||
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* November 2011
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
DOUBLE PRECISION ALPHA,BETA
|
||||
INTEGER K,LDA,LDB,LDC,M,N
|
||||
|
@ -8,127 +201,6 @@
|
|||
DOUBLE PRECISION A(LDA,*),B(LDB,*),C(LDC,*)
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* DGEMM performs one of the matrix-matrix operations
|
||||
*
|
||||
* C := alpha*op( A )*op( B ) + beta*C,
|
||||
*
|
||||
* where op( X ) is one of
|
||||
*
|
||||
* op( X ) = X or op( X ) = X',
|
||||
*
|
||||
* alpha and beta are scalars, and A, B and C are matrices, with op( A )
|
||||
* an m by k matrix, op( B ) a k by n matrix and C an m by n matrix.
|
||||
*
|
||||
* Arguments
|
||||
* ==========
|
||||
*
|
||||
* TRANSA - CHARACTER*1.
|
||||
* On entry, TRANSA specifies the form of op( A ) to be used in
|
||||
* the matrix multiplication as follows:
|
||||
*
|
||||
* TRANSA = 'N' or 'n', op( A ) = A.
|
||||
*
|
||||
* TRANSA = 'T' or 't', op( A ) = A'.
|
||||
*
|
||||
* TRANSA = 'C' or 'c', op( A ) = A'.
|
||||
*
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* TRANSB - CHARACTER*1.
|
||||
* On entry, TRANSB specifies the form of op( B ) to be used in
|
||||
* the matrix multiplication as follows:
|
||||
*
|
||||
* TRANSB = 'N' or 'n', op( B ) = B.
|
||||
*
|
||||
* TRANSB = 'T' or 't', op( B ) = B'.
|
||||
*
|
||||
* TRANSB = 'C' or 'c', op( B ) = B'.
|
||||
*
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* M - INTEGER.
|
||||
* On entry, M specifies the number of rows of the matrix
|
||||
* op( A ) and of the matrix C. M must be at least zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* N - INTEGER.
|
||||
* On entry, N specifies the number of columns of the matrix
|
||||
* op( B ) and the number of columns of the matrix C. N must be
|
||||
* at least zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* K - INTEGER.
|
||||
* On entry, K specifies the number of columns of the matrix
|
||||
* op( A ) and the number of rows of the matrix op( B ). K must
|
||||
* be at least zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* ALPHA - DOUBLE PRECISION.
|
||||
* On entry, ALPHA specifies the scalar alpha.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is
|
||||
* k when TRANSA = 'N' or 'n', and is m otherwise.
|
||||
* Before entry with TRANSA = 'N' or 'n', the leading m by k
|
||||
* part of the array A must contain the matrix A, otherwise
|
||||
* the leading k by m part of the array A must contain the
|
||||
* matrix A.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* LDA - INTEGER.
|
||||
* On entry, LDA specifies the first dimension of A as declared
|
||||
* in the calling (sub) program. When TRANSA = 'N' or 'n' then
|
||||
* LDA must be at least max( 1, m ), otherwise LDA must be at
|
||||
* least max( 1, k ).
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* B - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is
|
||||
* n when TRANSB = 'N' or 'n', and is k otherwise.
|
||||
* Before entry with TRANSB = 'N' or 'n', the leading k by n
|
||||
* part of the array B must contain the matrix B, otherwise
|
||||
* the leading n by k part of the array B must contain the
|
||||
* matrix B.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* LDB - INTEGER.
|
||||
* On entry, LDB specifies the first dimension of B as declared
|
||||
* in the calling (sub) program. When TRANSB = 'N' or 'n' then
|
||||
* LDB must be at least max( 1, k ), otherwise LDB must be at
|
||||
* least max( 1, n ).
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* BETA - DOUBLE PRECISION.
|
||||
* On entry, BETA specifies the scalar beta. When BETA is
|
||||
* supplied as zero then C need not be set on input.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* C - DOUBLE PRECISION array of DIMENSION ( LDC, n ).
|
||||
* Before entry, the leading m by n part of the array C must
|
||||
* contain the matrix C, except when beta is zero, in which
|
||||
* case C need not be set on entry.
|
||||
* On exit, the array C is overwritten by the m by n matrix
|
||||
* ( alpha*op( A )*op( B ) + beta*C ).
|
||||
*
|
||||
* LDC - INTEGER.
|
||||
* On entry, LDC specifies the first dimension of C as declared
|
||||
* in the calling (sub) program. LDC must be at least
|
||||
* max( 1, m ).
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* Further Details
|
||||
* ===============
|
||||
*
|
||||
* Level 3 Blas routine.
|
||||
*
|
||||
* -- Written on 8-February-1989.
|
||||
* Jack Dongarra, Argonne National Laboratory.
|
||||
* Iain Duff, AERE Harwell.
|
||||
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
|
||||
* Sven Hammarling, Numerical Algorithms Group Ltd.
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. External Functions ..
|
||||
|
@ -249,7 +321,7 @@
|
|||
90 CONTINUE
|
||||
ELSE
|
||||
*
|
||||
* Form C := alpha*A'*B + beta*C
|
||||
* Form C := alpha*A**T*B + beta*C
|
||||
*
|
||||
DO 120 J = 1,N
|
||||
DO 110 I = 1,M
|
||||
|
@ -268,7 +340,7 @@
|
|||
ELSE
|
||||
IF (NOTA) THEN
|
||||
*
|
||||
* Form C := alpha*A*B' + beta*C
|
||||
* Form C := alpha*A*B**T + beta*C
|
||||
*
|
||||
DO 170 J = 1,N
|
||||
IF (BETA.EQ.ZERO) THEN
|
||||
|
@ -291,7 +363,7 @@
|
|||
170 CONTINUE
|
||||
ELSE
|
||||
*
|
||||
* Form C := alpha*A'*B' + beta*C
|
||||
* Form C := alpha*A**T*B**T + beta*C
|
||||
*
|
||||
DO 200 J = 1,N
|
||||
DO 190 I = 1,M
|
||||
|
|
|
@ -1,4 +1,166 @@
|
|||
*> \brief \b DGEMV
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* SUBROUTINE DGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* DOUBLE PRECISION ALPHA,BETA
|
||||
* INTEGER INCX,INCY,LDA,M,N
|
||||
* CHARACTER TRANS
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
* DOUBLE PRECISION A(LDA,*),X(*),Y(*)
|
||||
* ..
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> DGEMV performs one of the matrix-vector operations
|
||||
*>
|
||||
*> y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y,
|
||||
*>
|
||||
*> where alpha and beta are scalars, x and y are vectors and A is an
|
||||
*> m by n matrix.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Arguments:
|
||||
* ==========
|
||||
*
|
||||
*> \param[in] TRANS
|
||||
*> \verbatim
|
||||
*> TRANS is CHARACTER*1
|
||||
*> On entry, TRANS specifies the operation to be performed as
|
||||
*> follows:
|
||||
*>
|
||||
*> TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
|
||||
*>
|
||||
*> TRANS = 'T' or 't' y := alpha*A**T*x + beta*y.
|
||||
*>
|
||||
*> TRANS = 'C' or 'c' y := alpha*A**T*x + beta*y.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] M
|
||||
*> \verbatim
|
||||
*> M is INTEGER
|
||||
*> On entry, M specifies the number of rows of the matrix A.
|
||||
*> M must be at least zero.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGER
|
||||
*> On entry, N specifies the number of columns of the matrix A.
|
||||
*> N must be at least zero.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] ALPHA
|
||||
*> \verbatim
|
||||
*> ALPHA is DOUBLE PRECISION.
|
||||
*> On entry, ALPHA specifies the scalar alpha.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] A
|
||||
*> \verbatim
|
||||
*> A is DOUBLE PRECISION array of DIMENSION ( LDA, n ).
|
||||
*> Before entry, the leading m by n part of the array A must
|
||||
*> contain the matrix of coefficients.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] LDA
|
||||
*> \verbatim
|
||||
*> LDA is INTEGER
|
||||
*> On entry, LDA specifies the first dimension of A as declared
|
||||
*> in the calling (sub) program. LDA must be at least
|
||||
*> max( 1, m ).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] X
|
||||
*> \verbatim
|
||||
*> X is DOUBLE PRECISION array of DIMENSION at least
|
||||
*> ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
|
||||
*> and at least
|
||||
*> ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
|
||||
*> Before entry, the incremented array X must contain the
|
||||
*> vector x.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] INCX
|
||||
*> \verbatim
|
||||
*> INCX is INTEGER
|
||||
*> On entry, INCX specifies the increment for the elements of
|
||||
*> X. INCX must not be zero.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] BETA
|
||||
*> \verbatim
|
||||
*> BETA is DOUBLE PRECISION.
|
||||
*> On entry, BETA specifies the scalar beta. When BETA is
|
||||
*> supplied as zero then Y need not be set on input.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] Y
|
||||
*> \verbatim
|
||||
*> Y is DOUBLE PRECISION array of DIMENSION at least
|
||||
*> ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
|
||||
*> and at least
|
||||
*> ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
|
||||
*> Before entry with BETA non-zero, the incremented array Y
|
||||
*> must contain the vector y. On exit, Y is overwritten by the
|
||||
*> updated vector y.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] INCY
|
||||
*> \verbatim
|
||||
*> INCY is INTEGER
|
||||
*> On entry, INCY specifies the increment for the elements of
|
||||
*> Y. INCY must not be zero.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \date November 2011
|
||||
*
|
||||
*> \ingroup double_blas_level2
|
||||
*
|
||||
*> \par Further Details:
|
||||
* =====================
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> Level 2 Blas routine.
|
||||
*> The vector and matrix arguments are not referenced when N = 0, or M = 0
|
||||
*>
|
||||
*> -- Written on 22-October-1986.
|
||||
*> Jack Dongarra, Argonne National Lab.
|
||||
*> Jeremy Du Croz, Nag Central Office.
|
||||
*> Sven Hammarling, Nag Central Office.
|
||||
*> Richard Hanson, Sandia National Labs.
|
||||
*> \endverbatim
|
||||
*>
|
||||
* =====================================================================
|
||||
SUBROUTINE DGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
|
||||
*
|
||||
* -- Reference BLAS level2 routine (version 3.4.0) --
|
||||
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* November 2011
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
DOUBLE PRECISION ALPHA,BETA
|
||||
INTEGER INCX,INCY,LDA,M,N
|
||||
|
@ -8,98 +170,6 @@
|
|||
DOUBLE PRECISION A(LDA,*),X(*),Y(*)
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* DGEMV performs one of the matrix-vector operations
|
||||
*
|
||||
* y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y,
|
||||
*
|
||||
* where alpha and beta are scalars, x and y are vectors and A is an
|
||||
* m by n matrix.
|
||||
*
|
||||
* Arguments
|
||||
* ==========
|
||||
*
|
||||
* TRANS - CHARACTER*1.
|
||||
* On entry, TRANS specifies the operation to be performed as
|
||||
* follows:
|
||||
*
|
||||
* TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
|
||||
*
|
||||
* TRANS = 'T' or 't' y := alpha*A'*x + beta*y.
|
||||
*
|
||||
* TRANS = 'C' or 'c' y := alpha*A'*x + beta*y.
|
||||
*
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* M - INTEGER.
|
||||
* On entry, M specifies the number of rows of the matrix A.
|
||||
* M must be at least zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* N - INTEGER.
|
||||
* On entry, N specifies the number of columns of the matrix A.
|
||||
* N must be at least zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* ALPHA - DOUBLE PRECISION.
|
||||
* On entry, ALPHA specifies the scalar alpha.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
|
||||
* Before entry, the leading m by n part of the array A must
|
||||
* contain the matrix of coefficients.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* LDA - INTEGER.
|
||||
* On entry, LDA specifies the first dimension of A as declared
|
||||
* in the calling (sub) program. LDA must be at least
|
||||
* max( 1, m ).
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* X - DOUBLE PRECISION array of DIMENSION at least
|
||||
* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
|
||||
* and at least
|
||||
* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
|
||||
* Before entry, the incremented array X must contain the
|
||||
* vector x.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* INCX - INTEGER.
|
||||
* On entry, INCX specifies the increment for the elements of
|
||||
* X. INCX must not be zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* BETA - DOUBLE PRECISION.
|
||||
* On entry, BETA specifies the scalar beta. When BETA is
|
||||
* supplied as zero then Y need not be set on input.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* Y - DOUBLE PRECISION array of DIMENSION at least
|
||||
* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
|
||||
* and at least
|
||||
* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
|
||||
* Before entry with BETA non-zero, the incremented array Y
|
||||
* must contain the vector y. On exit, Y is overwritten by the
|
||||
* updated vector y.
|
||||
*
|
||||
* INCY - INTEGER.
|
||||
* On entry, INCY specifies the increment for the elements of
|
||||
* Y. INCY must not be zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* Further Details
|
||||
* ===============
|
||||
*
|
||||
* Level 2 Blas routine.
|
||||
*
|
||||
* -- Written on 22-October-1986.
|
||||
* Jack Dongarra, Argonne National Lab.
|
||||
* Jeremy Du Croz, Nag Central Office.
|
||||
* Sven Hammarling, Nag Central Office.
|
||||
* Richard Hanson, Sandia National Labs.
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
|
@ -231,7 +301,7 @@
|
|||
END IF
|
||||
ELSE
|
||||
*
|
||||
* Form y := alpha*A'*x + y.
|
||||
* Form y := alpha*A**T*x + y.
|
||||
*
|
||||
JY = KY
|
||||
IF (INCX.EQ.1) THEN
|
||||
|
|
|
@ -1,4 +1,140 @@
|
|||
*> \brief \b DGER
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* SUBROUTINE DGER(M,N,ALPHA,X,INCX,Y,INCY,A,LDA)
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* DOUBLE PRECISION ALPHA
|
||||
* INTEGER INCX,INCY,LDA,M,N
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
* DOUBLE PRECISION A(LDA,*),X(*),Y(*)
|
||||
* ..
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> DGER performs the rank 1 operation
|
||||
*>
|
||||
*> A := alpha*x*y**T + A,
|
||||
*>
|
||||
*> where alpha is a scalar, x is an m element vector, y is an n element
|
||||
*> vector and A is an m by n matrix.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Arguments:
|
||||
* ==========
|
||||
*
|
||||
*> \param[in] M
|
||||
*> \verbatim
|
||||
*> M is INTEGER
|
||||
*> On entry, M specifies the number of rows of the matrix A.
|
||||
*> M must be at least zero.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGER
|
||||
*> On entry, N specifies the number of columns of the matrix A.
|
||||
*> N must be at least zero.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] ALPHA
|
||||
*> \verbatim
|
||||
*> ALPHA is DOUBLE PRECISION.
|
||||
*> On entry, ALPHA specifies the scalar alpha.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] X
|
||||
*> \verbatim
|
||||
*> X is DOUBLE PRECISION array of dimension at least
|
||||
*> ( 1 + ( m - 1 )*abs( INCX ) ).
|
||||
*> Before entry, the incremented array X must contain the m
|
||||
*> element vector x.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] INCX
|
||||
*> \verbatim
|
||||
*> INCX is INTEGER
|
||||
*> On entry, INCX specifies the increment for the elements of
|
||||
*> X. INCX must not be zero.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] Y
|
||||
*> \verbatim
|
||||
*> Y is DOUBLE PRECISION array of dimension at least
|
||||
*> ( 1 + ( n - 1 )*abs( INCY ) ).
|
||||
*> Before entry, the incremented array Y must contain the n
|
||||
*> element vector y.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] INCY
|
||||
*> \verbatim
|
||||
*> INCY is INTEGER
|
||||
*> On entry, INCY specifies the increment for the elements of
|
||||
*> Y. INCY must not be zero.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] A
|
||||
*> \verbatim
|
||||
*> A is DOUBLE PRECISION array of DIMENSION ( LDA, n ).
|
||||
*> Before entry, the leading m by n part of the array A must
|
||||
*> contain the matrix of coefficients. On exit, A is
|
||||
*> overwritten by the updated matrix.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] LDA
|
||||
*> \verbatim
|
||||
*> LDA is INTEGER
|
||||
*> On entry, LDA specifies the first dimension of A as declared
|
||||
*> in the calling (sub) program. LDA must be at least
|
||||
*> max( 1, m ).
|
||||
*> \endverbatim
|
||||
*
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \date November 2011
|
||||
*
|
||||
*> \ingroup double_blas_level2
|
||||
*
|
||||
*> \par Further Details:
|
||||
* =====================
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> Level 2 Blas routine.
|
||||
*>
|
||||
*> -- Written on 22-October-1986.
|
||||
*> Jack Dongarra, Argonne National Lab.
|
||||
*> Jeremy Du Croz, Nag Central Office.
|
||||
*> Sven Hammarling, Nag Central Office.
|
||||
*> Richard Hanson, Sandia National Labs.
|
||||
*> \endverbatim
|
||||
*>
|
||||
* =====================================================================
|
||||
SUBROUTINE DGER(M,N,ALPHA,X,INCX,Y,INCY,A,LDA)
|
||||
*
|
||||
* -- Reference BLAS level2 routine (version 3.4.0) --
|
||||
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* November 2011
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
DOUBLE PRECISION ALPHA
|
||||
INTEGER INCX,INCY,LDA,M,N
|
||||
|
@ -7,77 +143,6 @@
|
|||
DOUBLE PRECISION A(LDA,*),X(*),Y(*)
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* DGER performs the rank 1 operation
|
||||
*
|
||||
* A := alpha*x*y' + A,
|
||||
*
|
||||
* where alpha is a scalar, x is an m element vector, y is an n element
|
||||
* vector and A is an m by n matrix.
|
||||
*
|
||||
* Arguments
|
||||
* ==========
|
||||
*
|
||||
* M - INTEGER.
|
||||
* On entry, M specifies the number of rows of the matrix A.
|
||||
* M must be at least zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* N - INTEGER.
|
||||
* On entry, N specifies the number of columns of the matrix A.
|
||||
* N must be at least zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* ALPHA - DOUBLE PRECISION.
|
||||
* On entry, ALPHA specifies the scalar alpha.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* X - DOUBLE PRECISION array of dimension at least
|
||||
* ( 1 + ( m - 1 )*abs( INCX ) ).
|
||||
* Before entry, the incremented array X must contain the m
|
||||
* element vector x.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* INCX - INTEGER.
|
||||
* On entry, INCX specifies the increment for the elements of
|
||||
* X. INCX must not be zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* Y - DOUBLE PRECISION array of dimension at least
|
||||
* ( 1 + ( n - 1 )*abs( INCY ) ).
|
||||
* Before entry, the incremented array Y must contain the n
|
||||
* element vector y.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* INCY - INTEGER.
|
||||
* On entry, INCY specifies the increment for the elements of
|
||||
* Y. INCY must not be zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
|
||||
* Before entry, the leading m by n part of the array A must
|
||||
* contain the matrix of coefficients. On exit, A is
|
||||
* overwritten by the updated matrix.
|
||||
*
|
||||
* LDA - INTEGER.
|
||||
* On entry, LDA specifies the first dimension of A as declared
|
||||
* in the calling (sub) program. LDA must be at least
|
||||
* max( 1, m ).
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* Further Details
|
||||
* ===============
|
||||
*
|
||||
* Level 2 Blas routine.
|
||||
*
|
||||
* -- Written on 22-October-1986.
|
||||
* Jack Dongarra, Argonne National Lab.
|
||||
* Jeremy Du Croz, Nag Central Office.
|
||||
* Sven Hammarling, Nag Central Office.
|
||||
* Richard Hanson, Sandia National Labs.
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
|
|
|
@ -1,9 +1,117 @@
|
|||
*> \brief \b DGETF2 computes the LU factorization of a general m-by-n matrix using partial pivoting with row interchanges (unblocked algorithm).
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
*> \htmlonly
|
||||
*> Download DGETF2 + dependencies
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgetf2.f">
|
||||
*> [TGZ]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgetf2.f">
|
||||
*> [ZIP]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgetf2.f">
|
||||
*> [TXT]</a>
|
||||
*> \endhtmlonly
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* SUBROUTINE DGETF2( M, N, A, LDA, IPIV, INFO )
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* INTEGER INFO, LDA, M, N
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
* INTEGER IPIV( * )
|
||||
* DOUBLE PRECISION A( LDA, * )
|
||||
* ..
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> DGETF2 computes an LU factorization of a general m-by-n matrix A
|
||||
*> using partial pivoting with row interchanges.
|
||||
*>
|
||||
*> The factorization has the form
|
||||
*> A = P * L * U
|
||||
*> where P is a permutation matrix, L is lower triangular with unit
|
||||
*> diagonal elements (lower trapezoidal if m > n), and U is upper
|
||||
*> triangular (upper trapezoidal if m < n).
|
||||
*>
|
||||
*> This is the right-looking Level 2 BLAS version of the algorithm.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Arguments:
|
||||
* ==========
|
||||
*
|
||||
*> \param[in] M
|
||||
*> \verbatim
|
||||
*> M is INTEGER
|
||||
*> The number of rows of the matrix A. M >= 0.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGER
|
||||
*> The number of columns of the matrix A. N >= 0.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] A
|
||||
*> \verbatim
|
||||
*> A is DOUBLE PRECISION array, dimension (LDA,N)
|
||||
*> On entry, the m by n matrix to be factored.
|
||||
*> On exit, the factors L and U from the factorization
|
||||
*> A = P*L*U; the unit diagonal elements of L are not stored.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] LDA
|
||||
*> \verbatim
|
||||
*> LDA is INTEGER
|
||||
*> The leading dimension of the array A. LDA >= max(1,M).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] IPIV
|
||||
*> \verbatim
|
||||
*> IPIV is INTEGER array, dimension (min(M,N))
|
||||
*> The pivot indices; for 1 <= i <= min(M,N), row i of the
|
||||
*> matrix was interchanged with row IPIV(i).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] INFO
|
||||
*> \verbatim
|
||||
*> INFO is INTEGER
|
||||
*> = 0: successful exit
|
||||
*> < 0: if INFO = -k, the k-th argument had an illegal value
|
||||
*> > 0: if INFO = k, U(k,k) is exactly zero. The factorization
|
||||
*> has been completed, but the factor U is exactly
|
||||
*> singular, and division by zero will occur if it is used
|
||||
*> to solve a system of equations.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \date September 2012
|
||||
*
|
||||
*> \ingroup doubleGEcomputational
|
||||
*
|
||||
* =====================================================================
|
||||
SUBROUTINE DGETF2( M, N, A, LDA, IPIV, INFO )
|
||||
*
|
||||
* -- LAPACK routine (version 3.2) --
|
||||
* -- LAPACK computational routine (version 3.4.2) --
|
||||
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* November 2006
|
||||
* September 2012
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
INTEGER INFO, LDA, M, N
|
||||
|
@ -13,49 +121,6 @@
|
|||
DOUBLE PRECISION A( LDA, * )
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* DGETF2 computes an LU factorization of a general m-by-n matrix A
|
||||
* using partial pivoting with row interchanges.
|
||||
*
|
||||
* The factorization has the form
|
||||
* A = P * L * U
|
||||
* where P is a permutation matrix, L is lower triangular with unit
|
||||
* diagonal elements (lower trapezoidal if m > n), and U is upper
|
||||
* triangular (upper trapezoidal if m < n).
|
||||
*
|
||||
* This is the right-looking Level 2 BLAS version of the algorithm.
|
||||
*
|
||||
* Arguments
|
||||
* =========
|
||||
*
|
||||
* M (input) INTEGER
|
||||
* The number of rows of the matrix A. M >= 0.
|
||||
*
|
||||
* N (input) INTEGER
|
||||
* The number of columns of the matrix A. N >= 0.
|
||||
*
|
||||
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
|
||||
* On entry, the m by n matrix to be factored.
|
||||
* On exit, the factors L and U from the factorization
|
||||
* A = P*L*U; the unit diagonal elements of L are not stored.
|
||||
*
|
||||
* LDA (input) INTEGER
|
||||
* The leading dimension of the array A. LDA >= max(1,M).
|
||||
*
|
||||
* IPIV (output) INTEGER array, dimension (min(M,N))
|
||||
* The pivot indices; for 1 <= i <= min(M,N), row i of the
|
||||
* matrix was interchanged with row IPIV(i).
|
||||
*
|
||||
* INFO (output) INTEGER
|
||||
* = 0: successful exit
|
||||
* < 0: if INFO = -k, the k-th argument had an illegal value
|
||||
* > 0: if INFO = k, U(k,k) is exactly zero. The factorization
|
||||
* has been completed, but the factor U is exactly
|
||||
* singular, and division by zero will occur if it is used
|
||||
* to solve a system of equations.
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
|
|
|
@ -1,9 +1,117 @@
|
|||
*> \brief \b DGETRF
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
*> \htmlonly
|
||||
*> Download DGETRF + dependencies
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgetrf.f">
|
||||
*> [TGZ]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgetrf.f">
|
||||
*> [ZIP]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgetrf.f">
|
||||
*> [TXT]</a>
|
||||
*> \endhtmlonly
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* SUBROUTINE DGETRF( M, N, A, LDA, IPIV, INFO )
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* INTEGER INFO, LDA, M, N
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
* INTEGER IPIV( * )
|
||||
* DOUBLE PRECISION A( LDA, * )
|
||||
* ..
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> DGETRF computes an LU factorization of a general M-by-N matrix A
|
||||
*> using partial pivoting with row interchanges.
|
||||
*>
|
||||
*> The factorization has the form
|
||||
*> A = P * L * U
|
||||
*> where P is a permutation matrix, L is lower triangular with unit
|
||||
*> diagonal elements (lower trapezoidal if m > n), and U is upper
|
||||
*> triangular (upper trapezoidal if m < n).
|
||||
*>
|
||||
*> This is the right-looking Level 3 BLAS version of the algorithm.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Arguments:
|
||||
* ==========
|
||||
*
|
||||
*> \param[in] M
|
||||
*> \verbatim
|
||||
*> M is INTEGER
|
||||
*> The number of rows of the matrix A. M >= 0.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGER
|
||||
*> The number of columns of the matrix A. N >= 0.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] A
|
||||
*> \verbatim
|
||||
*> A is DOUBLE PRECISION array, dimension (LDA,N)
|
||||
*> On entry, the M-by-N matrix to be factored.
|
||||
*> On exit, the factors L and U from the factorization
|
||||
*> A = P*L*U; the unit diagonal elements of L are not stored.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] LDA
|
||||
*> \verbatim
|
||||
*> LDA is INTEGER
|
||||
*> The leading dimension of the array A. LDA >= max(1,M).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] IPIV
|
||||
*> \verbatim
|
||||
*> IPIV is INTEGER array, dimension (min(M,N))
|
||||
*> The pivot indices; for 1 <= i <= min(M,N), row i of the
|
||||
*> matrix was interchanged with row IPIV(i).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] INFO
|
||||
*> \verbatim
|
||||
*> INFO is INTEGER
|
||||
*> = 0: successful exit
|
||||
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||||
*> > 0: if INFO = i, U(i,i) is exactly zero. The factorization
|
||||
*> has been completed, but the factor U is exactly
|
||||
*> singular, and division by zero will occur if it is used
|
||||
*> to solve a system of equations.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \date November 2011
|
||||
*
|
||||
*> \ingroup doubleGEcomputational
|
||||
*
|
||||
* =====================================================================
|
||||
SUBROUTINE DGETRF( M, N, A, LDA, IPIV, INFO )
|
||||
*
|
||||
* -- LAPACK routine (version 3.2) --
|
||||
* -- LAPACK computational routine (version 3.4.0) --
|
||||
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* November 2006
|
||||
* November 2011
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
INTEGER INFO, LDA, M, N
|
||||
|
@ -13,49 +121,6 @@
|
|||
DOUBLE PRECISION A( LDA, * )
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* DGETRF computes an LU factorization of a general M-by-N matrix A
|
||||
* using partial pivoting with row interchanges.
|
||||
*
|
||||
* The factorization has the form
|
||||
* A = P * L * U
|
||||
* where P is a permutation matrix, L is lower triangular with unit
|
||||
* diagonal elements (lower trapezoidal if m > n), and U is upper
|
||||
* triangular (upper trapezoidal if m < n).
|
||||
*
|
||||
* This is the right-looking Level 3 BLAS version of the algorithm.
|
||||
*
|
||||
* Arguments
|
||||
* =========
|
||||
*
|
||||
* M (input) INTEGER
|
||||
* The number of rows of the matrix A. M >= 0.
|
||||
*
|
||||
* N (input) INTEGER
|
||||
* The number of columns of the matrix A. N >= 0.
|
||||
*
|
||||
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
|
||||
* On entry, the M-by-N matrix to be factored.
|
||||
* On exit, the factors L and U from the factorization
|
||||
* A = P*L*U; the unit diagonal elements of L are not stored.
|
||||
*
|
||||
* LDA (input) INTEGER
|
||||
* The leading dimension of the array A. LDA >= max(1,M).
|
||||
*
|
||||
* IPIV (output) INTEGER array, dimension (min(M,N))
|
||||
* The pivot indices; for 1 <= i <= min(M,N), row i of the
|
||||
* matrix was interchanged with row IPIV(i).
|
||||
*
|
||||
* INFO (output) INTEGER
|
||||
* = 0: successful exit
|
||||
* < 0: if INFO = -i, the i-th argument had an illegal value
|
||||
* > 0: if INFO = i, U(i,i) is exactly zero. The factorization
|
||||
* has been completed, but the factor U is exactly
|
||||
* singular, and division by zero will occur if it is used
|
||||
* to solve a system of equations.
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
|
|
|
@ -1,9 +1,123 @@
|
|||
*> \brief \b DGETRI
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
*> \htmlonly
|
||||
*> Download DGETRI + dependencies
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgetri.f">
|
||||
*> [TGZ]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgetri.f">
|
||||
*> [ZIP]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgetri.f">
|
||||
*> [TXT]</a>
|
||||
*> \endhtmlonly
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* SUBROUTINE DGETRI( N, A, LDA, IPIV, WORK, LWORK, INFO )
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* INTEGER INFO, LDA, LWORK, N
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
* INTEGER IPIV( * )
|
||||
* DOUBLE PRECISION A( LDA, * ), WORK( * )
|
||||
* ..
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> DGETRI computes the inverse of a matrix using the LU factorization
|
||||
*> computed by DGETRF.
|
||||
*>
|
||||
*> This method inverts U and then computes inv(A) by solving the system
|
||||
*> inv(A)*L = inv(U) for inv(A).
|
||||
*> \endverbatim
|
||||
*
|
||||
* Arguments:
|
||||
* ==========
|
||||
*
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGER
|
||||
*> The order of the matrix A. N >= 0.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] A
|
||||
*> \verbatim
|
||||
*> A is DOUBLE PRECISION array, dimension (LDA,N)
|
||||
*> On entry, the factors L and U from the factorization
|
||||
*> A = P*L*U as computed by DGETRF.
|
||||
*> On exit, if INFO = 0, the inverse of the original matrix A.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] LDA
|
||||
*> \verbatim
|
||||
*> LDA is INTEGER
|
||||
*> The leading dimension of the array A. LDA >= max(1,N).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] IPIV
|
||||
*> \verbatim
|
||||
*> IPIV is INTEGER array, dimension (N)
|
||||
*> The pivot indices from DGETRF; for 1<=i<=N, row i of the
|
||||
*> matrix was interchanged with row IPIV(i).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] WORK
|
||||
*> \verbatim
|
||||
*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
|
||||
*> On exit, if INFO=0, then WORK(1) returns the optimal LWORK.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] LWORK
|
||||
*> \verbatim
|
||||
*> LWORK is INTEGER
|
||||
*> The dimension of the array WORK. LWORK >= max(1,N).
|
||||
*> For optimal performance LWORK >= N*NB, where NB is
|
||||
*> the optimal blocksize returned by ILAENV.
|
||||
*>
|
||||
*> If LWORK = -1, then a workspace query is assumed; the routine
|
||||
*> only calculates the optimal size of the WORK array, returns
|
||||
*> this value as the first entry of the WORK array, and no error
|
||||
*> message related to LWORK is issued by XERBLA.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] INFO
|
||||
*> \verbatim
|
||||
*> INFO is INTEGER
|
||||
*> = 0: successful exit
|
||||
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||||
*> > 0: if INFO = i, U(i,i) is exactly zero; the matrix is
|
||||
*> singular and its inverse could not be computed.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \date November 2011
|
||||
*
|
||||
*> \ingroup doubleGEcomputational
|
||||
*
|
||||
* =====================================================================
|
||||
SUBROUTINE DGETRI( N, A, LDA, IPIV, WORK, LWORK, INFO )
|
||||
*
|
||||
* -- LAPACK routine (version 3.2) --
|
||||
* -- LAPACK computational routine (version 3.4.0) --
|
||||
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* November 2006
|
||||
* November 2011
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
INTEGER INFO, LDA, LWORK, N
|
||||
|
@ -13,52 +127,6 @@
|
|||
DOUBLE PRECISION A( LDA, * ), WORK( * )
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* DGETRI computes the inverse of a matrix using the LU factorization
|
||||
* computed by DGETRF.
|
||||
*
|
||||
* This method inverts U and then computes inv(A) by solving the system
|
||||
* inv(A)*L = inv(U) for inv(A).
|
||||
*
|
||||
* Arguments
|
||||
* =========
|
||||
*
|
||||
* N (input) INTEGER
|
||||
* The order of the matrix A. N >= 0.
|
||||
*
|
||||
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
|
||||
* On entry, the factors L and U from the factorization
|
||||
* A = P*L*U as computed by DGETRF.
|
||||
* On exit, if INFO = 0, the inverse of the original matrix A.
|
||||
*
|
||||
* LDA (input) INTEGER
|
||||
* The leading dimension of the array A. LDA >= max(1,N).
|
||||
*
|
||||
* IPIV (input) INTEGER array, dimension (N)
|
||||
* The pivot indices from DGETRF; for 1<=i<=N, row i of the
|
||||
* matrix was interchanged with row IPIV(i).
|
||||
*
|
||||
* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
|
||||
* On exit, if INFO=0, then WORK(1) returns the optimal LWORK.
|
||||
*
|
||||
* LWORK (input) INTEGER
|
||||
* The dimension of the array WORK. LWORK >= max(1,N).
|
||||
* For optimal performance LWORK >= N*NB, where NB is
|
||||
* the optimal blocksize returned by ILAENV.
|
||||
*
|
||||
* If LWORK = -1, then a workspace query is assumed; the routine
|
||||
* only calculates the optimal size of the WORK array, returns
|
||||
* this value as the first entry of the WORK array, and no error
|
||||
* message related to LWORK is issued by XERBLA.
|
||||
*
|
||||
* INFO (output) INTEGER
|
||||
* = 0: successful exit
|
||||
* < 0: if INFO = -i, the i-th argument had an illegal value
|
||||
* > 0: if INFO = i, U(i,i) is exactly zero; the matrix is
|
||||
* singular and its inverse could not be computed.
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
|
|
|
@ -1,39 +1,88 @@
|
|||
*> \brief \b DLABAD
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
*> \htmlonly
|
||||
*> Download DLABAD + dependencies
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlabad.f">
|
||||
*> [TGZ]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlabad.f">
|
||||
*> [ZIP]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlabad.f">
|
||||
*> [TXT]</a>
|
||||
*> \endhtmlonly
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* SUBROUTINE DLABAD( SMALL, LARGE )
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* DOUBLE PRECISION LARGE, SMALL
|
||||
* ..
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> DLABAD takes as input the values computed by DLAMCH for underflow and
|
||||
*> overflow, and returns the square root of each of these values if the
|
||||
*> log of LARGE is sufficiently large. This subroutine is intended to
|
||||
*> identify machines with a large exponent range, such as the Crays, and
|
||||
*> redefine the underflow and overflow limits to be the square roots of
|
||||
*> the values computed by DLAMCH. This subroutine is needed because
|
||||
*> DLAMCH does not compensate for poor arithmetic in the upper half of
|
||||
*> the exponent range, as is found on a Cray.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Arguments:
|
||||
* ==========
|
||||
*
|
||||
*> \param[in,out] SMALL
|
||||
*> \verbatim
|
||||
*> SMALL is DOUBLE PRECISION
|
||||
*> On entry, the underflow threshold as computed by DLAMCH.
|
||||
*> On exit, if LOG10(LARGE) is sufficiently large, the square
|
||||
*> root of SMALL, otherwise unchanged.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] LARGE
|
||||
*> \verbatim
|
||||
*> LARGE is DOUBLE PRECISION
|
||||
*> On entry, the overflow threshold as computed by DLAMCH.
|
||||
*> On exit, if LOG10(LARGE) is sufficiently large, the square
|
||||
*> root of LARGE, otherwise unchanged.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \date November 2011
|
||||
*
|
||||
*> \ingroup auxOTHERauxiliary
|
||||
*
|
||||
* =====================================================================
|
||||
SUBROUTINE DLABAD( SMALL, LARGE )
|
||||
*
|
||||
* -- LAPACK auxiliary routine (version 3.2) --
|
||||
* -- LAPACK auxiliary routine (version 3.4.0) --
|
||||
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* November 2006
|
||||
* November 2011
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
DOUBLE PRECISION LARGE, SMALL
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* DLABAD takes as input the values computed by DLAMCH for underflow and
|
||||
* overflow, and returns the square root of each of these values if the
|
||||
* log of LARGE is sufficiently large. This subroutine is intended to
|
||||
* identify machines with a large exponent range, such as the Crays, and
|
||||
* redefine the underflow and overflow limits to be the square roots of
|
||||
* the values computed by DLAMCH. This subroutine is needed because
|
||||
* DLAMCH does not compensate for poor arithmetic in the upper half of
|
||||
* the exponent range, as is found on a Cray.
|
||||
*
|
||||
* Arguments
|
||||
* =========
|
||||
*
|
||||
* SMALL (input/output) DOUBLE PRECISION
|
||||
* On entry, the underflow threshold as computed by DLAMCH.
|
||||
* On exit, if LOG10(LARGE) is sufficiently large, the square
|
||||
* root of SMALL, otherwise unchanged.
|
||||
*
|
||||
* LARGE (input/output) DOUBLE PRECISION
|
||||
* On entry, the overflow threshold as computed by DLAMCH.
|
||||
* On exit, if LOG10(LARGE) is sufficiently large, the square
|
||||
* root of LARGE, otherwise unchanged.
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Intrinsic Functions ..
|
||||
|
|
|
@ -1,9 +1,145 @@
|
|||
*> \brief \b DLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vector products.
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
*> \htmlonly
|
||||
*> Download DLACN2 + dependencies
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlacn2.f">
|
||||
*> [TGZ]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlacn2.f">
|
||||
*> [ZIP]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlacn2.f">
|
||||
*> [TXT]</a>
|
||||
*> \endhtmlonly
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* SUBROUTINE DLACN2( N, V, X, ISGN, EST, KASE, ISAVE )
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* INTEGER KASE, N
|
||||
* DOUBLE PRECISION EST
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
* INTEGER ISGN( * ), ISAVE( 3 )
|
||||
* DOUBLE PRECISION V( * ), X( * )
|
||||
* ..
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> DLACN2 estimates the 1-norm of a square, real matrix A.
|
||||
*> Reverse communication is used for evaluating matrix-vector products.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Arguments:
|
||||
* ==========
|
||||
*
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGER
|
||||
*> The order of the matrix. N >= 1.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] V
|
||||
*> \verbatim
|
||||
*> V is DOUBLE PRECISION array, dimension (N)
|
||||
*> On the final return, V = A*W, where EST = norm(V)/norm(W)
|
||||
*> (W is not returned).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] X
|
||||
*> \verbatim
|
||||
*> X is DOUBLE PRECISION array, dimension (N)
|
||||
*> On an intermediate return, X should be overwritten by
|
||||
*> A * X, if KASE=1,
|
||||
*> A**T * X, if KASE=2,
|
||||
*> and DLACN2 must be re-called with all the other parameters
|
||||
*> unchanged.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] ISGN
|
||||
*> \verbatim
|
||||
*> ISGN is INTEGER array, dimension (N)
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] EST
|
||||
*> \verbatim
|
||||
*> EST is DOUBLE PRECISION
|
||||
*> On entry with KASE = 1 or 2 and ISAVE(1) = 3, EST should be
|
||||
*> unchanged from the previous call to DLACN2.
|
||||
*> On exit, EST is an estimate (a lower bound) for norm(A).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] KASE
|
||||
*> \verbatim
|
||||
*> KASE is INTEGER
|
||||
*> On the initial call to DLACN2, KASE should be 0.
|
||||
*> On an intermediate return, KASE will be 1 or 2, indicating
|
||||
*> whether X should be overwritten by A * X or A**T * X.
|
||||
*> On the final return from DLACN2, KASE will again be 0.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] ISAVE
|
||||
*> \verbatim
|
||||
*> ISAVE is INTEGER array, dimension (3)
|
||||
*> ISAVE is used to save variables between calls to DLACN2
|
||||
*> \endverbatim
|
||||
*
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \date September 2012
|
||||
*
|
||||
*> \ingroup doubleOTHERauxiliary
|
||||
*
|
||||
*> \par Further Details:
|
||||
* =====================
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> Originally named SONEST, dated March 16, 1988.
|
||||
*>
|
||||
*> This is a thread safe version of DLACON, which uses the array ISAVE
|
||||
*> in place of a SAVE statement, as follows:
|
||||
*>
|
||||
*> DLACON DLACN2
|
||||
*> JUMP ISAVE(1)
|
||||
*> J ISAVE(2)
|
||||
*> ITER ISAVE(3)
|
||||
*> \endverbatim
|
||||
*
|
||||
*> \par Contributors:
|
||||
* ==================
|
||||
*>
|
||||
*> Nick Higham, University of Manchester
|
||||
*
|
||||
*> \par References:
|
||||
* ================
|
||||
*>
|
||||
*> N.J. Higham, "FORTRAN codes for estimating the one-norm of
|
||||
*> a real or complex matrix, with applications to condition estimation",
|
||||
*> ACM Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, December 1988.
|
||||
*>
|
||||
* =====================================================================
|
||||
SUBROUTINE DLACN2( N, V, X, ISGN, EST, KASE, ISAVE )
|
||||
*
|
||||
* -- LAPACK auxiliary routine (version 3.2) --
|
||||
* -- LAPACK auxiliary routine (version 3.4.2) --
|
||||
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* November 2006
|
||||
* September 2012
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
INTEGER KASE, N
|
||||
|
@ -14,63 +150,6 @@
|
|||
DOUBLE PRECISION V( * ), X( * )
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* DLACN2 estimates the 1-norm of a square, real matrix A.
|
||||
* Reverse communication is used for evaluating matrix-vector products.
|
||||
*
|
||||
* Arguments
|
||||
* =========
|
||||
*
|
||||
* N (input) INTEGER
|
||||
* The order of the matrix. N >= 1.
|
||||
*
|
||||
* V (workspace) DOUBLE PRECISION array, dimension (N)
|
||||
* On the final return, V = A*W, where EST = norm(V)/norm(W)
|
||||
* (W is not returned).
|
||||
*
|
||||
* X (input/output) DOUBLE PRECISION array, dimension (N)
|
||||
* On an intermediate return, X should be overwritten by
|
||||
* A * X, if KASE=1,
|
||||
* A' * X, if KASE=2,
|
||||
* and DLACN2 must be re-called with all the other parameters
|
||||
* unchanged.
|
||||
*
|
||||
* ISGN (workspace) INTEGER array, dimension (N)
|
||||
*
|
||||
* EST (input/output) DOUBLE PRECISION
|
||||
* On entry with KASE = 1 or 2 and ISAVE(1) = 3, EST should be
|
||||
* unchanged from the previous call to DLACN2.
|
||||
* On exit, EST is an estimate (a lower bound) for norm(A).
|
||||
*
|
||||
* KASE (input/output) INTEGER
|
||||
* On the initial call to DLACN2, KASE should be 0.
|
||||
* On an intermediate return, KASE will be 1 or 2, indicating
|
||||
* whether X should be overwritten by A * X or A' * X.
|
||||
* On the final return from DLACN2, KASE will again be 0.
|
||||
*
|
||||
* ISAVE (input/output) INTEGER array, dimension (3)
|
||||
* ISAVE is used to save variables between calls to DLACN2
|
||||
*
|
||||
* Further Details
|
||||
* ======= =======
|
||||
*
|
||||
* Contributed by Nick Higham, University of Manchester.
|
||||
* Originally named SONEST, dated March 16, 1988.
|
||||
*
|
||||
* Reference: N.J. Higham, "FORTRAN codes for estimating the one-norm of
|
||||
* a real or complex matrix, with applications to condition estimation",
|
||||
* ACM Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, December 1988.
|
||||
*
|
||||
* This is a thread safe version of DLACON, which uses the array ISAVE
|
||||
* in place of a SAVE statement, as follows:
|
||||
*
|
||||
* DLACON DLACN2
|
||||
* JUMP ISAVE(1)
|
||||
* J ISAVE(2)
|
||||
* ITER ISAVE(3)
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
|
|
|
@ -1,9 +1,123 @@
|
|||
*> \brief \b DLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general rectangular matrix.
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
*> \htmlonly
|
||||
*> Download DLANGE + dependencies
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlange.f">
|
||||
*> [TGZ]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlange.f">
|
||||
*> [ZIP]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlange.f">
|
||||
*> [TXT]</a>
|
||||
*> \endhtmlonly
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* DOUBLE PRECISION FUNCTION DLANGE( NORM, M, N, A, LDA, WORK )
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* CHARACTER NORM
|
||||
* INTEGER LDA, M, N
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
* DOUBLE PRECISION A( LDA, * ), WORK( * )
|
||||
* ..
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> DLANGE returns the value of the one norm, or the Frobenius norm, or
|
||||
*> the infinity norm, or the element of largest absolute value of a
|
||||
*> real matrix A.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \return DLANGE
|
||||
*> \verbatim
|
||||
*>
|
||||
*> DLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
|
||||
*> (
|
||||
*> ( norm1(A), NORM = '1', 'O' or 'o'
|
||||
*> (
|
||||
*> ( normI(A), NORM = 'I' or 'i'
|
||||
*> (
|
||||
*> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
|
||||
*>
|
||||
*> where norm1 denotes the one norm of a matrix (maximum column sum),
|
||||
*> normI denotes the infinity norm of a matrix (maximum row sum) and
|
||||
*> normF denotes the Frobenius norm of a matrix (square root of sum of
|
||||
*> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Arguments:
|
||||
* ==========
|
||||
*
|
||||
*> \param[in] NORM
|
||||
*> \verbatim
|
||||
*> NORM is CHARACTER*1
|
||||
*> Specifies the value to be returned in DLANGE as described
|
||||
*> above.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] M
|
||||
*> \verbatim
|
||||
*> M is INTEGER
|
||||
*> The number of rows of the matrix A. M >= 0. When M = 0,
|
||||
*> DLANGE is set to zero.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGER
|
||||
*> The number of columns of the matrix A. N >= 0. When N = 0,
|
||||
*> DLANGE is set to zero.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] A
|
||||
*> \verbatim
|
||||
*> A is DOUBLE PRECISION array, dimension (LDA,N)
|
||||
*> The m by n matrix A.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] LDA
|
||||
*> \verbatim
|
||||
*> LDA is INTEGER
|
||||
*> The leading dimension of the array A. LDA >= max(M,1).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] WORK
|
||||
*> \verbatim
|
||||
*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
|
||||
*> where LWORK >= M when NORM = 'I'; otherwise, WORK is not
|
||||
*> referenced.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \date September 2012
|
||||
*
|
||||
*> \ingroup doubleGEauxiliary
|
||||
*
|
||||
* =====================================================================
|
||||
DOUBLE PRECISION FUNCTION DLANGE( NORM, M, N, A, LDA, WORK )
|
||||
*
|
||||
* -- LAPACK auxiliary routine (version 3.2) --
|
||||
* -- LAPACK auxiliary routine (version 3.4.2) --
|
||||
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* November 2006
|
||||
* September 2012
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
CHARACTER NORM
|
||||
|
@ -13,56 +127,6 @@
|
|||
DOUBLE PRECISION A( LDA, * ), WORK( * )
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* DLANGE returns the value of the one norm, or the Frobenius norm, or
|
||||
* the infinity norm, or the element of largest absolute value of a
|
||||
* real matrix A.
|
||||
*
|
||||
* Description
|
||||
* ===========
|
||||
*
|
||||
* DLANGE returns the value
|
||||
*
|
||||
* DLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
|
||||
* (
|
||||
* ( norm1(A), NORM = '1', 'O' or 'o'
|
||||
* (
|
||||
* ( normI(A), NORM = 'I' or 'i'
|
||||
* (
|
||||
* ( normF(A), NORM = 'F', 'f', 'E' or 'e'
|
||||
*
|
||||
* where norm1 denotes the one norm of a matrix (maximum column sum),
|
||||
* normI denotes the infinity norm of a matrix (maximum row sum) and
|
||||
* normF denotes the Frobenius norm of a matrix (square root of sum of
|
||||
* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
|
||||
*
|
||||
* Arguments
|
||||
* =========
|
||||
*
|
||||
* NORM (input) CHARACTER*1
|
||||
* Specifies the value to be returned in DLANGE as described
|
||||
* above.
|
||||
*
|
||||
* M (input) INTEGER
|
||||
* The number of rows of the matrix A. M >= 0. When M = 0,
|
||||
* DLANGE is set to zero.
|
||||
*
|
||||
* N (input) INTEGER
|
||||
* The number of columns of the matrix A. N >= 0. When N = 0,
|
||||
* DLANGE is set to zero.
|
||||
*
|
||||
* A (input) DOUBLE PRECISION array, dimension (LDA,N)
|
||||
* The m by n matrix A.
|
||||
*
|
||||
* LDA (input) INTEGER
|
||||
* The leading dimension of the array A. LDA >= max(M,1).
|
||||
*
|
||||
* WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
|
||||
* where LWORK >= M when NORM = 'I'; otherwise, WORK is not
|
||||
* referenced.
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
|
@ -71,17 +135,17 @@
|
|||
* ..
|
||||
* .. Local Scalars ..
|
||||
INTEGER I, J
|
||||
DOUBLE PRECISION SCALE, SUM, VALUE
|
||||
DOUBLE PRECISION SCALE, SUM, VALUE, TEMP
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL DLASSQ
|
||||
* ..
|
||||
* .. External Functions ..
|
||||
LOGICAL LSAME
|
||||
EXTERNAL LSAME
|
||||
LOGICAL LSAME, DISNAN
|
||||
EXTERNAL LSAME, DISNAN
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC ABS, MAX, MIN, SQRT
|
||||
INTRINSIC ABS, MIN, SQRT
|
||||
* ..
|
||||
* .. Executable Statements ..
|
||||
*
|
||||
|
@ -94,7 +158,8 @@
|
|||
VALUE = ZERO
|
||||
DO 20 J = 1, N
|
||||
DO 10 I = 1, M
|
||||
VALUE = MAX( VALUE, ABS( A( I, J ) ) )
|
||||
TEMP = ABS( A( I, J ) )
|
||||
IF( VALUE.LT.TEMP .OR. DISNAN( TEMP ) ) VALUE = TEMP
|
||||
10 CONTINUE
|
||||
20 CONTINUE
|
||||
ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
|
||||
|
@ -107,7 +172,7 @@
|
|||
DO 30 I = 1, M
|
||||
SUM = SUM + ABS( A( I, J ) )
|
||||
30 CONTINUE
|
||||
VALUE = MAX( VALUE, SUM )
|
||||
IF( VALUE.LT.SUM .OR. DISNAN( SUM ) ) VALUE = SUM
|
||||
40 CONTINUE
|
||||
ELSE IF( LSAME( NORM, 'I' ) ) THEN
|
||||
*
|
||||
|
@ -123,7 +188,8 @@
|
|||
70 CONTINUE
|
||||
VALUE = ZERO
|
||||
DO 80 I = 1, M
|
||||
VALUE = MAX( VALUE, WORK( I ) )
|
||||
TEMP = WORK( I )
|
||||
IF( VALUE.LT.TEMP .OR. DISNAN( TEMP ) ) VALUE = TEMP
|
||||
80 CONTINUE
|
||||
ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
|
||||
*
|
||||
|
|
|
@ -1,9 +1,112 @@
|
|||
*> \brief \b DLASSQ updates a sum of squares represented in scaled form.
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
*> \htmlonly
|
||||
*> Download DLASSQ + dependencies
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlassq.f">
|
||||
*> [TGZ]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlassq.f">
|
||||
*> [ZIP]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlassq.f">
|
||||
*> [TXT]</a>
|
||||
*> \endhtmlonly
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* SUBROUTINE DLASSQ( N, X, INCX, SCALE, SUMSQ )
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* INTEGER INCX, N
|
||||
* DOUBLE PRECISION SCALE, SUMSQ
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
* DOUBLE PRECISION X( * )
|
||||
* ..
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> DLASSQ returns the values scl and smsq such that
|
||||
*>
|
||||
*> ( scl**2 )*smsq = x( 1 )**2 +...+ x( n )**2 + ( scale**2 )*sumsq,
|
||||
*>
|
||||
*> where x( i ) = X( 1 + ( i - 1 )*INCX ). The value of sumsq is
|
||||
*> assumed to be non-negative and scl returns the value
|
||||
*>
|
||||
*> scl = max( scale, abs( x( i ) ) ).
|
||||
*>
|
||||
*> scale and sumsq must be supplied in SCALE and SUMSQ and
|
||||
*> scl and smsq are overwritten on SCALE and SUMSQ respectively.
|
||||
*>
|
||||
*> The routine makes only one pass through the vector x.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Arguments:
|
||||
* ==========
|
||||
*
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGER
|
||||
*> The number of elements to be used from the vector X.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] X
|
||||
*> \verbatim
|
||||
*> X is DOUBLE PRECISION array, dimension (N)
|
||||
*> The vector for which a scaled sum of squares is computed.
|
||||
*> x( i ) = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] INCX
|
||||
*> \verbatim
|
||||
*> INCX is INTEGER
|
||||
*> The increment between successive values of the vector X.
|
||||
*> INCX > 0.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] SCALE
|
||||
*> \verbatim
|
||||
*> SCALE is DOUBLE PRECISION
|
||||
*> On entry, the value scale in the equation above.
|
||||
*> On exit, SCALE is overwritten with scl , the scaling factor
|
||||
*> for the sum of squares.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] SUMSQ
|
||||
*> \verbatim
|
||||
*> SUMSQ is DOUBLE PRECISION
|
||||
*> On entry, the value sumsq in the equation above.
|
||||
*> On exit, SUMSQ is overwritten with smsq , the basic sum of
|
||||
*> squares from which scl has been factored out.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \date September 2012
|
||||
*
|
||||
*> \ingroup auxOTHERauxiliary
|
||||
*
|
||||
* =====================================================================
|
||||
SUBROUTINE DLASSQ( N, X, INCX, SCALE, SUMSQ )
|
||||
*
|
||||
* -- LAPACK auxiliary routine (version 3.2) --
|
||||
* -- LAPACK auxiliary routine (version 3.4.2) --
|
||||
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* November 2006
|
||||
* September 2012
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
INTEGER INCX, N
|
||||
|
@ -13,47 +116,6 @@
|
|||
DOUBLE PRECISION X( * )
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* DLASSQ returns the values scl and smsq such that
|
||||
*
|
||||
* ( scl**2 )*smsq = x( 1 )**2 +...+ x( n )**2 + ( scale**2 )*sumsq,
|
||||
*
|
||||
* where x( i ) = X( 1 + ( i - 1 )*INCX ). The value of sumsq is
|
||||
* assumed to be non-negative and scl returns the value
|
||||
*
|
||||
* scl = max( scale, abs( x( i ) ) ).
|
||||
*
|
||||
* scale and sumsq must be supplied in SCALE and SUMSQ and
|
||||
* scl and smsq are overwritten on SCALE and SUMSQ respectively.
|
||||
*
|
||||
* The routine makes only one pass through the vector x.
|
||||
*
|
||||
* Arguments
|
||||
* =========
|
||||
*
|
||||
* N (input) INTEGER
|
||||
* The number of elements to be used from the vector X.
|
||||
*
|
||||
* X (input) DOUBLE PRECISION array, dimension (N)
|
||||
* The vector for which a scaled sum of squares is computed.
|
||||
* x( i ) = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n.
|
||||
*
|
||||
* INCX (input) INTEGER
|
||||
* The increment between successive values of the vector X.
|
||||
* INCX > 0.
|
||||
*
|
||||
* SCALE (input/output) DOUBLE PRECISION
|
||||
* On entry, the value scale in the equation above.
|
||||
* On exit, SCALE is overwritten with scl , the scaling factor
|
||||
* for the sum of squares.
|
||||
*
|
||||
* SUMSQ (input/output) DOUBLE PRECISION
|
||||
* On entry, the value sumsq in the equation above.
|
||||
* On exit, SUMSQ is overwritten with smsq , the basic sum of
|
||||
* squares from which scl has been factored out.
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
|
@ -64,6 +126,10 @@
|
|||
INTEGER IX
|
||||
DOUBLE PRECISION ABSXI
|
||||
* ..
|
||||
* .. External Functions ..
|
||||
LOGICAL DISNAN
|
||||
EXTERNAL DISNAN
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC ABS
|
||||
* ..
|
||||
|
@ -71,8 +137,8 @@
|
|||
*
|
||||
IF( N.GT.0 ) THEN
|
||||
DO 10 IX = 1, 1 + ( N-1 )*INCX, INCX
|
||||
IF( X( IX ).NE.ZERO ) THEN
|
||||
ABSXI = ABS( X( IX ) )
|
||||
ABSXI = ABS( X( IX ) )
|
||||
IF( ABSXI.GT.ZERO.OR.DISNAN( ABSXI ) ) THEN
|
||||
IF( SCALE.LT.ABSXI ) THEN
|
||||
SUMSQ = 1 + SUMSQ*( SCALE / ABSXI )**2
|
||||
SCALE = ABSXI
|
||||
|
|
|
@ -1,9 +1,123 @@
|
|||
*> \brief \b DLASWP performs a series of row interchanges on a general rectangular matrix.
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
*> \htmlonly
|
||||
*> Download DLASWP + dependencies
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaswp.f">
|
||||
*> [TGZ]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaswp.f">
|
||||
*> [ZIP]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaswp.f">
|
||||
*> [TXT]</a>
|
||||
*> \endhtmlonly
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* SUBROUTINE DLASWP( N, A, LDA, K1, K2, IPIV, INCX )
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* INTEGER INCX, K1, K2, LDA, N
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
* INTEGER IPIV( * )
|
||||
* DOUBLE PRECISION A( LDA, * )
|
||||
* ..
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> DLASWP performs a series of row interchanges on the matrix A.
|
||||
*> One row interchange is initiated for each of rows K1 through K2 of A.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Arguments:
|
||||
* ==========
|
||||
*
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGER
|
||||
*> The number of columns of the matrix A.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] A
|
||||
*> \verbatim
|
||||
*> A is DOUBLE PRECISION array, dimension (LDA,N)
|
||||
*> On entry, the matrix of column dimension N to which the row
|
||||
*> interchanges will be applied.
|
||||
*> On exit, the permuted matrix.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] LDA
|
||||
*> \verbatim
|
||||
*> LDA is INTEGER
|
||||
*> The leading dimension of the array A.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] K1
|
||||
*> \verbatim
|
||||
*> K1 is INTEGER
|
||||
*> The first element of IPIV for which a row interchange will
|
||||
*> be done.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] K2
|
||||
*> \verbatim
|
||||
*> K2 is INTEGER
|
||||
*> The last element of IPIV for which a row interchange will
|
||||
*> be done.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] IPIV
|
||||
*> \verbatim
|
||||
*> IPIV is INTEGER array, dimension (K2*abs(INCX))
|
||||
*> The vector of pivot indices. Only the elements in positions
|
||||
*> K1 through K2 of IPIV are accessed.
|
||||
*> IPIV(K) = L implies rows K and L are to be interchanged.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] INCX
|
||||
*> \verbatim
|
||||
*> INCX is INTEGER
|
||||
*> The increment between successive values of IPIV. If IPIV
|
||||
*> is negative, the pivots are applied in reverse order.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \date September 2012
|
||||
*
|
||||
*> \ingroup doubleOTHERauxiliary
|
||||
*
|
||||
*> \par Further Details:
|
||||
* =====================
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> Modified by
|
||||
*> R. C. Whaley, Computer Science Dept., Univ. of Tenn., Knoxville, USA
|
||||
*> \endverbatim
|
||||
*>
|
||||
* =====================================================================
|
||||
SUBROUTINE DLASWP( N, A, LDA, K1, K2, IPIV, INCX )
|
||||
*
|
||||
* -- LAPACK auxiliary routine (version 3.2) --
|
||||
* -- LAPACK auxiliary routine (version 3.4.2) --
|
||||
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* November 2006
|
||||
* September 2012
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
INTEGER INCX, K1, K2, LDA, N
|
||||
|
@ -13,49 +127,6 @@
|
|||
DOUBLE PRECISION A( LDA, * )
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* DLASWP performs a series of row interchanges on the matrix A.
|
||||
* One row interchange is initiated for each of rows K1 through K2 of A.
|
||||
*
|
||||
* Arguments
|
||||
* =========
|
||||
*
|
||||
* N (input) INTEGER
|
||||
* The number of columns of the matrix A.
|
||||
*
|
||||
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
|
||||
* On entry, the matrix of column dimension N to which the row
|
||||
* interchanges will be applied.
|
||||
* On exit, the permuted matrix.
|
||||
*
|
||||
* LDA (input) INTEGER
|
||||
* The leading dimension of the array A.
|
||||
*
|
||||
* K1 (input) INTEGER
|
||||
* The first element of IPIV for which a row interchange will
|
||||
* be done.
|
||||
*
|
||||
* K2 (input) INTEGER
|
||||
* The last element of IPIV for which a row interchange will
|
||||
* be done.
|
||||
*
|
||||
* IPIV (input) INTEGER array, dimension (K2*abs(INCX))
|
||||
* The vector of pivot indices. Only the elements in positions
|
||||
* K1 through K2 of IPIV are accessed.
|
||||
* IPIV(K) = L implies rows K and L are to be interchanged.
|
||||
*
|
||||
* INCX (input) INTEGER
|
||||
* The increment between successive values of IPIV. If IPIV
|
||||
* is negative, the pivots are applied in reverse order.
|
||||
*
|
||||
* Further Details
|
||||
* ===============
|
||||
*
|
||||
* Modified by
|
||||
* R. C. Whaley, Computer Science Dept., Univ. of Tenn., Knoxville, USA
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Local Scalars ..
|
||||
|
|
|
@ -1,10 +1,247 @@
|
|||
*> \brief \b DLATRS solves a triangular system of equations with the scale factor set to prevent overflow.
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
*> \htmlonly
|
||||
*> Download DLATRS + dependencies
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlatrs.f">
|
||||
*> [TGZ]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlatrs.f">
|
||||
*> [ZIP]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlatrs.f">
|
||||
*> [TXT]</a>
|
||||
*> \endhtmlonly
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* SUBROUTINE DLATRS( UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE,
|
||||
* CNORM, INFO )
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* CHARACTER DIAG, NORMIN, TRANS, UPLO
|
||||
* INTEGER INFO, LDA, N
|
||||
* DOUBLE PRECISION SCALE
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
* DOUBLE PRECISION A( LDA, * ), CNORM( * ), X( * )
|
||||
* ..
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> DLATRS solves one of the triangular systems
|
||||
*>
|
||||
*> A *x = s*b or A**T *x = s*b
|
||||
*>
|
||||
*> with scaling to prevent overflow. Here A is an upper or lower
|
||||
*> triangular matrix, A**T denotes the transpose of A, x and b are
|
||||
*> n-element vectors, and s is a scaling factor, usually less than
|
||||
*> or equal to 1, chosen so that the components of x will be less than
|
||||
*> the overflow threshold. If the unscaled problem will not cause
|
||||
*> overflow, the Level 2 BLAS routine DTRSV is called. If the matrix A
|
||||
*> is singular (A(j,j) = 0 for some j), then s is set to 0 and a
|
||||
*> non-trivial solution to A*x = 0 is returned.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Arguments:
|
||||
* ==========
|
||||
*
|
||||
*> \param[in] UPLO
|
||||
*> \verbatim
|
||||
*> UPLO is CHARACTER*1
|
||||
*> Specifies whether the matrix A is upper or lower triangular.
|
||||
*> = 'U': Upper triangular
|
||||
*> = 'L': Lower triangular
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] TRANS
|
||||
*> \verbatim
|
||||
*> TRANS is CHARACTER*1
|
||||
*> Specifies the operation applied to A.
|
||||
*> = 'N': Solve A * x = s*b (No transpose)
|
||||
*> = 'T': Solve A**T* x = s*b (Transpose)
|
||||
*> = 'C': Solve A**T* x = s*b (Conjugate transpose = Transpose)
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] DIAG
|
||||
*> \verbatim
|
||||
*> DIAG is CHARACTER*1
|
||||
*> Specifies whether or not the matrix A is unit triangular.
|
||||
*> = 'N': Non-unit triangular
|
||||
*> = 'U': Unit triangular
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] NORMIN
|
||||
*> \verbatim
|
||||
*> NORMIN is CHARACTER*1
|
||||
*> Specifies whether CNORM has been set or not.
|
||||
*> = 'Y': CNORM contains the column norms on entry
|
||||
*> = 'N': CNORM is not set on entry. On exit, the norms will
|
||||
*> be computed and stored in CNORM.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGER
|
||||
*> The order of the matrix A. N >= 0.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] A
|
||||
*> \verbatim
|
||||
*> A is DOUBLE PRECISION array, dimension (LDA,N)
|
||||
*> The triangular matrix A. If UPLO = 'U', the leading n by n
|
||||
*> upper triangular part of the array A contains the upper
|
||||
*> triangular matrix, and the strictly lower triangular part of
|
||||
*> A is not referenced. If UPLO = 'L', the leading n by n lower
|
||||
*> triangular part of the array A contains the lower triangular
|
||||
*> matrix, and the strictly upper triangular part of A is not
|
||||
*> referenced. If DIAG = 'U', the diagonal elements of A are
|
||||
*> also not referenced and are assumed to be 1.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] LDA
|
||||
*> \verbatim
|
||||
*> LDA is INTEGER
|
||||
*> The leading dimension of the array A. LDA >= max (1,N).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] X
|
||||
*> \verbatim
|
||||
*> X is DOUBLE PRECISION array, dimension (N)
|
||||
*> On entry, the right hand side b of the triangular system.
|
||||
*> On exit, X is overwritten by the solution vector x.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] SCALE
|
||||
*> \verbatim
|
||||
*> SCALE is DOUBLE PRECISION
|
||||
*> The scaling factor s for the triangular system
|
||||
*> A * x = s*b or A**T* x = s*b.
|
||||
*> If SCALE = 0, the matrix A is singular or badly scaled, and
|
||||
*> the vector x is an exact or approximate solution to A*x = 0.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] CNORM
|
||||
*> \verbatim
|
||||
*> CNORM is DOUBLE PRECISION array, dimension (N)
|
||||
*>
|
||||
*> If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
|
||||
*> contains the norm of the off-diagonal part of the j-th column
|
||||
*> of A. If TRANS = 'N', CNORM(j) must be greater than or equal
|
||||
*> to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
|
||||
*> must be greater than or equal to the 1-norm.
|
||||
*>
|
||||
*> If NORMIN = 'N', CNORM is an output argument and CNORM(j)
|
||||
*> returns the 1-norm of the offdiagonal part of the j-th column
|
||||
*> of A.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] INFO
|
||||
*> \verbatim
|
||||
*> INFO is INTEGER
|
||||
*> = 0: successful exit
|
||||
*> < 0: if INFO = -k, the k-th argument had an illegal value
|
||||
*> \endverbatim
|
||||
*
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \date September 2012
|
||||
*
|
||||
*> \ingroup doubleOTHERauxiliary
|
||||
*
|
||||
*> \par Further Details:
|
||||
* =====================
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> A rough bound on x is computed; if that is less than overflow, DTRSV
|
||||
*> is called, otherwise, specific code is used which checks for possible
|
||||
*> overflow or divide-by-zero at every operation.
|
||||
*>
|
||||
*> A columnwise scheme is used for solving A*x = b. The basic algorithm
|
||||
*> if A is lower triangular is
|
||||
*>
|
||||
*> x[1:n] := b[1:n]
|
||||
*> for j = 1, ..., n
|
||||
*> x(j) := x(j) / A(j,j)
|
||||
*> x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
|
||||
*> end
|
||||
*>
|
||||
*> Define bounds on the components of x after j iterations of the loop:
|
||||
*> M(j) = bound on x[1:j]
|
||||
*> G(j) = bound on x[j+1:n]
|
||||
*> Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
|
||||
*>
|
||||
*> Then for iteration j+1 we have
|
||||
*> M(j+1) <= G(j) / | A(j+1,j+1) |
|
||||
*> G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
|
||||
*> <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
|
||||
*>
|
||||
*> where CNORM(j+1) is greater than or equal to the infinity-norm of
|
||||
*> column j+1 of A, not counting the diagonal. Hence
|
||||
*>
|
||||
*> G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
|
||||
*> 1<=i<=j
|
||||
*> and
|
||||
*>
|
||||
*> |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
|
||||
*> 1<=i< j
|
||||
*>
|
||||
*> Since |x(j)| <= M(j), we use the Level 2 BLAS routine DTRSV if the
|
||||
*> reciprocal of the largest M(j), j=1,..,n, is larger than
|
||||
*> max(underflow, 1/overflow).
|
||||
*>
|
||||
*> The bound on x(j) is also used to determine when a step in the
|
||||
*> columnwise method can be performed without fear of overflow. If
|
||||
*> the computed bound is greater than a large constant, x is scaled to
|
||||
*> prevent overflow, but if the bound overflows, x is set to 0, x(j) to
|
||||
*> 1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
|
||||
*>
|
||||
*> Similarly, a row-wise scheme is used to solve A**T*x = b. The basic
|
||||
*> algorithm for A upper triangular is
|
||||
*>
|
||||
*> for j = 1, ..., n
|
||||
*> x(j) := ( b(j) - A[1:j-1,j]**T * x[1:j-1] ) / A(j,j)
|
||||
*> end
|
||||
*>
|
||||
*> We simultaneously compute two bounds
|
||||
*> G(j) = bound on ( b(i) - A[1:i-1,i]**T * x[1:i-1] ), 1<=i<=j
|
||||
*> M(j) = bound on x(i), 1<=i<=j
|
||||
*>
|
||||
*> The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
|
||||
*> add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
|
||||
*> Then the bound on x(j) is
|
||||
*>
|
||||
*> M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
|
||||
*>
|
||||
*> <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
|
||||
*> 1<=i<=j
|
||||
*>
|
||||
*> and we can safely call DTRSV if 1/M(n) and 1/G(n) are both greater
|
||||
*> than max(underflow, 1/overflow).
|
||||
*> \endverbatim
|
||||
*>
|
||||
* =====================================================================
|
||||
SUBROUTINE DLATRS( UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE,
|
||||
$ CNORM, INFO )
|
||||
*
|
||||
* -- LAPACK auxiliary routine (version 3.2) --
|
||||
* -- LAPACK auxiliary routine (version 3.4.2) --
|
||||
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* November 2006
|
||||
* September 2012
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
CHARACTER DIAG, NORMIN, TRANS, UPLO
|
||||
|
@ -15,158 +252,6 @@
|
|||
DOUBLE PRECISION A( LDA, * ), CNORM( * ), X( * )
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* DLATRS solves one of the triangular systems
|
||||
*
|
||||
* A *x = s*b or A'*x = s*b
|
||||
*
|
||||
* with scaling to prevent overflow. Here A is an upper or lower
|
||||
* triangular matrix, A' denotes the transpose of A, x and b are
|
||||
* n-element vectors, and s is a scaling factor, usually less than
|
||||
* or equal to 1, chosen so that the components of x will be less than
|
||||
* the overflow threshold. If the unscaled problem will not cause
|
||||
* overflow, the Level 2 BLAS routine DTRSV is called. If the matrix A
|
||||
* is singular (A(j,j) = 0 for some j), then s is set to 0 and a
|
||||
* non-trivial solution to A*x = 0 is returned.
|
||||
*
|
||||
* Arguments
|
||||
* =========
|
||||
*
|
||||
* UPLO (input) CHARACTER*1
|
||||
* Specifies whether the matrix A is upper or lower triangular.
|
||||
* = 'U': Upper triangular
|
||||
* = 'L': Lower triangular
|
||||
*
|
||||
* TRANS (input) CHARACTER*1
|
||||
* Specifies the operation applied to A.
|
||||
* = 'N': Solve A * x = s*b (No transpose)
|
||||
* = 'T': Solve A'* x = s*b (Transpose)
|
||||
* = 'C': Solve A'* x = s*b (Conjugate transpose = Transpose)
|
||||
*
|
||||
* DIAG (input) CHARACTER*1
|
||||
* Specifies whether or not the matrix A is unit triangular.
|
||||
* = 'N': Non-unit triangular
|
||||
* = 'U': Unit triangular
|
||||
*
|
||||
* NORMIN (input) CHARACTER*1
|
||||
* Specifies whether CNORM has been set or not.
|
||||
* = 'Y': CNORM contains the column norms on entry
|
||||
* = 'N': CNORM is not set on entry. On exit, the norms will
|
||||
* be computed and stored in CNORM.
|
||||
*
|
||||
* N (input) INTEGER
|
||||
* The order of the matrix A. N >= 0.
|
||||
*
|
||||
* A (input) DOUBLE PRECISION array, dimension (LDA,N)
|
||||
* The triangular matrix A. If UPLO = 'U', the leading n by n
|
||||
* upper triangular part of the array A contains the upper
|
||||
* triangular matrix, and the strictly lower triangular part of
|
||||
* A is not referenced. If UPLO = 'L', the leading n by n lower
|
||||
* triangular part of the array A contains the lower triangular
|
||||
* matrix, and the strictly upper triangular part of A is not
|
||||
* referenced. If DIAG = 'U', the diagonal elements of A are
|
||||
* also not referenced and are assumed to be 1.
|
||||
*
|
||||
* LDA (input) INTEGER
|
||||
* The leading dimension of the array A. LDA >= max (1,N).
|
||||
*
|
||||
* X (input/output) DOUBLE PRECISION array, dimension (N)
|
||||
* On entry, the right hand side b of the triangular system.
|
||||
* On exit, X is overwritten by the solution vector x.
|
||||
*
|
||||
* SCALE (output) DOUBLE PRECISION
|
||||
* The scaling factor s for the triangular system
|
||||
* A * x = s*b or A'* x = s*b.
|
||||
* If SCALE = 0, the matrix A is singular or badly scaled, and
|
||||
* the vector x is an exact or approximate solution to A*x = 0.
|
||||
*
|
||||
* CNORM (input or output) DOUBLE PRECISION array, dimension (N)
|
||||
*
|
||||
* If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
|
||||
* contains the norm of the off-diagonal part of the j-th column
|
||||
* of A. If TRANS = 'N', CNORM(j) must be greater than or equal
|
||||
* to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
|
||||
* must be greater than or equal to the 1-norm.
|
||||
*
|
||||
* If NORMIN = 'N', CNORM is an output argument and CNORM(j)
|
||||
* returns the 1-norm of the offdiagonal part of the j-th column
|
||||
* of A.
|
||||
*
|
||||
* INFO (output) INTEGER
|
||||
* = 0: successful exit
|
||||
* < 0: if INFO = -k, the k-th argument had an illegal value
|
||||
*
|
||||
* Further Details
|
||||
* ======= =======
|
||||
*
|
||||
* A rough bound on x is computed; if that is less than overflow, DTRSV
|
||||
* is called, otherwise, specific code is used which checks for possible
|
||||
* overflow or divide-by-zero at every operation.
|
||||
*
|
||||
* A columnwise scheme is used for solving A*x = b. The basic algorithm
|
||||
* if A is lower triangular is
|
||||
*
|
||||
* x[1:n] := b[1:n]
|
||||
* for j = 1, ..., n
|
||||
* x(j) := x(j) / A(j,j)
|
||||
* x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
|
||||
* end
|
||||
*
|
||||
* Define bounds on the components of x after j iterations of the loop:
|
||||
* M(j) = bound on x[1:j]
|
||||
* G(j) = bound on x[j+1:n]
|
||||
* Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
|
||||
*
|
||||
* Then for iteration j+1 we have
|
||||
* M(j+1) <= G(j) / | A(j+1,j+1) |
|
||||
* G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
|
||||
* <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
|
||||
*
|
||||
* where CNORM(j+1) is greater than or equal to the infinity-norm of
|
||||
* column j+1 of A, not counting the diagonal. Hence
|
||||
*
|
||||
* G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
|
||||
* 1<=i<=j
|
||||
* and
|
||||
*
|
||||
* |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
|
||||
* 1<=i< j
|
||||
*
|
||||
* Since |x(j)| <= M(j), we use the Level 2 BLAS routine DTRSV if the
|
||||
* reciprocal of the largest M(j), j=1,..,n, is larger than
|
||||
* max(underflow, 1/overflow).
|
||||
*
|
||||
* The bound on x(j) is also used to determine when a step in the
|
||||
* columnwise method can be performed without fear of overflow. If
|
||||
* the computed bound is greater than a large constant, x is scaled to
|
||||
* prevent overflow, but if the bound overflows, x is set to 0, x(j) to
|
||||
* 1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
|
||||
*
|
||||
* Similarly, a row-wise scheme is used to solve A'*x = b. The basic
|
||||
* algorithm for A upper triangular is
|
||||
*
|
||||
* for j = 1, ..., n
|
||||
* x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
|
||||
* end
|
||||
*
|
||||
* We simultaneously compute two bounds
|
||||
* G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
|
||||
* M(j) = bound on x(i), 1<=i<=j
|
||||
*
|
||||
* The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
|
||||
* add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
|
||||
* Then the bound on x(j) is
|
||||
*
|
||||
* M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
|
||||
*
|
||||
* <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
|
||||
* 1<=i<=j
|
||||
*
|
||||
* and we can safely call DTRSV if 1/M(n) and 1/G(n) are both greater
|
||||
* than max(underflow, 1/overflow).
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
|
@ -346,7 +431,7 @@
|
|||
*
|
||||
ELSE
|
||||
*
|
||||
* Compute the growth in A' * x = b.
|
||||
* Compute the growth in A**T * x = b.
|
||||
*
|
||||
IF( UPPER ) THEN
|
||||
JFIRST = 1
|
||||
|
@ -554,7 +639,7 @@
|
|||
*
|
||||
ELSE
|
||||
*
|
||||
* Solve A' * x = b
|
||||
* Solve A**T * x = b
|
||||
*
|
||||
DO 160 J = JFIRST, JLAST, JINC
|
||||
*
|
||||
|
@ -666,7 +751,7 @@
|
|||
ELSE
|
||||
*
|
||||
* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
|
||||
* scale = 0, and compute a solution to A'*x = 0.
|
||||
* scale = 0, and compute a solution to A**T*x = 0.
|
||||
*
|
||||
DO 140 I = 1, N
|
||||
X( I ) = ZERO
|
||||
|
|
|
@ -1,9 +1,93 @@
|
|||
*> \brief \b DRSCL multiplies a vector by the reciprocal of a real scalar.
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
*> \htmlonly
|
||||
*> Download DRSCL + dependencies
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/drscl.f">
|
||||
*> [TGZ]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/drscl.f">
|
||||
*> [ZIP]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/drscl.f">
|
||||
*> [TXT]</a>
|
||||
*> \endhtmlonly
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* SUBROUTINE DRSCL( N, SA, SX, INCX )
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* INTEGER INCX, N
|
||||
* DOUBLE PRECISION SA
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
* DOUBLE PRECISION SX( * )
|
||||
* ..
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> DRSCL multiplies an n-element real vector x by the real scalar 1/a.
|
||||
*> This is done without overflow or underflow as long as
|
||||
*> the final result x/a does not overflow or underflow.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Arguments:
|
||||
* ==========
|
||||
*
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGER
|
||||
*> The number of components of the vector x.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] SA
|
||||
*> \verbatim
|
||||
*> SA is DOUBLE PRECISION
|
||||
*> The scalar a which is used to divide each component of x.
|
||||
*> SA must be >= 0, or the subroutine will divide by zero.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] SX
|
||||
*> \verbatim
|
||||
*> SX is DOUBLE PRECISION array, dimension
|
||||
*> (1+(N-1)*abs(INCX))
|
||||
*> The n-element vector x.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] INCX
|
||||
*> \verbatim
|
||||
*> INCX is INTEGER
|
||||
*> The increment between successive values of the vector SX.
|
||||
*> > 0: SX(1) = X(1) and SX(1+(i-1)*INCX) = x(i), 1< i<= n
|
||||
*> \endverbatim
|
||||
*
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \date September 2012
|
||||
*
|
||||
*> \ingroup doubleOTHERauxiliary
|
||||
*
|
||||
* =====================================================================
|
||||
SUBROUTINE DRSCL( N, SA, SX, INCX )
|
||||
*
|
||||
* -- LAPACK auxiliary routine (version 3.2) --
|
||||
* -- LAPACK auxiliary routine (version 3.4.2) --
|
||||
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* November 2006
|
||||
* September 2012
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
INTEGER INCX, N
|
||||
|
@ -13,31 +97,6 @@
|
|||
DOUBLE PRECISION SX( * )
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* DRSCL multiplies an n-element real vector x by the real scalar 1/a.
|
||||
* This is done without overflow or underflow as long as
|
||||
* the final result x/a does not overflow or underflow.
|
||||
*
|
||||
* Arguments
|
||||
* =========
|
||||
*
|
||||
* N (input) INTEGER
|
||||
* The number of components of the vector x.
|
||||
*
|
||||
* SA (input) DOUBLE PRECISION
|
||||
* The scalar a which is used to divide each component of x.
|
||||
* SA must be >= 0, or the subroutine will divide by zero.
|
||||
*
|
||||
* SX (input/output) DOUBLE PRECISION array, dimension
|
||||
* (1+(N-1)*abs(INCX))
|
||||
* The n-element vector x.
|
||||
*
|
||||
* INCX (input) INTEGER
|
||||
* The increment between successive values of the vector SX.
|
||||
* > 0: SX(1) = X(1) and SX(1+(i-1)*INCX) = x(i), 1< i<= n
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
|
|
|
@ -1,4 +1,63 @@
|
|||
*> \brief \b DSCAL
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* SUBROUTINE DSCAL(N,DA,DX,INCX)
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* DOUBLE PRECISION DA
|
||||
* INTEGER INCX,N
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
* DOUBLE PRECISION DX(*)
|
||||
* ..
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> DSCAL scales a vector by a constant.
|
||||
*> uses unrolled loops for increment equal to one.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \date November 2011
|
||||
*
|
||||
*> \ingroup double_blas_level1
|
||||
*
|
||||
*> \par Further Details:
|
||||
* =====================
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> jack dongarra, linpack, 3/11/78.
|
||||
*> modified 3/93 to return if incx .le. 0.
|
||||
*> modified 12/3/93, array(1) declarations changed to array(*)
|
||||
*> \endverbatim
|
||||
*>
|
||||
* =====================================================================
|
||||
SUBROUTINE DSCAL(N,DA,DX,INCX)
|
||||
*
|
||||
* -- Reference BLAS level1 routine (version 3.4.0) --
|
||||
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* November 2011
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
DOUBLE PRECISION DA
|
||||
INTEGER INCX,N
|
||||
|
@ -7,19 +66,6 @@
|
|||
DOUBLE PRECISION DX(*)
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* DSCAL scales a vector by a constant.
|
||||
* uses unrolled loops for increment equal to one.
|
||||
*
|
||||
* Further Details
|
||||
* ===============
|
||||
*
|
||||
* jack dongarra, linpack, 3/11/78.
|
||||
* modified 3/93 to return if incx .le. 0.
|
||||
* modified 12/3/93, array(1) declarations changed to array(*)
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Local Scalars ..
|
||||
|
@ -29,34 +75,36 @@
|
|||
INTRINSIC MOD
|
||||
* ..
|
||||
IF (N.LE.0 .OR. INCX.LE.0) RETURN
|
||||
IF (INCX.EQ.1) GO TO 20
|
||||
*
|
||||
* code for increment not equal to 1
|
||||
*
|
||||
NINCX = N*INCX
|
||||
DO 10 I = 1,NINCX,INCX
|
||||
DX(I) = DA*DX(I)
|
||||
10 CONTINUE
|
||||
RETURN
|
||||
IF (INCX.EQ.1) THEN
|
||||
*
|
||||
* code for increment equal to 1
|
||||
*
|
||||
*
|
||||
* clean-up loop
|
||||
*
|
||||
20 M = MOD(N,5)
|
||||
IF (M.EQ.0) GO TO 40
|
||||
DO 30 I = 1,M
|
||||
DX(I) = DA*DX(I)
|
||||
30 CONTINUE
|
||||
IF (N.LT.5) RETURN
|
||||
40 MP1 = M + 1
|
||||
DO 50 I = MP1,N,5
|
||||
DX(I) = DA*DX(I)
|
||||
DX(I+1) = DA*DX(I+1)
|
||||
DX(I+2) = DA*DX(I+2)
|
||||
DX(I+3) = DA*DX(I+3)
|
||||
DX(I+4) = DA*DX(I+4)
|
||||
50 CONTINUE
|
||||
M = MOD(N,5)
|
||||
IF (M.NE.0) THEN
|
||||
DO I = 1,M
|
||||
DX(I) = DA*DX(I)
|
||||
END DO
|
||||
IF (N.LT.5) RETURN
|
||||
END IF
|
||||
MP1 = M + 1
|
||||
DO I = MP1,N,5
|
||||
DX(I) = DA*DX(I)
|
||||
DX(I+1) = DA*DX(I+1)
|
||||
DX(I+2) = DA*DX(I+2)
|
||||
DX(I+3) = DA*DX(I+3)
|
||||
DX(I+4) = DA*DX(I+4)
|
||||
END DO
|
||||
ELSE
|
||||
*
|
||||
* code for increment not equal to 1
|
||||
*
|
||||
NINCX = N*INCX
|
||||
DO I = 1,NINCX,INCX
|
||||
DX(I) = DA*DX(I)
|
||||
END DO
|
||||
END IF
|
||||
RETURN
|
||||
END
|
||||
|
|
|
@ -1,4 +1,61 @@
|
|||
*> \brief \b DSWAP
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* SUBROUTINE DSWAP(N,DX,INCX,DY,INCY)
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* INTEGER INCX,INCY,N
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
* DOUBLE PRECISION DX(*),DY(*)
|
||||
* ..
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> interchanges two vectors.
|
||||
*> uses unrolled loops for increments equal one.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \date November 2011
|
||||
*
|
||||
*> \ingroup double_blas_level1
|
||||
*
|
||||
*> \par Further Details:
|
||||
* =====================
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> jack dongarra, linpack, 3/11/78.
|
||||
*> modified 12/3/93, array(1) declarations changed to array(*)
|
||||
*> \endverbatim
|
||||
*>
|
||||
* =====================================================================
|
||||
SUBROUTINE DSWAP(N,DX,INCX,DY,INCY)
|
||||
*
|
||||
* -- Reference BLAS level1 routine (version 3.4.0) --
|
||||
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* November 2011
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
INTEGER INCX,INCY,N
|
||||
* ..
|
||||
|
@ -6,18 +63,6 @@
|
|||
DOUBLE PRECISION DX(*),DY(*)
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* interchanges two vectors.
|
||||
* uses unrolled loops for increments equal one.
|
||||
*
|
||||
* Further Details
|
||||
* ===============
|
||||
*
|
||||
* jack dongarra, linpack, 3/11/78.
|
||||
* modified 12/3/93, array(1) declarations changed to array(*)
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Local Scalars ..
|
||||
|
@ -28,48 +73,50 @@
|
|||
INTRINSIC MOD
|
||||
* ..
|
||||
IF (N.LE.0) RETURN
|
||||
IF (INCX.EQ.1 .AND. INCY.EQ.1) GO TO 20
|
||||
*
|
||||
* code for unequal increments or equal increments not equal
|
||||
* to 1
|
||||
*
|
||||
IX = 1
|
||||
IY = 1
|
||||
IF (INCX.LT.0) IX = (-N+1)*INCX + 1
|
||||
IF (INCY.LT.0) IY = (-N+1)*INCY + 1
|
||||
DO 10 I = 1,N
|
||||
DTEMP = DX(IX)
|
||||
DX(IX) = DY(IY)
|
||||
DY(IY) = DTEMP
|
||||
IX = IX + INCX
|
||||
IY = IY + INCY
|
||||
10 CONTINUE
|
||||
RETURN
|
||||
IF (INCX.EQ.1 .AND. INCY.EQ.1) THEN
|
||||
*
|
||||
* code for both increments equal to 1
|
||||
*
|
||||
*
|
||||
* clean-up loop
|
||||
*
|
||||
20 M = MOD(N,3)
|
||||
IF (M.EQ.0) GO TO 40
|
||||
DO 30 I = 1,M
|
||||
DTEMP = DX(I)
|
||||
DX(I) = DY(I)
|
||||
DY(I) = DTEMP
|
||||
30 CONTINUE
|
||||
IF (N.LT.3) RETURN
|
||||
40 MP1 = M + 1
|
||||
DO 50 I = MP1,N,3
|
||||
DTEMP = DX(I)
|
||||
DX(I) = DY(I)
|
||||
DY(I) = DTEMP
|
||||
DTEMP = DX(I+1)
|
||||
DX(I+1) = DY(I+1)
|
||||
DY(I+1) = DTEMP
|
||||
DTEMP = DX(I+2)
|
||||
DX(I+2) = DY(I+2)
|
||||
DY(I+2) = DTEMP
|
||||
50 CONTINUE
|
||||
M = MOD(N,3)
|
||||
IF (M.NE.0) THEN
|
||||
DO I = 1,M
|
||||
DTEMP = DX(I)
|
||||
DX(I) = DY(I)
|
||||
DY(I) = DTEMP
|
||||
END DO
|
||||
IF (N.LT.3) RETURN
|
||||
END IF
|
||||
MP1 = M + 1
|
||||
DO I = MP1,N,3
|
||||
DTEMP = DX(I)
|
||||
DX(I) = DY(I)
|
||||
DY(I) = DTEMP
|
||||
DTEMP = DX(I+1)
|
||||
DX(I+1) = DY(I+1)
|
||||
DY(I+1) = DTEMP
|
||||
DTEMP = DX(I+2)
|
||||
DX(I+2) = DY(I+2)
|
||||
DY(I+2) = DTEMP
|
||||
END DO
|
||||
ELSE
|
||||
*
|
||||
* code for unequal increments or equal increments not equal
|
||||
* to 1
|
||||
*
|
||||
IX = 1
|
||||
IY = 1
|
||||
IF (INCX.LT.0) IX = (-N+1)*INCX + 1
|
||||
IF (INCY.LT.0) IY = (-N+1)*INCY + 1
|
||||
DO I = 1,N
|
||||
DTEMP = DX(IX)
|
||||
DX(IX) = DY(IY)
|
||||
DY(IY) = DTEMP
|
||||
IX = IX + INCX
|
||||
IY = IY + INCY
|
||||
END DO
|
||||
END IF
|
||||
RETURN
|
||||
END
|
||||
|
|
|
@ -1,4 +1,187 @@
|
|||
*> \brief \b DTRMM
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* SUBROUTINE DTRMM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* DOUBLE PRECISION ALPHA
|
||||
* INTEGER LDA,LDB,M,N
|
||||
* CHARACTER DIAG,SIDE,TRANSA,UPLO
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
* DOUBLE PRECISION A(LDA,*),B(LDB,*)
|
||||
* ..
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> DTRMM performs one of the matrix-matrix operations
|
||||
*>
|
||||
*> B := alpha*op( A )*B, or B := alpha*B*op( A ),
|
||||
*>
|
||||
*> where alpha is a scalar, B is an m by n matrix, A is a unit, or
|
||||
*> non-unit, upper or lower triangular matrix and op( A ) is one of
|
||||
*>
|
||||
*> op( A ) = A or op( A ) = A**T.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Arguments:
|
||||
* ==========
|
||||
*
|
||||
*> \param[in] SIDE
|
||||
*> \verbatim
|
||||
*> SIDE is CHARACTER*1
|
||||
*> On entry, SIDE specifies whether op( A ) multiplies B from
|
||||
*> the left or right as follows:
|
||||
*>
|
||||
*> SIDE = 'L' or 'l' B := alpha*op( A )*B.
|
||||
*>
|
||||
*> SIDE = 'R' or 'r' B := alpha*B*op( A ).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] UPLO
|
||||
*> \verbatim
|
||||
*> UPLO is CHARACTER*1
|
||||
*> On entry, UPLO specifies whether the matrix A is an upper or
|
||||
*> lower triangular matrix as follows:
|
||||
*>
|
||||
*> UPLO = 'U' or 'u' A is an upper triangular matrix.
|
||||
*>
|
||||
*> UPLO = 'L' or 'l' A is a lower triangular matrix.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] TRANSA
|
||||
*> \verbatim
|
||||
*> TRANSA is CHARACTER*1
|
||||
*> On entry, TRANSA specifies the form of op( A ) to be used in
|
||||
*> the matrix multiplication as follows:
|
||||
*>
|
||||
*> TRANSA = 'N' or 'n' op( A ) = A.
|
||||
*>
|
||||
*> TRANSA = 'T' or 't' op( A ) = A**T.
|
||||
*>
|
||||
*> TRANSA = 'C' or 'c' op( A ) = A**T.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] DIAG
|
||||
*> \verbatim
|
||||
*> DIAG is CHARACTER*1
|
||||
*> On entry, DIAG specifies whether or not A is unit triangular
|
||||
*> as follows:
|
||||
*>
|
||||
*> DIAG = 'U' or 'u' A is assumed to be unit triangular.
|
||||
*>
|
||||
*> DIAG = 'N' or 'n' A is not assumed to be unit
|
||||
*> triangular.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] M
|
||||
*> \verbatim
|
||||
*> M is INTEGER
|
||||
*> On entry, M specifies the number of rows of B. M must be at
|
||||
*> least zero.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGER
|
||||
*> On entry, N specifies the number of columns of B. N must be
|
||||
*> at least zero.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] ALPHA
|
||||
*> \verbatim
|
||||
*> ALPHA is DOUBLE PRECISION.
|
||||
*> On entry, ALPHA specifies the scalar alpha. When alpha is
|
||||
*> zero then A is not referenced and B need not be set before
|
||||
*> entry.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] A
|
||||
*> \verbatim
|
||||
*> A is DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m
|
||||
*> when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'.
|
||||
*> Before entry with UPLO = 'U' or 'u', the leading k by k
|
||||
*> upper triangular part of the array A must contain the upper
|
||||
*> triangular matrix and the strictly lower triangular part of
|
||||
*> A is not referenced.
|
||||
*> Before entry with UPLO = 'L' or 'l', the leading k by k
|
||||
*> lower triangular part of the array A must contain the lower
|
||||
*> triangular matrix and the strictly upper triangular part of
|
||||
*> A is not referenced.
|
||||
*> Note that when DIAG = 'U' or 'u', the diagonal elements of
|
||||
*> A are not referenced either, but are assumed to be unity.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] LDA
|
||||
*> \verbatim
|
||||
*> LDA is INTEGER
|
||||
*> On entry, LDA specifies the first dimension of A as declared
|
||||
*> in the calling (sub) program. When SIDE = 'L' or 'l' then
|
||||
*> LDA must be at least max( 1, m ), when SIDE = 'R' or 'r'
|
||||
*> then LDA must be at least max( 1, n ).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] B
|
||||
*> \verbatim
|
||||
*> B is DOUBLE PRECISION array of DIMENSION ( LDB, n ).
|
||||
*> Before entry, the leading m by n part of the array B must
|
||||
*> contain the matrix B, and on exit is overwritten by the
|
||||
*> transformed matrix.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] LDB
|
||||
*> \verbatim
|
||||
*> LDB is INTEGER
|
||||
*> On entry, LDB specifies the first dimension of B as declared
|
||||
*> in the calling (sub) program. LDB must be at least
|
||||
*> max( 1, m ).
|
||||
*> \endverbatim
|
||||
*
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \date November 2011
|
||||
*
|
||||
*> \ingroup double_blas_level3
|
||||
*
|
||||
*> \par Further Details:
|
||||
* =====================
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> Level 3 Blas routine.
|
||||
*>
|
||||
*> -- Written on 8-February-1989.
|
||||
*> Jack Dongarra, Argonne National Laboratory.
|
||||
*> Iain Duff, AERE Harwell.
|
||||
*> Jeremy Du Croz, Numerical Algorithms Group Ltd.
|
||||
*> Sven Hammarling, Numerical Algorithms Group Ltd.
|
||||
*> \endverbatim
|
||||
*>
|
||||
* =====================================================================
|
||||
SUBROUTINE DTRMM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
|
||||
*
|
||||
* -- Reference BLAS level3 routine (version 3.4.0) --
|
||||
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* November 2011
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
DOUBLE PRECISION ALPHA
|
||||
INTEGER LDA,LDB,M,N
|
||||
|
@ -8,123 +191,6 @@
|
|||
DOUBLE PRECISION A(LDA,*),B(LDB,*)
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* DTRMM performs one of the matrix-matrix operations
|
||||
*
|
||||
* B := alpha*op( A )*B, or B := alpha*B*op( A ),
|
||||
*
|
||||
* where alpha is a scalar, B is an m by n matrix, A is a unit, or
|
||||
* non-unit, upper or lower triangular matrix and op( A ) is one of
|
||||
*
|
||||
* op( A ) = A or op( A ) = A'.
|
||||
*
|
||||
* Arguments
|
||||
* ==========
|
||||
*
|
||||
* SIDE - CHARACTER*1.
|
||||
* On entry, SIDE specifies whether op( A ) multiplies B from
|
||||
* the left or right as follows:
|
||||
*
|
||||
* SIDE = 'L' or 'l' B := alpha*op( A )*B.
|
||||
*
|
||||
* SIDE = 'R' or 'r' B := alpha*B*op( A ).
|
||||
*
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* UPLO - CHARACTER*1.
|
||||
* On entry, UPLO specifies whether the matrix A is an upper or
|
||||
* lower triangular matrix as follows:
|
||||
*
|
||||
* UPLO = 'U' or 'u' A is an upper triangular matrix.
|
||||
*
|
||||
* UPLO = 'L' or 'l' A is a lower triangular matrix.
|
||||
*
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* TRANSA - CHARACTER*1.
|
||||
* On entry, TRANSA specifies the form of op( A ) to be used in
|
||||
* the matrix multiplication as follows:
|
||||
*
|
||||
* TRANSA = 'N' or 'n' op( A ) = A.
|
||||
*
|
||||
* TRANSA = 'T' or 't' op( A ) = A'.
|
||||
*
|
||||
* TRANSA = 'C' or 'c' op( A ) = A'.
|
||||
*
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* DIAG - CHARACTER*1.
|
||||
* On entry, DIAG specifies whether or not A is unit triangular
|
||||
* as follows:
|
||||
*
|
||||
* DIAG = 'U' or 'u' A is assumed to be unit triangular.
|
||||
*
|
||||
* DIAG = 'N' or 'n' A is not assumed to be unit
|
||||
* triangular.
|
||||
*
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* M - INTEGER.
|
||||
* On entry, M specifies the number of rows of B. M must be at
|
||||
* least zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* N - INTEGER.
|
||||
* On entry, N specifies the number of columns of B. N must be
|
||||
* at least zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* ALPHA - DOUBLE PRECISION.
|
||||
* On entry, ALPHA specifies the scalar alpha. When alpha is
|
||||
* zero then A is not referenced and B need not be set before
|
||||
* entry.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* A - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m
|
||||
* when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'.
|
||||
* Before entry with UPLO = 'U' or 'u', the leading k by k
|
||||
* upper triangular part of the array A must contain the upper
|
||||
* triangular matrix and the strictly lower triangular part of
|
||||
* A is not referenced.
|
||||
* Before entry with UPLO = 'L' or 'l', the leading k by k
|
||||
* lower triangular part of the array A must contain the lower
|
||||
* triangular matrix and the strictly upper triangular part of
|
||||
* A is not referenced.
|
||||
* Note that when DIAG = 'U' or 'u', the diagonal elements of
|
||||
* A are not referenced either, but are assumed to be unity.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* LDA - INTEGER.
|
||||
* On entry, LDA specifies the first dimension of A as declared
|
||||
* in the calling (sub) program. When SIDE = 'L' or 'l' then
|
||||
* LDA must be at least max( 1, m ), when SIDE = 'R' or 'r'
|
||||
* then LDA must be at least max( 1, n ).
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* B - DOUBLE PRECISION array of DIMENSION ( LDB, n ).
|
||||
* Before entry, the leading m by n part of the array B must
|
||||
* contain the matrix B, and on exit is overwritten by the
|
||||
* transformed matrix.
|
||||
*
|
||||
* LDB - INTEGER.
|
||||
* On entry, LDB specifies the first dimension of B as declared
|
||||
* in the calling (sub) program. LDB must be at least
|
||||
* max( 1, m ).
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* Further Details
|
||||
* ===============
|
||||
*
|
||||
* Level 3 Blas routine.
|
||||
*
|
||||
* -- Written on 8-February-1989.
|
||||
* Jack Dongarra, Argonne National Laboratory.
|
||||
* Iain Duff, AERE Harwell.
|
||||
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
|
||||
* Sven Hammarling, Numerical Algorithms Group Ltd.
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. External Functions ..
|
||||
|
@ -234,7 +300,7 @@
|
|||
END IF
|
||||
ELSE
|
||||
*
|
||||
* Form B := alpha*A'*B.
|
||||
* Form B := alpha*A**T*B.
|
||||
*
|
||||
IF (UPPER) THEN
|
||||
DO 110 J = 1,N
|
||||
|
@ -300,7 +366,7 @@
|
|||
END IF
|
||||
ELSE
|
||||
*
|
||||
* Form B := alpha*B*A'.
|
||||
* Form B := alpha*B*A**T.
|
||||
*
|
||||
IF (UPPER) THEN
|
||||
DO 260 K = 1,N
|
||||
|
|
|
@ -1,4 +1,157 @@
|
|||
*> \brief \b DTRMV
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* SUBROUTINE DTRMV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* INTEGER INCX,LDA,N
|
||||
* CHARACTER DIAG,TRANS,UPLO
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
* DOUBLE PRECISION A(LDA,*),X(*)
|
||||
* ..
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> DTRMV performs one of the matrix-vector operations
|
||||
*>
|
||||
*> x := A*x, or x := A**T*x,
|
||||
*>
|
||||
*> where x is an n element vector and A is an n by n unit, or non-unit,
|
||||
*> upper or lower triangular matrix.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Arguments:
|
||||
* ==========
|
||||
*
|
||||
*> \param[in] UPLO
|
||||
*> \verbatim
|
||||
*> UPLO is CHARACTER*1
|
||||
*> On entry, UPLO specifies whether the matrix is an upper or
|
||||
*> lower triangular matrix as follows:
|
||||
*>
|
||||
*> UPLO = 'U' or 'u' A is an upper triangular matrix.
|
||||
*>
|
||||
*> UPLO = 'L' or 'l' A is a lower triangular matrix.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] TRANS
|
||||
*> \verbatim
|
||||
*> TRANS is CHARACTER*1
|
||||
*> On entry, TRANS specifies the operation to be performed as
|
||||
*> follows:
|
||||
*>
|
||||
*> TRANS = 'N' or 'n' x := A*x.
|
||||
*>
|
||||
*> TRANS = 'T' or 't' x := A**T*x.
|
||||
*>
|
||||
*> TRANS = 'C' or 'c' x := A**T*x.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] DIAG
|
||||
*> \verbatim
|
||||
*> DIAG is CHARACTER*1
|
||||
*> On entry, DIAG specifies whether or not A is unit
|
||||
*> triangular as follows:
|
||||
*>
|
||||
*> DIAG = 'U' or 'u' A is assumed to be unit triangular.
|
||||
*>
|
||||
*> DIAG = 'N' or 'n' A is not assumed to be unit
|
||||
*> triangular.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGER
|
||||
*> On entry, N specifies the order of the matrix A.
|
||||
*> N must be at least zero.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] A
|
||||
*> \verbatim
|
||||
*> A is DOUBLE PRECISION array of DIMENSION ( LDA, n ).
|
||||
*> Before entry with UPLO = 'U' or 'u', the leading n by n
|
||||
*> upper triangular part of the array A must contain the upper
|
||||
*> triangular matrix and the strictly lower triangular part of
|
||||
*> A is not referenced.
|
||||
*> Before entry with UPLO = 'L' or 'l', the leading n by n
|
||||
*> lower triangular part of the array A must contain the lower
|
||||
*> triangular matrix and the strictly upper triangular part of
|
||||
*> A is not referenced.
|
||||
*> Note that when DIAG = 'U' or 'u', the diagonal elements of
|
||||
*> A are not referenced either, but are assumed to be unity.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] LDA
|
||||
*> \verbatim
|
||||
*> LDA is INTEGER
|
||||
*> On entry, LDA specifies the first dimension of A as declared
|
||||
*> in the calling (sub) program. LDA must be at least
|
||||
*> max( 1, n ).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] X
|
||||
*> \verbatim
|
||||
*> X is DOUBLE PRECISION array of dimension at least
|
||||
*> ( 1 + ( n - 1 )*abs( INCX ) ).
|
||||
*> Before entry, the incremented array X must contain the n
|
||||
*> element vector x. On exit, X is overwritten with the
|
||||
*> tranformed vector x.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] INCX
|
||||
*> \verbatim
|
||||
*> INCX is INTEGER
|
||||
*> On entry, INCX specifies the increment for the elements of
|
||||
*> X. INCX must not be zero.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \date November 2011
|
||||
*
|
||||
*> \ingroup double_blas_level2
|
||||
*
|
||||
*> \par Further Details:
|
||||
* =====================
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> Level 2 Blas routine.
|
||||
*> The vector and matrix arguments are not referenced when N = 0, or M = 0
|
||||
*>
|
||||
*> -- Written on 22-October-1986.
|
||||
*> Jack Dongarra, Argonne National Lab.
|
||||
*> Jeremy Du Croz, Nag Central Office.
|
||||
*> Sven Hammarling, Nag Central Office.
|
||||
*> Richard Hanson, Sandia National Labs.
|
||||
*> \endverbatim
|
||||
*>
|
||||
* =====================================================================
|
||||
SUBROUTINE DTRMV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
|
||||
*
|
||||
* -- Reference BLAS level2 routine (version 3.4.0) --
|
||||
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* November 2011
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
INTEGER INCX,LDA,N
|
||||
CHARACTER DIAG,TRANS,UPLO
|
||||
|
@ -7,98 +160,6 @@
|
|||
DOUBLE PRECISION A(LDA,*),X(*)
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* DTRMV performs one of the matrix-vector operations
|
||||
*
|
||||
* x := A*x, or x := A'*x,
|
||||
*
|
||||
* where x is an n element vector and A is an n by n unit, or non-unit,
|
||||
* upper or lower triangular matrix.
|
||||
*
|
||||
* Arguments
|
||||
* ==========
|
||||
*
|
||||
* UPLO - CHARACTER*1.
|
||||
* On entry, UPLO specifies whether the matrix is an upper or
|
||||
* lower triangular matrix as follows:
|
||||
*
|
||||
* UPLO = 'U' or 'u' A is an upper triangular matrix.
|
||||
*
|
||||
* UPLO = 'L' or 'l' A is a lower triangular matrix.
|
||||
*
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* TRANS - CHARACTER*1.
|
||||
* On entry, TRANS specifies the operation to be performed as
|
||||
* follows:
|
||||
*
|
||||
* TRANS = 'N' or 'n' x := A*x.
|
||||
*
|
||||
* TRANS = 'T' or 't' x := A'*x.
|
||||
*
|
||||
* TRANS = 'C' or 'c' x := A'*x.
|
||||
*
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* DIAG - CHARACTER*1.
|
||||
* On entry, DIAG specifies whether or not A is unit
|
||||
* triangular as follows:
|
||||
*
|
||||
* DIAG = 'U' or 'u' A is assumed to be unit triangular.
|
||||
*
|
||||
* DIAG = 'N' or 'n' A is not assumed to be unit
|
||||
* triangular.
|
||||
*
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* N - INTEGER.
|
||||
* On entry, N specifies the order of the matrix A.
|
||||
* N must be at least zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
|
||||
* Before entry with UPLO = 'U' or 'u', the leading n by n
|
||||
* upper triangular part of the array A must contain the upper
|
||||
* triangular matrix and the strictly lower triangular part of
|
||||
* A is not referenced.
|
||||
* Before entry with UPLO = 'L' or 'l', the leading n by n
|
||||
* lower triangular part of the array A must contain the lower
|
||||
* triangular matrix and the strictly upper triangular part of
|
||||
* A is not referenced.
|
||||
* Note that when DIAG = 'U' or 'u', the diagonal elements of
|
||||
* A are not referenced either, but are assumed to be unity.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* LDA - INTEGER.
|
||||
* On entry, LDA specifies the first dimension of A as declared
|
||||
* in the calling (sub) program. LDA must be at least
|
||||
* max( 1, n ).
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* X - DOUBLE PRECISION array of dimension at least
|
||||
* ( 1 + ( n - 1 )*abs( INCX ) ).
|
||||
* Before entry, the incremented array X must contain the n
|
||||
* element vector x. On exit, X is overwritten with the
|
||||
* tranformed vector x.
|
||||
*
|
||||
* INCX - INTEGER.
|
||||
* On entry, INCX specifies the increment for the elements of
|
||||
* X. INCX must not be zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* Further Details
|
||||
* ===============
|
||||
*
|
||||
* Level 2 Blas routine.
|
||||
*
|
||||
* -- Written on 22-October-1986.
|
||||
* Jack Dongarra, Argonne National Lab.
|
||||
* Jeremy Du Croz, Nag Central Office.
|
||||
* Sven Hammarling, Nag Central Office.
|
||||
* Richard Hanson, Sandia National Labs.
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
|
@ -221,7 +282,7 @@
|
|||
END IF
|
||||
ELSE
|
||||
*
|
||||
* Form x := A'*x.
|
||||
* Form x := A**T*x.
|
||||
*
|
||||
IF (LSAME(UPLO,'U')) THEN
|
||||
IF (INCX.EQ.1) THEN
|
||||
|
|
|
@ -1,4 +1,191 @@
|
|||
*> \brief \b DTRSM
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* SUBROUTINE DTRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* DOUBLE PRECISION ALPHA
|
||||
* INTEGER LDA,LDB,M,N
|
||||
* CHARACTER DIAG,SIDE,TRANSA,UPLO
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
* DOUBLE PRECISION A(LDA,*),B(LDB,*)
|
||||
* ..
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> DTRSM solves one of the matrix equations
|
||||
*>
|
||||
*> op( A )*X = alpha*B, or X*op( A ) = alpha*B,
|
||||
*>
|
||||
*> where alpha is a scalar, X and B are m by n matrices, A is a unit, or
|
||||
*> non-unit, upper or lower triangular matrix and op( A ) is one of
|
||||
*>
|
||||
*> op( A ) = A or op( A ) = A**T.
|
||||
*>
|
||||
*> The matrix X is overwritten on B.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Arguments:
|
||||
* ==========
|
||||
*
|
||||
*> \param[in] SIDE
|
||||
*> \verbatim
|
||||
*> SIDE is CHARACTER*1
|
||||
*> On entry, SIDE specifies whether op( A ) appears on the left
|
||||
*> or right of X as follows:
|
||||
*>
|
||||
*> SIDE = 'L' or 'l' op( A )*X = alpha*B.
|
||||
*>
|
||||
*> SIDE = 'R' or 'r' X*op( A ) = alpha*B.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] UPLO
|
||||
*> \verbatim
|
||||
*> UPLO is CHARACTER*1
|
||||
*> On entry, UPLO specifies whether the matrix A is an upper or
|
||||
*> lower triangular matrix as follows:
|
||||
*>
|
||||
*> UPLO = 'U' or 'u' A is an upper triangular matrix.
|
||||
*>
|
||||
*> UPLO = 'L' or 'l' A is a lower triangular matrix.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] TRANSA
|
||||
*> \verbatim
|
||||
*> TRANSA is CHARACTER*1
|
||||
*> On entry, TRANSA specifies the form of op( A ) to be used in
|
||||
*> the matrix multiplication as follows:
|
||||
*>
|
||||
*> TRANSA = 'N' or 'n' op( A ) = A.
|
||||
*>
|
||||
*> TRANSA = 'T' or 't' op( A ) = A**T.
|
||||
*>
|
||||
*> TRANSA = 'C' or 'c' op( A ) = A**T.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] DIAG
|
||||
*> \verbatim
|
||||
*> DIAG is CHARACTER*1
|
||||
*> On entry, DIAG specifies whether or not A is unit triangular
|
||||
*> as follows:
|
||||
*>
|
||||
*> DIAG = 'U' or 'u' A is assumed to be unit triangular.
|
||||
*>
|
||||
*> DIAG = 'N' or 'n' A is not assumed to be unit
|
||||
*> triangular.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] M
|
||||
*> \verbatim
|
||||
*> M is INTEGER
|
||||
*> On entry, M specifies the number of rows of B. M must be at
|
||||
*> least zero.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGER
|
||||
*> On entry, N specifies the number of columns of B. N must be
|
||||
*> at least zero.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] ALPHA
|
||||
*> \verbatim
|
||||
*> ALPHA is DOUBLE PRECISION.
|
||||
*> On entry, ALPHA specifies the scalar alpha. When alpha is
|
||||
*> zero then A is not referenced and B need not be set before
|
||||
*> entry.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] A
|
||||
*> \verbatim
|
||||
*> A is DOUBLE PRECISION array of DIMENSION ( LDA, k ),
|
||||
*> where k is m when SIDE = 'L' or 'l'
|
||||
*> and k is n when SIDE = 'R' or 'r'.
|
||||
*> Before entry with UPLO = 'U' or 'u', the leading k by k
|
||||
*> upper triangular part of the array A must contain the upper
|
||||
*> triangular matrix and the strictly lower triangular part of
|
||||
*> A is not referenced.
|
||||
*> Before entry with UPLO = 'L' or 'l', the leading k by k
|
||||
*> lower triangular part of the array A must contain the lower
|
||||
*> triangular matrix and the strictly upper triangular part of
|
||||
*> A is not referenced.
|
||||
*> Note that when DIAG = 'U' or 'u', the diagonal elements of
|
||||
*> A are not referenced either, but are assumed to be unity.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] LDA
|
||||
*> \verbatim
|
||||
*> LDA is INTEGER
|
||||
*> On entry, LDA specifies the first dimension of A as declared
|
||||
*> in the calling (sub) program. When SIDE = 'L' or 'l' then
|
||||
*> LDA must be at least max( 1, m ), when SIDE = 'R' or 'r'
|
||||
*> then LDA must be at least max( 1, n ).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] B
|
||||
*> \verbatim
|
||||
*> B is DOUBLE PRECISION array of DIMENSION ( LDB, n ).
|
||||
*> Before entry, the leading m by n part of the array B must
|
||||
*> contain the right-hand side matrix B, and on exit is
|
||||
*> overwritten by the solution matrix X.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] LDB
|
||||
*> \verbatim
|
||||
*> LDB is INTEGER
|
||||
*> On entry, LDB specifies the first dimension of B as declared
|
||||
*> in the calling (sub) program. LDB must be at least
|
||||
*> max( 1, m ).
|
||||
*> \endverbatim
|
||||
*
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \date November 2011
|
||||
*
|
||||
*> \ingroup double_blas_level3
|
||||
*
|
||||
*> \par Further Details:
|
||||
* =====================
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> Level 3 Blas routine.
|
||||
*>
|
||||
*>
|
||||
*> -- Written on 8-February-1989.
|
||||
*> Jack Dongarra, Argonne National Laboratory.
|
||||
*> Iain Duff, AERE Harwell.
|
||||
*> Jeremy Du Croz, Numerical Algorithms Group Ltd.
|
||||
*> Sven Hammarling, Numerical Algorithms Group Ltd.
|
||||
*> \endverbatim
|
||||
*>
|
||||
* =====================================================================
|
||||
SUBROUTINE DTRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
|
||||
*
|
||||
* -- Reference BLAS level3 routine (version 3.4.0) --
|
||||
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* November 2011
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
DOUBLE PRECISION ALPHA
|
||||
INTEGER LDA,LDB,M,N
|
||||
|
@ -8,126 +195,6 @@
|
|||
DOUBLE PRECISION A(LDA,*),B(LDB,*)
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* DTRSM solves one of the matrix equations
|
||||
*
|
||||
* op( A )*X = alpha*B, or X*op( A ) = alpha*B,
|
||||
*
|
||||
* where alpha is a scalar, X and B are m by n matrices, A is a unit, or
|
||||
* non-unit, upper or lower triangular matrix and op( A ) is one of
|
||||
*
|
||||
* op( A ) = A or op( A ) = A'.
|
||||
*
|
||||
* The matrix X is overwritten on B.
|
||||
*
|
||||
* Arguments
|
||||
* ==========
|
||||
*
|
||||
* SIDE - CHARACTER*1.
|
||||
* On entry, SIDE specifies whether op( A ) appears on the left
|
||||
* or right of X as follows:
|
||||
*
|
||||
* SIDE = 'L' or 'l' op( A )*X = alpha*B.
|
||||
*
|
||||
* SIDE = 'R' or 'r' X*op( A ) = alpha*B.
|
||||
*
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* UPLO - CHARACTER*1.
|
||||
* On entry, UPLO specifies whether the matrix A is an upper or
|
||||
* lower triangular matrix as follows:
|
||||
*
|
||||
* UPLO = 'U' or 'u' A is an upper triangular matrix.
|
||||
*
|
||||
* UPLO = 'L' or 'l' A is a lower triangular matrix.
|
||||
*
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* TRANSA - CHARACTER*1.
|
||||
* On entry, TRANSA specifies the form of op( A ) to be used in
|
||||
* the matrix multiplication as follows:
|
||||
*
|
||||
* TRANSA = 'N' or 'n' op( A ) = A.
|
||||
*
|
||||
* TRANSA = 'T' or 't' op( A ) = A'.
|
||||
*
|
||||
* TRANSA = 'C' or 'c' op( A ) = A'.
|
||||
*
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* DIAG - CHARACTER*1.
|
||||
* On entry, DIAG specifies whether or not A is unit triangular
|
||||
* as follows:
|
||||
*
|
||||
* DIAG = 'U' or 'u' A is assumed to be unit triangular.
|
||||
*
|
||||
* DIAG = 'N' or 'n' A is not assumed to be unit
|
||||
* triangular.
|
||||
*
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* M - INTEGER.
|
||||
* On entry, M specifies the number of rows of B. M must be at
|
||||
* least zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* N - INTEGER.
|
||||
* On entry, N specifies the number of columns of B. N must be
|
||||
* at least zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* ALPHA - DOUBLE PRECISION.
|
||||
* On entry, ALPHA specifies the scalar alpha. When alpha is
|
||||
* zero then A is not referenced and B need not be set before
|
||||
* entry.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* A - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m
|
||||
* when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'.
|
||||
* Before entry with UPLO = 'U' or 'u', the leading k by k
|
||||
* upper triangular part of the array A must contain the upper
|
||||
* triangular matrix and the strictly lower triangular part of
|
||||
* A is not referenced.
|
||||
* Before entry with UPLO = 'L' or 'l', the leading k by k
|
||||
* lower triangular part of the array A must contain the lower
|
||||
* triangular matrix and the strictly upper triangular part of
|
||||
* A is not referenced.
|
||||
* Note that when DIAG = 'U' or 'u', the diagonal elements of
|
||||
* A are not referenced either, but are assumed to be unity.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* LDA - INTEGER.
|
||||
* On entry, LDA specifies the first dimension of A as declared
|
||||
* in the calling (sub) program. When SIDE = 'L' or 'l' then
|
||||
* LDA must be at least max( 1, m ), when SIDE = 'R' or 'r'
|
||||
* then LDA must be at least max( 1, n ).
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* B - DOUBLE PRECISION array of DIMENSION ( LDB, n ).
|
||||
* Before entry, the leading m by n part of the array B must
|
||||
* contain the right-hand side matrix B, and on exit is
|
||||
* overwritten by the solution matrix X.
|
||||
*
|
||||
* LDB - INTEGER.
|
||||
* On entry, LDB specifies the first dimension of B as declared
|
||||
* in the calling (sub) program. LDB must be at least
|
||||
* max( 1, m ).
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* Further Details
|
||||
* ===============
|
||||
*
|
||||
* Level 3 Blas routine.
|
||||
*
|
||||
*
|
||||
* -- Written on 8-February-1989.
|
||||
* Jack Dongarra, Argonne National Laboratory.
|
||||
* Iain Duff, AERE Harwell.
|
||||
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
|
||||
* Sven Hammarling, Numerical Algorithms Group Ltd.
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. External Functions ..
|
||||
|
@ -243,7 +310,7 @@
|
|||
END IF
|
||||
ELSE
|
||||
*
|
||||
* Form B := alpha*inv( A' )*B.
|
||||
* Form B := alpha*inv( A**T )*B.
|
||||
*
|
||||
IF (UPPER) THEN
|
||||
DO 130 J = 1,N
|
||||
|
@ -319,7 +386,7 @@
|
|||
END IF
|
||||
ELSE
|
||||
*
|
||||
* Form B := alpha*B*inv( A' ).
|
||||
* Form B := alpha*B*inv( A**T ).
|
||||
*
|
||||
IF (UPPER) THEN
|
||||
DO 310 K = N,1,-1
|
||||
|
|
|
@ -1,4 +1,153 @@
|
|||
*> \brief \b DTRSV
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* SUBROUTINE DTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* INTEGER INCX,LDA,N
|
||||
* CHARACTER DIAG,TRANS,UPLO
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
* DOUBLE PRECISION A(LDA,*),X(*)
|
||||
* ..
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> DTRSV solves one of the systems of equations
|
||||
*>
|
||||
*> A*x = b, or A**T*x = b,
|
||||
*>
|
||||
*> where b and x are n element vectors and A is an n by n unit, or
|
||||
*> non-unit, upper or lower triangular matrix.
|
||||
*>
|
||||
*> No test for singularity or near-singularity is included in this
|
||||
*> routine. Such tests must be performed before calling this routine.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Arguments:
|
||||
* ==========
|
||||
*
|
||||
*> \param[in] UPLO
|
||||
*> \verbatim
|
||||
*> UPLO is CHARACTER*1
|
||||
*> On entry, UPLO specifies whether the matrix is an upper or
|
||||
*> lower triangular matrix as follows:
|
||||
*>
|
||||
*> UPLO = 'U' or 'u' A is an upper triangular matrix.
|
||||
*>
|
||||
*> UPLO = 'L' or 'l' A is a lower triangular matrix.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] TRANS
|
||||
*> \verbatim
|
||||
*> TRANS is CHARACTER*1
|
||||
*> On entry, TRANS specifies the equations to be solved as
|
||||
*> follows:
|
||||
*>
|
||||
*> TRANS = 'N' or 'n' A*x = b.
|
||||
*>
|
||||
*> TRANS = 'T' or 't' A**T*x = b.
|
||||
*>
|
||||
*> TRANS = 'C' or 'c' A**T*x = b.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] DIAG
|
||||
*> \verbatim
|
||||
*> DIAG is CHARACTER*1
|
||||
*> On entry, DIAG specifies whether or not A is unit
|
||||
*> triangular as follows:
|
||||
*>
|
||||
*> DIAG = 'U' or 'u' A is assumed to be unit triangular.
|
||||
*>
|
||||
*> DIAG = 'N' or 'n' A is not assumed to be unit
|
||||
*> triangular.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGER
|
||||
*> On entry, N specifies the order of the matrix A.
|
||||
*> N must be at least zero.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] A
|
||||
*> \verbatim
|
||||
*> A is DOUBLE PRECISION array of DIMENSION ( LDA, n ).
|
||||
*> Before entry with UPLO = 'U' or 'u', the leading n by n
|
||||
*> upper triangular part of the array A must contain the upper
|
||||
*> triangular matrix and the strictly lower triangular part of
|
||||
*> A is not referenced.
|
||||
*> Before entry with UPLO = 'L' or 'l', the leading n by n
|
||||
*> lower triangular part of the array A must contain the lower
|
||||
*> triangular matrix and the strictly upper triangular part of
|
||||
*> A is not referenced.
|
||||
*> Note that when DIAG = 'U' or 'u', the diagonal elements of
|
||||
*> A are not referenced either, but are assumed to be unity.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] LDA
|
||||
*> \verbatim
|
||||
*> LDA is INTEGER
|
||||
*> On entry, LDA specifies the first dimension of A as declared
|
||||
*> in the calling (sub) program. LDA must be at least
|
||||
*> max( 1, n ).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] X
|
||||
*> \verbatim
|
||||
*> X is DOUBLE PRECISION array of dimension at least
|
||||
*> ( 1 + ( n - 1 )*abs( INCX ) ).
|
||||
*> Before entry, the incremented array X must contain the n
|
||||
*> element right-hand side vector b. On exit, X is overwritten
|
||||
*> with the solution vector x.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] INCX
|
||||
*> \verbatim
|
||||
*> INCX is INTEGER
|
||||
*> On entry, INCX specifies the increment for the elements of
|
||||
*> X. INCX must not be zero.
|
||||
*>
|
||||
*> Level 2 Blas routine.
|
||||
*>
|
||||
*> -- Written on 22-October-1986.
|
||||
*> Jack Dongarra, Argonne National Lab.
|
||||
*> Jeremy Du Croz, Nag Central Office.
|
||||
*> Sven Hammarling, Nag Central Office.
|
||||
*> Richard Hanson, Sandia National Labs.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \date November 2011
|
||||
*
|
||||
*> \ingroup double_blas_level1
|
||||
*
|
||||
* =====================================================================
|
||||
SUBROUTINE DTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
|
||||
*
|
||||
* -- Reference BLAS level1 routine (version 3.4.0) --
|
||||
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* November 2011
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
INTEGER INCX,LDA,N
|
||||
CHARACTER DIAG,TRANS,UPLO
|
||||
|
@ -7,99 +156,6 @@
|
|||
DOUBLE PRECISION A(LDA,*),X(*)
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* DTRSV solves one of the systems of equations
|
||||
*
|
||||
* A*x = b, or A'*x = b,
|
||||
*
|
||||
* where b and x are n element vectors and A is an n by n unit, or
|
||||
* non-unit, upper or lower triangular matrix.
|
||||
*
|
||||
* No test for singularity or near-singularity is included in this
|
||||
* routine. Such tests must be performed before calling this routine.
|
||||
*
|
||||
* Arguments
|
||||
* ==========
|
||||
*
|
||||
* UPLO - CHARACTER*1.
|
||||
* On entry, UPLO specifies whether the matrix is an upper or
|
||||
* lower triangular matrix as follows:
|
||||
*
|
||||
* UPLO = 'U' or 'u' A is an upper triangular matrix.
|
||||
*
|
||||
* UPLO = 'L' or 'l' A is a lower triangular matrix.
|
||||
*
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* TRANS - CHARACTER*1.
|
||||
* On entry, TRANS specifies the equations to be solved as
|
||||
* follows:
|
||||
*
|
||||
* TRANS = 'N' or 'n' A*x = b.
|
||||
*
|
||||
* TRANS = 'T' or 't' A'*x = b.
|
||||
*
|
||||
* TRANS = 'C' or 'c' A'*x = b.
|
||||
*
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* DIAG - CHARACTER*1.
|
||||
* On entry, DIAG specifies whether or not A is unit
|
||||
* triangular as follows:
|
||||
*
|
||||
* DIAG = 'U' or 'u' A is assumed to be unit triangular.
|
||||
*
|
||||
* DIAG = 'N' or 'n' A is not assumed to be unit
|
||||
* triangular.
|
||||
*
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* N - INTEGER.
|
||||
* On entry, N specifies the order of the matrix A.
|
||||
* N must be at least zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
|
||||
* Before entry with UPLO = 'U' or 'u', the leading n by n
|
||||
* upper triangular part of the array A must contain the upper
|
||||
* triangular matrix and the strictly lower triangular part of
|
||||
* A is not referenced.
|
||||
* Before entry with UPLO = 'L' or 'l', the leading n by n
|
||||
* lower triangular part of the array A must contain the lower
|
||||
* triangular matrix and the strictly upper triangular part of
|
||||
* A is not referenced.
|
||||
* Note that when DIAG = 'U' or 'u', the diagonal elements of
|
||||
* A are not referenced either, but are assumed to be unity.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* LDA - INTEGER.
|
||||
* On entry, LDA specifies the first dimension of A as declared
|
||||
* in the calling (sub) program. LDA must be at least
|
||||
* max( 1, n ).
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* X - DOUBLE PRECISION array of dimension at least
|
||||
* ( 1 + ( n - 1 )*abs( INCX ) ).
|
||||
* Before entry, the incremented array X must contain the n
|
||||
* element right-hand side vector b. On exit, X is overwritten
|
||||
* with the solution vector x.
|
||||
*
|
||||
* INCX - INTEGER.
|
||||
* On entry, INCX specifies the increment for the elements of
|
||||
* X. INCX must not be zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
*
|
||||
* Level 2 Blas routine.
|
||||
*
|
||||
* -- Written on 22-October-1986.
|
||||
* Jack Dongarra, Argonne National Lab.
|
||||
* Jeremy Du Croz, Nag Central Office.
|
||||
* Sven Hammarling, Nag Central Office.
|
||||
* Richard Hanson, Sandia National Labs.
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
|
@ -221,7 +277,7 @@
|
|||
END IF
|
||||
ELSE
|
||||
*
|
||||
* Form x := inv( A' )*x.
|
||||
* Form x := inv( A**T )*x.
|
||||
*
|
||||
IF (LSAME(UPLO,'U')) THEN
|
||||
IF (INCX.EQ.1) THEN
|
||||
|
|
|
@ -1,9 +1,119 @@
|
|||
*> \brief \b DTRTI2 computes the inverse of a triangular matrix (unblocked algorithm).
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
*> \htmlonly
|
||||
*> Download DTRTI2 + dependencies
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtrti2.f">
|
||||
*> [TGZ]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtrti2.f">
|
||||
*> [ZIP]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtrti2.f">
|
||||
*> [TXT]</a>
|
||||
*> \endhtmlonly
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* SUBROUTINE DTRTI2( UPLO, DIAG, N, A, LDA, INFO )
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* CHARACTER DIAG, UPLO
|
||||
* INTEGER INFO, LDA, N
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
* DOUBLE PRECISION A( LDA, * )
|
||||
* ..
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> DTRTI2 computes the inverse of a real upper or lower triangular
|
||||
*> matrix.
|
||||
*>
|
||||
*> This is the Level 2 BLAS version of the algorithm.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Arguments:
|
||||
* ==========
|
||||
*
|
||||
*> \param[in] UPLO
|
||||
*> \verbatim
|
||||
*> UPLO is CHARACTER*1
|
||||
*> Specifies whether the matrix A is upper or lower triangular.
|
||||
*> = 'U': Upper triangular
|
||||
*> = 'L': Lower triangular
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] DIAG
|
||||
*> \verbatim
|
||||
*> DIAG is CHARACTER*1
|
||||
*> Specifies whether or not the matrix A is unit triangular.
|
||||
*> = 'N': Non-unit triangular
|
||||
*> = 'U': Unit triangular
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGER
|
||||
*> The order of the matrix A. N >= 0.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] A
|
||||
*> \verbatim
|
||||
*> A is DOUBLE PRECISION array, dimension (LDA,N)
|
||||
*> On entry, the triangular matrix A. If UPLO = 'U', the
|
||||
*> leading n by n upper triangular part of the array A contains
|
||||
*> the upper triangular matrix, and the strictly lower
|
||||
*> triangular part of A is not referenced. If UPLO = 'L', the
|
||||
*> leading n by n lower triangular part of the array A contains
|
||||
*> the lower triangular matrix, and the strictly upper
|
||||
*> triangular part of A is not referenced. If DIAG = 'U', the
|
||||
*> diagonal elements of A are also not referenced and are
|
||||
*> assumed to be 1.
|
||||
*>
|
||||
*> On exit, the (triangular) inverse of the original matrix, in
|
||||
*> the same storage format.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] LDA
|
||||
*> \verbatim
|
||||
*> LDA is INTEGER
|
||||
*> The leading dimension of the array A. LDA >= max(1,N).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] INFO
|
||||
*> \verbatim
|
||||
*> INFO is INTEGER
|
||||
*> = 0: successful exit
|
||||
*> < 0: if INFO = -k, the k-th argument had an illegal value
|
||||
*> \endverbatim
|
||||
*
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \date September 2012
|
||||
*
|
||||
*> \ingroup doubleOTHERcomputational
|
||||
*
|
||||
* =====================================================================
|
||||
SUBROUTINE DTRTI2( UPLO, DIAG, N, A, LDA, INFO )
|
||||
*
|
||||
* -- LAPACK routine (version 3.2) --
|
||||
* -- LAPACK computational routine (version 3.4.2) --
|
||||
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* November 2006
|
||||
* September 2012
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
CHARACTER DIAG, UPLO
|
||||
|
@ -13,51 +123,6 @@
|
|||
DOUBLE PRECISION A( LDA, * )
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* DTRTI2 computes the inverse of a real upper or lower triangular
|
||||
* matrix.
|
||||
*
|
||||
* This is the Level 2 BLAS version of the algorithm.
|
||||
*
|
||||
* Arguments
|
||||
* =========
|
||||
*
|
||||
* UPLO (input) CHARACTER*1
|
||||
* Specifies whether the matrix A is upper or lower triangular.
|
||||
* = 'U': Upper triangular
|
||||
* = 'L': Lower triangular
|
||||
*
|
||||
* DIAG (input) CHARACTER*1
|
||||
* Specifies whether or not the matrix A is unit triangular.
|
||||
* = 'N': Non-unit triangular
|
||||
* = 'U': Unit triangular
|
||||
*
|
||||
* N (input) INTEGER
|
||||
* The order of the matrix A. N >= 0.
|
||||
*
|
||||
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
|
||||
* On entry, the triangular matrix A. If UPLO = 'U', the
|
||||
* leading n by n upper triangular part of the array A contains
|
||||
* the upper triangular matrix, and the strictly lower
|
||||
* triangular part of A is not referenced. If UPLO = 'L', the
|
||||
* leading n by n lower triangular part of the array A contains
|
||||
* the lower triangular matrix, and the strictly upper
|
||||
* triangular part of A is not referenced. If DIAG = 'U', the
|
||||
* diagonal elements of A are also not referenced and are
|
||||
* assumed to be 1.
|
||||
*
|
||||
* On exit, the (triangular) inverse of the original matrix, in
|
||||
* the same storage format.
|
||||
*
|
||||
* LDA (input) INTEGER
|
||||
* The leading dimension of the array A. LDA >= max(1,N).
|
||||
*
|
||||
* INFO (output) INTEGER
|
||||
* = 0: successful exit
|
||||
* < 0: if INFO = -k, the k-th argument had an illegal value
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
|
|
|
@ -1,9 +1,118 @@
|
|||
*> \brief \b DTRTRI
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
*> \htmlonly
|
||||
*> Download DTRTRI + dependencies
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtrtri.f">
|
||||
*> [TGZ]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtrtri.f">
|
||||
*> [ZIP]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtrtri.f">
|
||||
*> [TXT]</a>
|
||||
*> \endhtmlonly
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* SUBROUTINE DTRTRI( UPLO, DIAG, N, A, LDA, INFO )
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* CHARACTER DIAG, UPLO
|
||||
* INTEGER INFO, LDA, N
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
* DOUBLE PRECISION A( LDA, * )
|
||||
* ..
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> DTRTRI computes the inverse of a real upper or lower triangular
|
||||
*> matrix A.
|
||||
*>
|
||||
*> This is the Level 3 BLAS version of the algorithm.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Arguments:
|
||||
* ==========
|
||||
*
|
||||
*> \param[in] UPLO
|
||||
*> \verbatim
|
||||
*> UPLO is CHARACTER*1
|
||||
*> = 'U': A is upper triangular;
|
||||
*> = 'L': A is lower triangular.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] DIAG
|
||||
*> \verbatim
|
||||
*> DIAG is CHARACTER*1
|
||||
*> = 'N': A is non-unit triangular;
|
||||
*> = 'U': A is unit triangular.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGER
|
||||
*> The order of the matrix A. N >= 0.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] A
|
||||
*> \verbatim
|
||||
*> A is DOUBLE PRECISION array, dimension (LDA,N)
|
||||
*> On entry, the triangular matrix A. If UPLO = 'U', the
|
||||
*> leading N-by-N upper triangular part of the array A contains
|
||||
*> the upper triangular matrix, and the strictly lower
|
||||
*> triangular part of A is not referenced. If UPLO = 'L', the
|
||||
*> leading N-by-N lower triangular part of the array A contains
|
||||
*> the lower triangular matrix, and the strictly upper
|
||||
*> triangular part of A is not referenced. If DIAG = 'U', the
|
||||
*> diagonal elements of A are also not referenced and are
|
||||
*> assumed to be 1.
|
||||
*> On exit, the (triangular) inverse of the original matrix, in
|
||||
*> the same storage format.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] LDA
|
||||
*> \verbatim
|
||||
*> LDA is INTEGER
|
||||
*> The leading dimension of the array A. LDA >= max(1,N).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] INFO
|
||||
*> \verbatim
|
||||
*> INFO is INTEGER
|
||||
*> = 0: successful exit
|
||||
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||||
*> > 0: if INFO = i, A(i,i) is exactly zero. The triangular
|
||||
*> matrix is singular and its inverse can not be computed.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \date November 2011
|
||||
*
|
||||
*> \ingroup doubleOTHERcomputational
|
||||
*
|
||||
* =====================================================================
|
||||
SUBROUTINE DTRTRI( UPLO, DIAG, N, A, LDA, INFO )
|
||||
*
|
||||
* -- LAPACK routine (version 3.2) --
|
||||
* -- LAPACK computational routine (version 3.4.0) --
|
||||
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* November 2006
|
||||
* November 2011
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
CHARACTER DIAG, UPLO
|
||||
|
@ -13,50 +122,6 @@
|
|||
DOUBLE PRECISION A( LDA, * )
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* DTRTRI computes the inverse of a real upper or lower triangular
|
||||
* matrix A.
|
||||
*
|
||||
* This is the Level 3 BLAS version of the algorithm.
|
||||
*
|
||||
* Arguments
|
||||
* =========
|
||||
*
|
||||
* UPLO (input) CHARACTER*1
|
||||
* = 'U': A is upper triangular;
|
||||
* = 'L': A is lower triangular.
|
||||
*
|
||||
* DIAG (input) CHARACTER*1
|
||||
* = 'N': A is non-unit triangular;
|
||||
* = 'U': A is unit triangular.
|
||||
*
|
||||
* N (input) INTEGER
|
||||
* The order of the matrix A. N >= 0.
|
||||
*
|
||||
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
|
||||
* On entry, the triangular matrix A. If UPLO = 'U', the
|
||||
* leading N-by-N upper triangular part of the array A contains
|
||||
* the upper triangular matrix, and the strictly lower
|
||||
* triangular part of A is not referenced. If UPLO = 'L', the
|
||||
* leading N-by-N lower triangular part of the array A contains
|
||||
* the lower triangular matrix, and the strictly upper
|
||||
* triangular part of A is not referenced. If DIAG = 'U', the
|
||||
* diagonal elements of A are also not referenced and are
|
||||
* assumed to be 1.
|
||||
* On exit, the (triangular) inverse of the original matrix, in
|
||||
* the same storage format.
|
||||
*
|
||||
* LDA (input) INTEGER
|
||||
* The leading dimension of the array A. LDA >= max(1,N).
|
||||
*
|
||||
* INFO (output) INTEGER
|
||||
* = 0: successful exit
|
||||
* < 0: if INFO = -i, the i-th argument had an illegal value
|
||||
* > 0: if INFO = i, A(i,i) is exactly zero. The triangular
|
||||
* matrix is singular and its inverse can not be computed.
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
|
|
|
@ -1,4 +1,61 @@
|
|||
*> \brief \b IDAMAX
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* INTEGER FUNCTION IDAMAX(N,DX,INCX)
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* INTEGER INCX,N
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
* DOUBLE PRECISION DX(*)
|
||||
* ..
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> IDAMAX finds the index of element having max. absolute value.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \date November 2011
|
||||
*
|
||||
*> \ingroup aux_blas
|
||||
*
|
||||
*> \par Further Details:
|
||||
* =====================
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> jack dongarra, linpack, 3/11/78.
|
||||
*> modified 3/93 to return if incx .le. 0.
|
||||
*> modified 12/3/93, array(1) declarations changed to array(*)
|
||||
*> \endverbatim
|
||||
*>
|
||||
* =====================================================================
|
||||
INTEGER FUNCTION IDAMAX(N,DX,INCX)
|
||||
*
|
||||
* -- Reference BLAS level1 routine (version 3.4.0) --
|
||||
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* November 2011
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
INTEGER INCX,N
|
||||
* ..
|
||||
|
@ -6,18 +63,6 @@
|
|||
DOUBLE PRECISION DX(*)
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* IDAMAX finds the index of element having max. absolute value.
|
||||
*
|
||||
* Further Details
|
||||
* ===============
|
||||
*
|
||||
* jack dongarra, linpack, 3/11/78.
|
||||
* modified 3/93 to return if incx .le. 0.
|
||||
* modified 12/3/93, array(1) declarations changed to array(*)
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Local Scalars ..
|
||||
|
@ -31,28 +76,31 @@
|
|||
IF (N.LT.1 .OR. INCX.LE.0) RETURN
|
||||
IDAMAX = 1
|
||||
IF (N.EQ.1) RETURN
|
||||
IF (INCX.EQ.1) GO TO 20
|
||||
*
|
||||
* code for increment not equal to 1
|
||||
*
|
||||
IX = 1
|
||||
DMAX = DABS(DX(1))
|
||||
IX = IX + INCX
|
||||
DO 10 I = 2,N
|
||||
IF (DABS(DX(IX)).LE.DMAX) GO TO 5
|
||||
IDAMAX = I
|
||||
DMAX = DABS(DX(IX))
|
||||
5 IX = IX + INCX
|
||||
10 CONTINUE
|
||||
RETURN
|
||||
IF (INCX.EQ.1) THEN
|
||||
*
|
||||
* code for increment equal to 1
|
||||
*
|
||||
20 DMAX = DABS(DX(1))
|
||||
DO 30 I = 2,N
|
||||
IF (DABS(DX(I)).LE.DMAX) GO TO 30
|
||||
IDAMAX = I
|
||||
DMAX = DABS(DX(I))
|
||||
30 CONTINUE
|
||||
DMAX = DABS(DX(1))
|
||||
DO I = 2,N
|
||||
IF (DABS(DX(I)).GT.DMAX) THEN
|
||||
IDAMAX = I
|
||||
DMAX = DABS(DX(I))
|
||||
END IF
|
||||
END DO
|
||||
ELSE
|
||||
*
|
||||
* code for increment not equal to 1
|
||||
*
|
||||
IX = 1
|
||||
DMAX = DABS(DX(1))
|
||||
IX = IX + INCX
|
||||
DO I = 2,N
|
||||
IF (DABS(DX(IX)).GT.DMAX) THEN
|
||||
IDAMAX = I
|
||||
DMAX = DABS(DX(IX))
|
||||
END IF
|
||||
IX = IX + INCX
|
||||
END DO
|
||||
END IF
|
||||
RETURN
|
||||
END
|
||||
|
|
|
@ -1,43 +1,98 @@
|
|||
*> \brief \b IEEECK
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
*> \htmlonly
|
||||
*> Download IEEECK + dependencies
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ieeeck.f">
|
||||
*> [TGZ]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ieeeck.f">
|
||||
*> [ZIP]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ieeeck.f">
|
||||
*> [TXT]</a>
|
||||
*> \endhtmlonly
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* INTEGER FUNCTION IEEECK( ISPEC, ZERO, ONE )
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* INTEGER ISPEC
|
||||
* REAL ONE, ZERO
|
||||
* ..
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> IEEECK is called from the ILAENV to verify that Infinity and
|
||||
*> possibly NaN arithmetic is safe (i.e. will not trap).
|
||||
*> \endverbatim
|
||||
*
|
||||
* Arguments:
|
||||
* ==========
|
||||
*
|
||||
*> \param[in] ISPEC
|
||||
*> \verbatim
|
||||
*> ISPEC is INTEGER
|
||||
*> Specifies whether to test just for inifinity arithmetic
|
||||
*> or whether to test for infinity and NaN arithmetic.
|
||||
*> = 0: Verify infinity arithmetic only.
|
||||
*> = 1: Verify infinity and NaN arithmetic.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] ZERO
|
||||
*> \verbatim
|
||||
*> ZERO is REAL
|
||||
*> Must contain the value 0.0
|
||||
*> This is passed to prevent the compiler from optimizing
|
||||
*> away this code.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] ONE
|
||||
*> \verbatim
|
||||
*> ONE is REAL
|
||||
*> Must contain the value 1.0
|
||||
*> This is passed to prevent the compiler from optimizing
|
||||
*> away this code.
|
||||
*>
|
||||
*> RETURN VALUE: INTEGER
|
||||
*> = 0: Arithmetic failed to produce the correct answers
|
||||
*> = 1: Arithmetic produced the correct answers
|
||||
*> \endverbatim
|
||||
*
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \date November 2011
|
||||
*
|
||||
*> \ingroup auxOTHERauxiliary
|
||||
*
|
||||
* =====================================================================
|
||||
INTEGER FUNCTION IEEECK( ISPEC, ZERO, ONE )
|
||||
*
|
||||
* -- LAPACK auxiliary routine (version 3.2) --
|
||||
* -- LAPACK auxiliary routine (version 3.4.0) --
|
||||
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* November 2006
|
||||
* November 2011
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
INTEGER ISPEC
|
||||
REAL ONE, ZERO
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* IEEECK is called from the ILAENV to verify that Infinity and
|
||||
* possibly NaN arithmetic is safe (i.e. will not trap).
|
||||
*
|
||||
* Arguments
|
||||
* =========
|
||||
*
|
||||
* ISPEC (input) INTEGER
|
||||
* Specifies whether to test just for inifinity arithmetic
|
||||
* or whether to test for infinity and NaN arithmetic.
|
||||
* = 0: Verify infinity arithmetic only.
|
||||
* = 1: Verify infinity and NaN arithmetic.
|
||||
*
|
||||
* ZERO (input) REAL
|
||||
* Must contain the value 0.0
|
||||
* This is passed to prevent the compiler from optimizing
|
||||
* away this code.
|
||||
*
|
||||
* ONE (input) REAL
|
||||
* Must contain the value 1.0
|
||||
* This is passed to prevent the compiler from optimizing
|
||||
* away this code.
|
||||
*
|
||||
* RETURN VALUE: INTEGER
|
||||
* = 0: Arithmetic failed to produce the correct answers
|
||||
* = 1: Arithmetic produced the correct answers
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Local Scalars ..
|
||||
REAL NAN1, NAN2, NAN3, NAN4, NAN5, NAN6, NEGINF,
|
||||
|
@ -112,7 +167,7 @@
|
|||
*
|
||||
NAN5 = NEGINF*NEGZRO
|
||||
*
|
||||
NAN6 = NAN5*0.0
|
||||
NAN6 = NAN5*ZERO
|
||||
*
|
||||
IF( NAN1.EQ.NAN1 ) THEN
|
||||
IEEECK = 0
|
||||
|
|
|
@ -1,108 +1,177 @@
|
|||
*> \brief \b ILAENV
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
*> \htmlonly
|
||||
*> Download ILAENV + dependencies
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ilaenv.f">
|
||||
*> [TGZ]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ilaenv.f">
|
||||
*> [ZIP]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ilaenv.f">
|
||||
*> [TXT]</a>
|
||||
*> \endhtmlonly
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* INTEGER FUNCTION ILAENV( ISPEC, NAME, OPTS, N1, N2, N3, N4 )
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* CHARACTER*( * ) NAME, OPTS
|
||||
* INTEGER ISPEC, N1, N2, N3, N4
|
||||
* ..
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> ILAENV is called from the LAPACK routines to choose problem-dependent
|
||||
*> parameters for the local environment. See ISPEC for a description of
|
||||
*> the parameters.
|
||||
*>
|
||||
*> ILAENV returns an INTEGER
|
||||
*> if ILAENV >= 0: ILAENV returns the value of the parameter specified by ISPEC
|
||||
*> if ILAENV < 0: if ILAENV = -k, the k-th argument had an illegal value.
|
||||
*>
|
||||
*> This version provides a set of parameters which should give good,
|
||||
*> but not optimal, performance on many of the currently available
|
||||
*> computers. Users are encouraged to modify this subroutine to set
|
||||
*> the tuning parameters for their particular machine using the option
|
||||
*> and problem size information in the arguments.
|
||||
*>
|
||||
*> This routine will not function correctly if it is converted to all
|
||||
*> lower case. Converting it to all upper case is allowed.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Arguments:
|
||||
* ==========
|
||||
*
|
||||
*> \param[in] ISPEC
|
||||
*> \verbatim
|
||||
*> ISPEC is INTEGER
|
||||
*> Specifies the parameter to be returned as the value of
|
||||
*> ILAENV.
|
||||
*> = 1: the optimal blocksize; if this value is 1, an unblocked
|
||||
*> algorithm will give the best performance.
|
||||
*> = 2: the minimum block size for which the block routine
|
||||
*> should be used; if the usable block size is less than
|
||||
*> this value, an unblocked routine should be used.
|
||||
*> = 3: the crossover point (in a block routine, for N less
|
||||
*> than this value, an unblocked routine should be used)
|
||||
*> = 4: the number of shifts, used in the nonsymmetric
|
||||
*> eigenvalue routines (DEPRECATED)
|
||||
*> = 5: the minimum column dimension for blocking to be used;
|
||||
*> rectangular blocks must have dimension at least k by m,
|
||||
*> where k is given by ILAENV(2,...) and m by ILAENV(5,...)
|
||||
*> = 6: the crossover point for the SVD (when reducing an m by n
|
||||
*> matrix to bidiagonal form, if max(m,n)/min(m,n) exceeds
|
||||
*> this value, a QR factorization is used first to reduce
|
||||
*> the matrix to a triangular form.)
|
||||
*> = 7: the number of processors
|
||||
*> = 8: the crossover point for the multishift QR method
|
||||
*> for nonsymmetric eigenvalue problems (DEPRECATED)
|
||||
*> = 9: maximum size of the subproblems at the bottom of the
|
||||
*> computation tree in the divide-and-conquer algorithm
|
||||
*> (used by xGELSD and xGESDD)
|
||||
*> =10: ieee NaN arithmetic can be trusted not to trap
|
||||
*> =11: infinity arithmetic can be trusted not to trap
|
||||
*> 12 <= ISPEC <= 16:
|
||||
*> xHSEQR or one of its subroutines,
|
||||
*> see IPARMQ for detailed explanation
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] NAME
|
||||
*> \verbatim
|
||||
*> NAME is CHARACTER*(*)
|
||||
*> The name of the calling subroutine, in either upper case or
|
||||
*> lower case.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] OPTS
|
||||
*> \verbatim
|
||||
*> OPTS is CHARACTER*(*)
|
||||
*> The character options to the subroutine NAME, concatenated
|
||||
*> into a single character string. For example, UPLO = 'U',
|
||||
*> TRANS = 'T', and DIAG = 'N' for a triangular routine would
|
||||
*> be specified as OPTS = 'UTN'.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] N1
|
||||
*> \verbatim
|
||||
*> N1 is INTEGER
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] N2
|
||||
*> \verbatim
|
||||
*> N2 is INTEGER
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] N3
|
||||
*> \verbatim
|
||||
*> N3 is INTEGER
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] N4
|
||||
*> \verbatim
|
||||
*> N4 is INTEGER
|
||||
*> Problem dimensions for the subroutine NAME; these may not all
|
||||
*> be required.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \date November 2011
|
||||
*
|
||||
*> \ingroup auxOTHERauxiliary
|
||||
*
|
||||
*> \par Further Details:
|
||||
* =====================
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> The following conventions have been used when calling ILAENV from the
|
||||
*> LAPACK routines:
|
||||
*> 1) OPTS is a concatenation of all of the character options to
|
||||
*> subroutine NAME, in the same order that they appear in the
|
||||
*> argument list for NAME, even if they are not used in determining
|
||||
*> the value of the parameter specified by ISPEC.
|
||||
*> 2) The problem dimensions N1, N2, N3, N4 are specified in the order
|
||||
*> that they appear in the argument list for NAME. N1 is used
|
||||
*> first, N2 second, and so on, and unused problem dimensions are
|
||||
*> passed a value of -1.
|
||||
*> 3) The parameter value returned by ILAENV is checked for validity in
|
||||
*> the calling subroutine. For example, ILAENV is used to retrieve
|
||||
*> the optimal blocksize for STRTRI as follows:
|
||||
*>
|
||||
*> NB = ILAENV( 1, 'STRTRI', UPLO // DIAG, N, -1, -1, -1 )
|
||||
*> IF( NB.LE.1 ) NB = MAX( 1, N )
|
||||
*> \endverbatim
|
||||
*>
|
||||
* =====================================================================
|
||||
INTEGER FUNCTION ILAENV( ISPEC, NAME, OPTS, N1, N2, N3, N4 )
|
||||
*
|
||||
* -- LAPACK auxiliary routine (version 3.2.1) --
|
||||
*
|
||||
* -- April 2009 --
|
||||
*
|
||||
* -- LAPACK auxiliary routine (version 3.4.0) --
|
||||
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* November 2011
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
CHARACTER*( * ) NAME, OPTS
|
||||
INTEGER ISPEC, N1, N2, N3, N4
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* ILAENV is called from the LAPACK routines to choose problem-dependent
|
||||
* parameters for the local environment. See ISPEC for a description of
|
||||
* the parameters.
|
||||
*
|
||||
* ILAENV returns an INTEGER
|
||||
* if ILAENV >= 0: ILAENV returns the value of the parameter specified by ISPEC
|
||||
* if ILAENV < 0: if ILAENV = -k, the k-th argument had an illegal value.
|
||||
*
|
||||
* This version provides a set of parameters which should give good,
|
||||
* but not optimal, performance on many of the currently available
|
||||
* computers. Users are encouraged to modify this subroutine to set
|
||||
* the tuning parameters for their particular machine using the option
|
||||
* and problem size information in the arguments.
|
||||
*
|
||||
* This routine will not function correctly if it is converted to all
|
||||
* lower case. Converting it to all upper case is allowed.
|
||||
*
|
||||
* Arguments
|
||||
* =========
|
||||
*
|
||||
* ISPEC (input) INTEGER
|
||||
* Specifies the parameter to be returned as the value of
|
||||
* ILAENV.
|
||||
* = 1: the optimal blocksize; if this value is 1, an unblocked
|
||||
* algorithm will give the best performance.
|
||||
* = 2: the minimum block size for which the block routine
|
||||
* should be used; if the usable block size is less than
|
||||
* this value, an unblocked routine should be used.
|
||||
* = 3: the crossover point (in a block routine, for N less
|
||||
* than this value, an unblocked routine should be used)
|
||||
* = 4: the number of shifts, used in the nonsymmetric
|
||||
* eigenvalue routines (DEPRECATED)
|
||||
* = 5: the minimum column dimension for blocking to be used;
|
||||
* rectangular blocks must have dimension at least k by m,
|
||||
* where k is given by ILAENV(2,...) and m by ILAENV(5,...)
|
||||
* = 6: the crossover point for the SVD (when reducing an m by n
|
||||
* matrix to bidiagonal form, if max(m,n)/min(m,n) exceeds
|
||||
* this value, a QR factorization is used first to reduce
|
||||
* the matrix to a triangular form.)
|
||||
* = 7: the number of processors
|
||||
* = 8: the crossover point for the multishift QR method
|
||||
* for nonsymmetric eigenvalue problems (DEPRECATED)
|
||||
* = 9: maximum size of the subproblems at the bottom of the
|
||||
* computation tree in the divide-and-conquer algorithm
|
||||
* (used by xGELSD and xGESDD)
|
||||
* =10: ieee NaN arithmetic can be trusted not to trap
|
||||
* =11: infinity arithmetic can be trusted not to trap
|
||||
* 12 <= ISPEC <= 16:
|
||||
* xHSEQR or one of its subroutines,
|
||||
* see IPARMQ for detailed explanation
|
||||
*
|
||||
* NAME (input) CHARACTER*(*)
|
||||
* The name of the calling subroutine, in either upper case or
|
||||
* lower case.
|
||||
*
|
||||
* OPTS (input) CHARACTER*(*)
|
||||
* The character options to the subroutine NAME, concatenated
|
||||
* into a single character string. For example, UPLO = 'U',
|
||||
* TRANS = 'T', and DIAG = 'N' for a triangular routine would
|
||||
* be specified as OPTS = 'UTN'.
|
||||
*
|
||||
* N1 (input) INTEGER
|
||||
* N2 (input) INTEGER
|
||||
* N3 (input) INTEGER
|
||||
* N4 (input) INTEGER
|
||||
* Problem dimensions for the subroutine NAME; these may not all
|
||||
* be required.
|
||||
*
|
||||
* Further Details
|
||||
* ===============
|
||||
*
|
||||
* The following conventions have been used when calling ILAENV from the
|
||||
* LAPACK routines:
|
||||
* 1) OPTS is a concatenation of all of the character options to
|
||||
* subroutine NAME, in the same order that they appear in the
|
||||
* argument list for NAME, even if they are not used in determining
|
||||
* the value of the parameter specified by ISPEC.
|
||||
* 2) The problem dimensions N1, N2, N3, N4 are specified in the order
|
||||
* that they appear in the argument list for NAME. N1 is used
|
||||
* first, N2 second, and so on, and unused problem dimensions are
|
||||
* passed a value of -1.
|
||||
* 3) The parameter value returned by ILAENV is checked for validity in
|
||||
* the calling subroutine. For example, ILAENV is used to retrieve
|
||||
* the optimal blocksize for STRTRI as follows:
|
||||
*
|
||||
* NB = ILAENV( 1, 'STRTRI', UPLO // DIAG, N, -1, -1, -1 )
|
||||
* IF( NB.LE.1 ) NB = MAX( 1, N )
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Local Scalars ..
|
||||
|
|
|
@ -1,161 +1,229 @@
|
|||
*> \brief \b IPARMQ
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
*> \htmlonly
|
||||
*> Download IPARMQ + dependencies
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/iparmq.f">
|
||||
*> [TGZ]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/iparmq.f">
|
||||
*> [ZIP]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/iparmq.f">
|
||||
*> [TXT]</a>
|
||||
*> \endhtmlonly
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* INTEGER FUNCTION IPARMQ( ISPEC, NAME, OPTS, N, ILO, IHI, LWORK )
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* INTEGER IHI, ILO, ISPEC, LWORK, N
|
||||
* CHARACTER NAME*( * ), OPTS*( * )
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> This program sets problem and machine dependent parameters
|
||||
*> useful for xHSEQR and its subroutines. It is called whenever
|
||||
*> ILAENV is called with 12 <= ISPEC <= 16
|
||||
*> \endverbatim
|
||||
*
|
||||
* Arguments:
|
||||
* ==========
|
||||
*
|
||||
*> \param[in] ISPEC
|
||||
*> \verbatim
|
||||
*> ISPEC is integer scalar
|
||||
*> ISPEC specifies which tunable parameter IPARMQ should
|
||||
*> return.
|
||||
*>
|
||||
*> ISPEC=12: (INMIN) Matrices of order nmin or less
|
||||
*> are sent directly to xLAHQR, the implicit
|
||||
*> double shift QR algorithm. NMIN must be
|
||||
*> at least 11.
|
||||
*>
|
||||
*> ISPEC=13: (INWIN) Size of the deflation window.
|
||||
*> This is best set greater than or equal to
|
||||
*> the number of simultaneous shifts NS.
|
||||
*> Larger matrices benefit from larger deflation
|
||||
*> windows.
|
||||
*>
|
||||
*> ISPEC=14: (INIBL) Determines when to stop nibbling and
|
||||
*> invest in an (expensive) multi-shift QR sweep.
|
||||
*> If the aggressive early deflation subroutine
|
||||
*> finds LD converged eigenvalues from an order
|
||||
*> NW deflation window and LD.GT.(NW*NIBBLE)/100,
|
||||
*> then the next QR sweep is skipped and early
|
||||
*> deflation is applied immediately to the
|
||||
*> remaining active diagonal block. Setting
|
||||
*> IPARMQ(ISPEC=14) = 0 causes TTQRE to skip a
|
||||
*> multi-shift QR sweep whenever early deflation
|
||||
*> finds a converged eigenvalue. Setting
|
||||
*> IPARMQ(ISPEC=14) greater than or equal to 100
|
||||
*> prevents TTQRE from skipping a multi-shift
|
||||
*> QR sweep.
|
||||
*>
|
||||
*> ISPEC=15: (NSHFTS) The number of simultaneous shifts in
|
||||
*> a multi-shift QR iteration.
|
||||
*>
|
||||
*> ISPEC=16: (IACC22) IPARMQ is set to 0, 1 or 2 with the
|
||||
*> following meanings.
|
||||
*> 0: During the multi-shift QR sweep,
|
||||
*> xLAQR5 does not accumulate reflections and
|
||||
*> does not use matrix-matrix multiply to
|
||||
*> update the far-from-diagonal matrix
|
||||
*> entries.
|
||||
*> 1: During the multi-shift QR sweep,
|
||||
*> xLAQR5 and/or xLAQRaccumulates reflections and uses
|
||||
*> matrix-matrix multiply to update the
|
||||
*> far-from-diagonal matrix entries.
|
||||
*> 2: During the multi-shift QR sweep.
|
||||
*> xLAQR5 accumulates reflections and takes
|
||||
*> advantage of 2-by-2 block structure during
|
||||
*> matrix-matrix multiplies.
|
||||
*> (If xTRMM is slower than xGEMM, then
|
||||
*> IPARMQ(ISPEC=16)=1 may be more efficient than
|
||||
*> IPARMQ(ISPEC=16)=2 despite the greater level of
|
||||
*> arithmetic work implied by the latter choice.)
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] NAME
|
||||
*> \verbatim
|
||||
*> NAME is character string
|
||||
*> Name of the calling subroutine
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] OPTS
|
||||
*> \verbatim
|
||||
*> OPTS is character string
|
||||
*> This is a concatenation of the string arguments to
|
||||
*> TTQRE.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is integer scalar
|
||||
*> N is the order of the Hessenberg matrix H.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] ILO
|
||||
*> \verbatim
|
||||
*> ILO is INTEGER
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] IHI
|
||||
*> \verbatim
|
||||
*> IHI is INTEGER
|
||||
*> It is assumed that H is already upper triangular
|
||||
*> in rows and columns 1:ILO-1 and IHI+1:N.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] LWORK
|
||||
*> \verbatim
|
||||
*> LWORK is integer scalar
|
||||
*> The amount of workspace available.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \date November 2011
|
||||
*
|
||||
*> \ingroup auxOTHERauxiliary
|
||||
*
|
||||
*> \par Further Details:
|
||||
* =====================
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> Little is known about how best to choose these parameters.
|
||||
*> It is possible to use different values of the parameters
|
||||
*> for each of CHSEQR, DHSEQR, SHSEQR and ZHSEQR.
|
||||
*>
|
||||
*> It is probably best to choose different parameters for
|
||||
*> different matrices and different parameters at different
|
||||
*> times during the iteration, but this has not been
|
||||
*> implemented --- yet.
|
||||
*>
|
||||
*>
|
||||
*> The best choices of most of the parameters depend
|
||||
*> in an ill-understood way on the relative execution
|
||||
*> rate of xLAQR3 and xLAQR5 and on the nature of each
|
||||
*> particular eigenvalue problem. Experiment may be the
|
||||
*> only practical way to determine which choices are most
|
||||
*> effective.
|
||||
*>
|
||||
*> Following is a list of default values supplied by IPARMQ.
|
||||
*> These defaults may be adjusted in order to attain better
|
||||
*> performance in any particular computational environment.
|
||||
*>
|
||||
*> IPARMQ(ISPEC=12) The xLAHQR vs xLAQR0 crossover point.
|
||||
*> Default: 75. (Must be at least 11.)
|
||||
*>
|
||||
*> IPARMQ(ISPEC=13) Recommended deflation window size.
|
||||
*> This depends on ILO, IHI and NS, the
|
||||
*> number of simultaneous shifts returned
|
||||
*> by IPARMQ(ISPEC=15). The default for
|
||||
*> (IHI-ILO+1).LE.500 is NS. The default
|
||||
*> for (IHI-ILO+1).GT.500 is 3*NS/2.
|
||||
*>
|
||||
*> IPARMQ(ISPEC=14) Nibble crossover point. Default: 14.
|
||||
*>
|
||||
*> IPARMQ(ISPEC=15) Number of simultaneous shifts, NS.
|
||||
*> a multi-shift QR iteration.
|
||||
*>
|
||||
*> If IHI-ILO+1 is ...
|
||||
*>
|
||||
*> greater than ...but less ... the
|
||||
*> or equal to ... than default is
|
||||
*>
|
||||
*> 0 30 NS = 2+
|
||||
*> 30 60 NS = 4+
|
||||
*> 60 150 NS = 10
|
||||
*> 150 590 NS = **
|
||||
*> 590 3000 NS = 64
|
||||
*> 3000 6000 NS = 128
|
||||
*> 6000 infinity NS = 256
|
||||
*>
|
||||
*> (+) By default matrices of this order are
|
||||
*> passed to the implicit double shift routine
|
||||
*> xLAHQR. See IPARMQ(ISPEC=12) above. These
|
||||
*> values of NS are used only in case of a rare
|
||||
*> xLAHQR failure.
|
||||
*>
|
||||
*> (**) The asterisks (**) indicate an ad-hoc
|
||||
*> function increasing from 10 to 64.
|
||||
*>
|
||||
*> IPARMQ(ISPEC=16) Select structured matrix multiply.
|
||||
*> (See ISPEC=16 above for details.)
|
||||
*> Default: 3.
|
||||
*> \endverbatim
|
||||
*>
|
||||
* =====================================================================
|
||||
INTEGER FUNCTION IPARMQ( ISPEC, NAME, OPTS, N, ILO, IHI, LWORK )
|
||||
*
|
||||
* -- LAPACK auxiliary routine (version 3.2) --
|
||||
* -- LAPACK auxiliary routine (version 3.4.0) --
|
||||
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* November 2006
|
||||
*
|
||||
* November 2011
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
INTEGER IHI, ILO, ISPEC, LWORK, N
|
||||
CHARACTER NAME*( * ), OPTS*( * )
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* This program sets problem and machine dependent parameters
|
||||
* useful for xHSEQR and its subroutines. It is called whenever
|
||||
* ILAENV is called with 12 <= ISPEC <= 16
|
||||
*
|
||||
* Arguments
|
||||
* =========
|
||||
*
|
||||
* ISPEC (input) integer scalar
|
||||
* ISPEC specifies which tunable parameter IPARMQ should
|
||||
* return.
|
||||
*
|
||||
* ISPEC=12: (INMIN) Matrices of order nmin or less
|
||||
* are sent directly to xLAHQR, the implicit
|
||||
* double shift QR algorithm. NMIN must be
|
||||
* at least 11.
|
||||
*
|
||||
* ISPEC=13: (INWIN) Size of the deflation window.
|
||||
* This is best set greater than or equal to
|
||||
* the number of simultaneous shifts NS.
|
||||
* Larger matrices benefit from larger deflation
|
||||
* windows.
|
||||
*
|
||||
* ISPEC=14: (INIBL) Determines when to stop nibbling and
|
||||
* invest in an (expensive) multi-shift QR sweep.
|
||||
* If the aggressive early deflation subroutine
|
||||
* finds LD converged eigenvalues from an order
|
||||
* NW deflation window and LD.GT.(NW*NIBBLE)/100,
|
||||
* then the next QR sweep is skipped and early
|
||||
* deflation is applied immediately to the
|
||||
* remaining active diagonal block. Setting
|
||||
* IPARMQ(ISPEC=14) = 0 causes TTQRE to skip a
|
||||
* multi-shift QR sweep whenever early deflation
|
||||
* finds a converged eigenvalue. Setting
|
||||
* IPARMQ(ISPEC=14) greater than or equal to 100
|
||||
* prevents TTQRE from skipping a multi-shift
|
||||
* QR sweep.
|
||||
*
|
||||
* ISPEC=15: (NSHFTS) The number of simultaneous shifts in
|
||||
* a multi-shift QR iteration.
|
||||
*
|
||||
* ISPEC=16: (IACC22) IPARMQ is set to 0, 1 or 2 with the
|
||||
* following meanings.
|
||||
* 0: During the multi-shift QR sweep,
|
||||
* xLAQR5 does not accumulate reflections and
|
||||
* does not use matrix-matrix multiply to
|
||||
* update the far-from-diagonal matrix
|
||||
* entries.
|
||||
* 1: During the multi-shift QR sweep,
|
||||
* xLAQR5 and/or xLAQRaccumulates reflections and uses
|
||||
* matrix-matrix multiply to update the
|
||||
* far-from-diagonal matrix entries.
|
||||
* 2: During the multi-shift QR sweep.
|
||||
* xLAQR5 accumulates reflections and takes
|
||||
* advantage of 2-by-2 block structure during
|
||||
* matrix-matrix multiplies.
|
||||
* (If xTRMM is slower than xGEMM, then
|
||||
* IPARMQ(ISPEC=16)=1 may be more efficient than
|
||||
* IPARMQ(ISPEC=16)=2 despite the greater level of
|
||||
* arithmetic work implied by the latter choice.)
|
||||
*
|
||||
* NAME (input) character string
|
||||
* Name of the calling subroutine
|
||||
*
|
||||
* OPTS (input) character string
|
||||
* This is a concatenation of the string arguments to
|
||||
* TTQRE.
|
||||
*
|
||||
* N (input) integer scalar
|
||||
* N is the order of the Hessenberg matrix H.
|
||||
*
|
||||
* ILO (input) INTEGER
|
||||
* IHI (input) INTEGER
|
||||
* It is assumed that H is already upper triangular
|
||||
* in rows and columns 1:ILO-1 and IHI+1:N.
|
||||
*
|
||||
* LWORK (input) integer scalar
|
||||
* The amount of workspace available.
|
||||
*
|
||||
* Further Details
|
||||
* ===============
|
||||
*
|
||||
* Little is known about how best to choose these parameters.
|
||||
* It is possible to use different values of the parameters
|
||||
* for each of CHSEQR, DHSEQR, SHSEQR and ZHSEQR.
|
||||
*
|
||||
* It is probably best to choose different parameters for
|
||||
* different matrices and different parameters at different
|
||||
* times during the iteration, but this has not been
|
||||
* implemented --- yet.
|
||||
*
|
||||
*
|
||||
* The best choices of most of the parameters depend
|
||||
* in an ill-understood way on the relative execution
|
||||
* rate of xLAQR3 and xLAQR5 and on the nature of each
|
||||
* particular eigenvalue problem. Experiment may be the
|
||||
* only practical way to determine which choices are most
|
||||
* effective.
|
||||
*
|
||||
* Following is a list of default values supplied by IPARMQ.
|
||||
* These defaults may be adjusted in order to attain better
|
||||
* performance in any particular computational environment.
|
||||
*
|
||||
* IPARMQ(ISPEC=12) The xLAHQR vs xLAQR0 crossover point.
|
||||
* Default: 75. (Must be at least 11.)
|
||||
*
|
||||
* IPARMQ(ISPEC=13) Recommended deflation window size.
|
||||
* This depends on ILO, IHI and NS, the
|
||||
* number of simultaneous shifts returned
|
||||
* by IPARMQ(ISPEC=15). The default for
|
||||
* (IHI-ILO+1).LE.500 is NS. The default
|
||||
* for (IHI-ILO+1).GT.500 is 3*NS/2.
|
||||
*
|
||||
* IPARMQ(ISPEC=14) Nibble crossover point. Default: 14.
|
||||
*
|
||||
* IPARMQ(ISPEC=15) Number of simultaneous shifts, NS.
|
||||
* a multi-shift QR iteration.
|
||||
*
|
||||
* If IHI-ILO+1 is ...
|
||||
*
|
||||
* greater than ...but less ... the
|
||||
* or equal to ... than default is
|
||||
*
|
||||
* 0 30 NS = 2+
|
||||
* 30 60 NS = 4+
|
||||
* 60 150 NS = 10
|
||||
* 150 590 NS = **
|
||||
* 590 3000 NS = 64
|
||||
* 3000 6000 NS = 128
|
||||
* 6000 infinity NS = 256
|
||||
*
|
||||
* (+) By default matrices of this order are
|
||||
* passed to the implicit double shift routine
|
||||
* xLAHQR. See IPARMQ(ISPEC=12) above. These
|
||||
* values of NS are used only in case of a rare
|
||||
* xLAHQR failure.
|
||||
*
|
||||
* (**) The asterisks (**) indicate an ad-hoc
|
||||
* function increasing from 10 to 64.
|
||||
*
|
||||
* IPARMQ(ISPEC=16) Select structured matrix multiply.
|
||||
* (See ISPEC=16 above for details.)
|
||||
* Default: 3.
|
||||
*
|
||||
* ================================================================
|
||||
* ================================================================
|
||||
* .. Parameters ..
|
||||
INTEGER INMIN, INWIN, INIBL, ISHFTS, IACC22
|
||||
PARAMETER ( INMIN = 12, INWIN = 13, INIBL = 14,
|
||||
|
|
|
@ -1,83 +1,122 @@
|
|||
LOGICAL FUNCTION LSAME( CA, CB )
|
||||
*> \brief \b LSAME
|
||||
*
|
||||
* -- LAPACK auxiliary routine (version 3.2) --
|
||||
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
|
||||
* November 2006
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* LOGICAL FUNCTION LSAME(CA,CB)
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* CHARACTER CA,CB
|
||||
* ..
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> LSAME returns .TRUE. if CA is the same letter as CB regardless of
|
||||
*> case.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Arguments:
|
||||
* ==========
|
||||
*
|
||||
*> \param[in] CA
|
||||
*> \verbatim
|
||||
*> CA is CHARACTER*1
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] CB
|
||||
*> \verbatim
|
||||
*> CB is CHARACTER*1
|
||||
*> CA and CB specify the single characters to be compared.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \date November 2011
|
||||
*
|
||||
*> \ingroup aux_blas
|
||||
*
|
||||
* =====================================================================
|
||||
LOGICAL FUNCTION LSAME(CA,CB)
|
||||
*
|
||||
* -- Reference BLAS level1 routine (version 3.1) --
|
||||
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* November 2011
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
CHARACTER CA, CB
|
||||
CHARACTER CA,CB
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* LSAME returns .TRUE. if CA is the same letter as CB regardless of
|
||||
* case.
|
||||
*
|
||||
* Arguments
|
||||
* =========
|
||||
*
|
||||
* CA (input) CHARACTER*1
|
||||
* CB (input) CHARACTER*1
|
||||
* CA and CB specify the single characters to be compared.
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC ICHAR
|
||||
INTRINSIC ICHAR
|
||||
* ..
|
||||
* .. Local Scalars ..
|
||||
INTEGER INTA, INTB, ZCODE
|
||||
INTEGER INTA,INTB,ZCODE
|
||||
* ..
|
||||
* .. Executable Statements ..
|
||||
*
|
||||
* Test if the characters are equal
|
||||
*
|
||||
LSAME = CA.EQ.CB
|
||||
IF( LSAME )
|
||||
$ RETURN
|
||||
LSAME = CA .EQ. CB
|
||||
IF (LSAME) RETURN
|
||||
*
|
||||
* Now test for equivalence if both characters are alphabetic.
|
||||
*
|
||||
ZCODE = ICHAR( 'Z' )
|
||||
ZCODE = ICHAR('Z')
|
||||
*
|
||||
* Use 'Z' rather than 'A' so that ASCII can be detected on Prime
|
||||
* machines, on which ICHAR returns a value with bit 8 set.
|
||||
* ICHAR('A') on Prime machines returns 193 which is the same as
|
||||
* ICHAR('A') on an EBCDIC machine.
|
||||
*
|
||||
INTA = ICHAR( CA )
|
||||
INTB = ICHAR( CB )
|
||||
INTA = ICHAR(CA)
|
||||
INTB = ICHAR(CB)
|
||||
*
|
||||
IF( ZCODE.EQ.90 .OR. ZCODE.EQ.122 ) THEN
|
||||
IF (ZCODE.EQ.90 .OR. ZCODE.EQ.122) THEN
|
||||
*
|
||||
* ASCII is assumed - ZCODE is the ASCII code of either lower or
|
||||
* upper case 'Z'.
|
||||
*
|
||||
IF( INTA.GE.97 .AND. INTA.LE.122 ) INTA = INTA - 32
|
||||
IF( INTB.GE.97 .AND. INTB.LE.122 ) INTB = INTB - 32
|
||||
IF (INTA.GE.97 .AND. INTA.LE.122) INTA = INTA - 32
|
||||
IF (INTB.GE.97 .AND. INTB.LE.122) INTB = INTB - 32
|
||||
*
|
||||
ELSE IF( ZCODE.EQ.233 .OR. ZCODE.EQ.169 ) THEN
|
||||
ELSE IF (ZCODE.EQ.233 .OR. ZCODE.EQ.169) THEN
|
||||
*
|
||||
* EBCDIC is assumed - ZCODE is the EBCDIC code of either lower or
|
||||
* upper case 'Z'.
|
||||
*
|
||||
IF( INTA.GE.129 .AND. INTA.LE.137 .OR.
|
||||
$ INTA.GE.145 .AND. INTA.LE.153 .OR.
|
||||
$ INTA.GE.162 .AND. INTA.LE.169 ) INTA = INTA + 64
|
||||
IF( INTB.GE.129 .AND. INTB.LE.137 .OR.
|
||||
$ INTB.GE.145 .AND. INTB.LE.153 .OR.
|
||||
$ INTB.GE.162 .AND. INTB.LE.169 ) INTB = INTB + 64
|
||||
IF (INTA.GE.129 .AND. INTA.LE.137 .OR.
|
||||
+ INTA.GE.145 .AND. INTA.LE.153 .OR.
|
||||
+ INTA.GE.162 .AND. INTA.LE.169) INTA = INTA + 64
|
||||
IF (INTB.GE.129 .AND. INTB.LE.137 .OR.
|
||||
+ INTB.GE.145 .AND. INTB.LE.153 .OR.
|
||||
+ INTB.GE.162 .AND. INTB.LE.169) INTB = INTB + 64
|
||||
*
|
||||
ELSE IF( ZCODE.EQ.218 .OR. ZCODE.EQ.250 ) THEN
|
||||
ELSE IF (ZCODE.EQ.218 .OR. ZCODE.EQ.250) THEN
|
||||
*
|
||||
* ASCII is assumed, on Prime machines - ZCODE is the ASCII code
|
||||
* plus 128 of either lower or upper case 'Z'.
|
||||
*
|
||||
IF( INTA.GE.225 .AND. INTA.LE.250 ) INTA = INTA - 32
|
||||
IF( INTB.GE.225 .AND. INTB.LE.250 ) INTB = INTB - 32
|
||||
IF (INTA.GE.225 .AND. INTA.LE.250) INTA = INTA - 32
|
||||
IF (INTB.GE.225 .AND. INTB.LE.250) INTB = INTB - 32
|
||||
END IF
|
||||
LSAME = INTA.EQ.INTB
|
||||
LSAME = INTA .EQ. INTB
|
||||
*
|
||||
* RETURN
|
||||
*
|
||||
|
|
|
@ -1,34 +1,85 @@
|
|||
*> \brief \b XERBLA
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
*> \htmlonly
|
||||
*> Download XERBLA + dependencies
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/xerbla.f">
|
||||
*> [TGZ]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/xerbla.f">
|
||||
*> [ZIP]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/xerbla.f">
|
||||
*> [TXT]</a>
|
||||
*> \endhtmlonly
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* SUBROUTINE XERBLA( SRNAME, INFO )
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* CHARACTER*(*) SRNAME
|
||||
* INTEGER INFO
|
||||
* ..
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> XERBLA is an error handler for the LAPACK routines.
|
||||
*> It is called by an LAPACK routine if an input parameter has an
|
||||
*> invalid value. A message is printed and execution stops.
|
||||
*>
|
||||
*> Installers may consider modifying the STOP statement in order to
|
||||
*> call system-specific exception-handling facilities.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Arguments:
|
||||
* ==========
|
||||
*
|
||||
*> \param[in] SRNAME
|
||||
*> \verbatim
|
||||
*> SRNAME is CHARACTER*(*)
|
||||
*> The name of the routine which called XERBLA.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] INFO
|
||||
*> \verbatim
|
||||
*> INFO is INTEGER
|
||||
*> The position of the invalid parameter in the parameter list
|
||||
*> of the calling routine.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \date November 2011
|
||||
*
|
||||
*> \ingroup auxOTHERauxiliary
|
||||
*
|
||||
* =====================================================================
|
||||
SUBROUTINE XERBLA( SRNAME, INFO )
|
||||
*
|
||||
* -- LAPACK auxiliary routine (preliminary version) --
|
||||
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
|
||||
* November 2006
|
||||
* -- LAPACK auxiliary routine (version 3.4.0) --
|
||||
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* November 2011
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
CHARACTER*(*) SRNAME
|
||||
INTEGER INFO
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* XERBLA is an error handler for the LAPACK routines.
|
||||
* It is called by an LAPACK routine if an input parameter has an
|
||||
* invalid value. A message is printed and execution stops.
|
||||
*
|
||||
* Installers may consider modifying the STOP statement in order to
|
||||
* call system-specific exception-handling facilities.
|
||||
*
|
||||
* Arguments
|
||||
* =========
|
||||
*
|
||||
* SRNAME (input) CHARACTER*(*)
|
||||
* The name of the routine which called XERBLA.
|
||||
*
|
||||
* INFO (input) INTEGER
|
||||
* The position of the invalid parameter in the parameter list
|
||||
* of the calling routine.
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Intrinsic Functions ..
|
||||
|
|
Loading…
Reference in New Issue