forked from lijiext/lammps
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@7359 f3b2605a-c512-4ea7-a41b-209d697bcdaa
This commit is contained in:
parent
25ea036d7d
commit
28b1e0de2b
|
@ -0,0 +1,167 @@
|
|||
\documentstyle[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{center}
|
||||
|
||||
\large{Additional documentation for the Gay-Berne ellipsoidal potential \\
|
||||
as implemented in LAMMPS}
|
||||
|
||||
\end{center}
|
||||
|
||||
\centerline{Mike Brown, Sandia National Labs, April 2007}
|
||||
|
||||
\vspace{0.3in}
|
||||
|
||||
The Gay-Berne anisotropic LJ interaction between pairs of dissimilar
|
||||
ellipsoidal particles is given by
|
||||
|
||||
$$ U ( \mathbf{A}_1, \mathbf{A}_2, \mathbf{r}_{12} ) = U_r (
|
||||
\mathbf{A}_1, \mathbf{A}_2, \mathbf{r}_{12}, \gamma ) \cdot \eta_{12} (
|
||||
\mathbf{A}_1, \mathbf{A}_2, \upsilon ) \cdot \chi_{12} ( \mathbf{A}_1,
|
||||
\mathbf{A}_2, \mathbf{r}_{12}, \mu ) $$
|
||||
|
||||
where $\mathbf{A}_1$ and $\mathbf{A}_2$ are the transformation
|
||||
matrices from the simulation box frame to the body frame and
|
||||
$\mathbf{r}_{12}$ is the center to center vector between the
|
||||
particles. $U_r$ controls the shifted distance dependent interaction
|
||||
based on the distance of closest approach of the two particles
|
||||
($h_{12}$) and the user-specified shift parameter gamma:
|
||||
|
||||
$$ U_r = 4 \epsilon ( \varrho^{12} - \varrho^6) $$
|
||||
|
||||
$$ \varrho = \frac{\sigma}{ h_{12} + \gamma \sigma} $$
|
||||
|
||||
Let the shape matrices $\mathbf{S}_i=\mbox{diag}(a_i, b_i, c_i)$ be
|
||||
given by the ellipsoid radii. The $\eta$ orientation-dependent energy
|
||||
based on the user-specified exponent $\upsilon$ is given by
|
||||
|
||||
$$ \eta_{12} = [ \frac{ 2 s_1 s_2 }{\det ( \mathbf{G}_{12} )}]^{
|
||||
\upsilon / 2 } , $$
|
||||
|
||||
$$ s_i = [a_i b_i + c_i c_i][a_i b_i]^{ 1 / 2 }, $$
|
||||
|
||||
and
|
||||
|
||||
$$ \mathbf{G}_{12} = \mathbf{A}_1^T \mathbf{S}_1^2 \mathbf{A}_1 +
|
||||
\mathbf{A}_2^T \mathbf{S}_2^2 \mathbf{A}_2 = \mathbf{G}_1 +
|
||||
\mathbf{G}_2. $$
|
||||
|
||||
Let the relative energy matrices $\mathbf{E}_i = \mbox{diag}
|
||||
(\epsilon_{ia}, \epsilon_{ib}, \epsilon_{ic})$ be given by
|
||||
the relative well depths (dimensionless energy scales
|
||||
inversely proportional to the well-depths of the respective
|
||||
orthogonal configurations of the interacting molecules). The
|
||||
$\chi$ orientation-dependent energy based on the user-specified
|
||||
exponent $\mu$ is given by
|
||||
|
||||
$$ \chi_{12} = [2 \hat{\mathbf{r}}_{12}^T \mathbf{B}_{12}^{-1}
|
||||
\hat{\mathbf{r}}_{12}]^\mu, $$
|
||||
|
||||
$$ \hat{\mathbf{r}}_{12} = { \mathbf{r}_{12} } / |\mathbf{r}_{12}|, $$
|
||||
|
||||
and
|
||||
|
||||
$$ \mathbf{B}_{12} = \mathbf{A}_1^T \mathbf{E}_1^2 \mathbf{A}_1 +
|
||||
\mathbf{A}_2^T \mathbf{E}_2^2 \mathbf{A}_2 = \mathbf{B}_1 +
|
||||
\mathbf{B}_2. $$
|
||||
|
||||
Here, we use the distance of closest approach approximation given by the
|
||||
Perram reference, namely
|
||||
|
||||
$$ h_{12} = r - \sigma_{12} ( \mathbf{A}_1, \mathbf{A}_2,
|
||||
\mathbf{r}_{12} ), $$
|
||||
|
||||
$$ r = |\mathbf{r}_{12}|, $$
|
||||
|
||||
and
|
||||
|
||||
$$ \sigma_{12} = [ \frac{1}{2} \hat{\mathbf{r}}_{12}^T
|
||||
\mathbf{G}_{12}^{-1} \hat{\mathbf{r}}_{12}.]^{ -1/2 } $$
|
||||
|
||||
Forces and Torques: Because the analytic forces and torques have not
|
||||
been published for this potential, we list them here:
|
||||
|
||||
$$ \mathbf{f} = - \eta_{12} ( U_r \cdot { \frac{\partial \chi_{12}
|
||||
}{\partial r} } + \chi_{12} \cdot { \frac{\partial U_r }{\partial r} }
|
||||
) $$
|
||||
|
||||
where the derivative of $U_r$ is given by (see Allen reference)
|
||||
|
||||
$$ \frac{\partial U_r }{\partial r} = \frac{ \partial U_{SLJ} }{
|
||||
\partial r } \hat{\mathbf{r}}_{12} + r^{-2} \frac{ \partial U_{SLJ} }{
|
||||
\partial \varphi } [ \mathbf{\kappa} - ( \mathbf{\kappa}^T \cdot
|
||||
\hat{\mathbf{r}}_{12}) \hat{\mathbf{r}}_{12} ], $$
|
||||
|
||||
$$ \frac{ \partial U_{SLJ} }{ \partial \varphi } = 24 \epsilon ( 2
|
||||
\varrho^{13} - \varrho^7 ) \sigma_{12}^3 / 2 \sigma, $$
|
||||
|
||||
$$ \frac{ \partial U_{SLJ} }{ \partial r } = 24 \epsilon ( 2
|
||||
\varrho^{13} - \varrho^7 ) / \sigma, $$
|
||||
|
||||
and
|
||||
|
||||
$$ \mathbf{\kappa} = \mathbf{G}_{12}^{-1} \cdot \mathbf{r}_{12}. $$
|
||||
|
||||
The derivate of the $\chi$ term is given by
|
||||
|
||||
$$ \frac{\partial \chi_{12} }{\partial r} = - r^{-2} \cdot 4.0 \cdot [
|
||||
\mathbf{\iota} - ( \mathbf{\iota}^T \cdot \hat{\mathbf{r}}_{12} )
|
||||
\hat{\mathbf{r}}_{12} ] \cdot \mu \cdot \chi_{12}^{ ( \mu -1 ) / \mu
|
||||
}, $$
|
||||
|
||||
and
|
||||
|
||||
$$ \mathbf{\iota} = \mathbf{B}_{12}^{-1} \cdot \mathbf{r}_{12}. $$
|
||||
|
||||
The torque is given by:
|
||||
|
||||
$$ \mathbf{\tau}_i = U_r \eta_{12} \frac{ \partial \chi_{12} }{
|
||||
\partial \mathbf{q}_i } + \chi_{12} ( U_r \frac{ \partial \eta_{12} }{
|
||||
\partial \mathbf{q}_i } + \eta_{12} \frac{ \partial U_r }{ \partial
|
||||
\mathbf{q}_i } ), $$
|
||||
|
||||
$$ \frac{ \partial U_r }{ \partial \mathbf{q}_i } = \mathbf{A}_i \cdot
|
||||
(- \mathbf{\kappa}^T \cdot \mathbf{G}_i \times \mathbf{f}_k ), $$
|
||||
|
||||
$$ \mathbf{f}_k = - r^{-2} \frac{ \delta U_{SLJ} }{ \delta \varphi }
|
||||
\mathbf{\kappa}, $$
|
||||
|
||||
and
|
||||
|
||||
$$ \frac{ \partial \chi_{12} }{ \partial \mathbf{q}_i } = 4.0 \cdot
|
||||
r^{-2} \cdot \mathbf{A}_i (- \mathbf{\iota}^T \cdot \mathbf{B}_i
|
||||
\times \mathbf{\iota} ). $$
|
||||
|
||||
For the derivative of the $\eta$ term, we were unable to find a matrix
|
||||
expression due to the determinant. Let $a_{mi}$ be the mth row of the
|
||||
rotation matrix $A_i$. Then,
|
||||
|
||||
$$ \frac{ \partial \eta_{12} }{ \partial \mathbf{q}_i } = \mathbf{A}_i
|
||||
\cdot \sum_m \mathbf{a}_{mi} \times \frac{ \partial \eta_{12} }{
|
||||
\partial \mathbf{a}_{mi} } = \mathbf{A}_i \cdot \sum_m \mathbf{a}_{mi}
|
||||
\times \mathbf{d}_{mi}, $$
|
||||
|
||||
where $d_mi$ represents the mth row of a derivative matrix $D_i$,
|
||||
|
||||
$$ \mathbf{D}_i = - \frac{1}{2} \cdot ( \frac{2s1s2}{\det (
|
||||
\mathbf{G}_{12} ) } )^{ \upsilon / 2 } \cdot {\frac{\upsilon}{\det (
|
||||
\mathbf{G}_{12} ) }} \cdot \mathbf{E}, $$
|
||||
|
||||
where the matrix $E$ gives the derivate with respect to the rotation
|
||||
matrix,
|
||||
|
||||
$$ \mathbf{E} = [ e_{my} ] = \frac{ \partial \eta_{12} }{ \partial
|
||||
\mathbf{A}_i }, $$
|
||||
|
||||
and
|
||||
|
||||
$$ e_{my} = \det ( \mathbf{G}_{12} ) \cdot \mbox{trace} [
|
||||
\mathbf{G}_{12}^{-1} \cdot ( \hat{\mathbf{p}}_y \otimes \mathbf{a}_m +
|
||||
\mathbf{a}_m \otimes \hat{\mathbf{p}}_y ) \cdot s_{mm}^2 ]. $$
|
||||
|
||||
Here, $p_v$ is the unit vector for the axes in the lab frame $(p1=[1, 0,
|
||||
0], p2=[0, 1, 0], and p3=[0, 0, 1])$ and $s_{mm}$ gives the mth radius of
|
||||
the ellipsoid $i$.
|
||||
|
||||
\end{document}
|
|
@ -0,0 +1,113 @@
|
|||
\documentstyle[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{center}
|
||||
|
||||
\large{Additional documentation for the RE-squared ellipsoidal potential \\
|
||||
as implemented in LAMMPS}
|
||||
|
||||
\end{center}
|
||||
|
||||
\centerline{Mike Brown, Sandia National Labs, October 2007}
|
||||
|
||||
\vspace{0.3in}
|
||||
|
||||
Let the shape matrices $\mathbf{S}_i=\mbox{diag}(a_i, b_i, c_i)$ be
|
||||
given by the ellipsoid radii. Let the relative energy matrices
|
||||
$\mathbf{E}_i = \mbox{diag} (\epsilon_{ia}, \epsilon_{ib},
|
||||
\epsilon_{ic})$ be given by the relative well depths
|
||||
(dimensionless energy scales inversely proportional to the well-depths
|
||||
of the respective orthogonal configurations of the interacting molecules).
|
||||
Let $\mathbf{A}_1$ and $\mathbf{A}_2$ be the transformation matrices
|
||||
from the simulation box frame to the body frame and $\mathbf{r}$
|
||||
be the center to center vector between the particles. Let $A_{12}$ be
|
||||
the Hamaker constant for the interaction given in LJ units by
|
||||
$A_{12}=4\pi^2\epsilon_{\mathrm{LJ}}(\rho\sigma^3)^2$.
|
||||
|
||||
\vspace{0.3in}
|
||||
|
||||
The RE-squared anisotropic interaction between pairs of
|
||||
ellipsoidal particles is given by
|
||||
|
||||
$$ U=U_A+U_R, $$
|
||||
|
||||
$$ U_\alpha=\frac{A_{12}}{m_\alpha}(\frac\sigma{h})^{n_\alpha}
|
||||
(1+o_\alpha\eta\chi\frac\sigma{h}) \times \prod_i{
|
||||
\frac{a_ib_ic_i}{(a_i+h/p_\alpha)(b_i+h/p_\alpha)(c_i+h/p_\alpha)}}, $$
|
||||
|
||||
$$ m_A=-36, n_A=0, o_A=3, p_A=2, $$
|
||||
|
||||
$$ m_R=2025, n_R=6, o_R=45/56, p_R=60^{1/3}, $$
|
||||
|
||||
$$ \chi = 2 \hat{\mathbf{r}}^T \mathbf{B}^{-1}
|
||||
\hat{\mathbf{r}}, $$
|
||||
|
||||
$$ \hat{\mathbf{r}} = { \mathbf{r} } / |\mathbf{r}|, $$
|
||||
|
||||
$$ \mathbf{B} = \mathbf{A}_1^T \mathbf{E}_1 \mathbf{A}_1 +
|
||||
\mathbf{A}_2^T \mathbf{E}_2 \mathbf{A}_2 $$
|
||||
|
||||
$$ \eta = \frac{ \det[\mathbf{S}_1]/\sigma_1^2+
|
||||
det[\mathbf{S}_2]/\sigma_2^2}{[\det[\mathbf{H}]/
|
||||
(\sigma_1+\sigma_2)]^{1/2}}, $$
|
||||
|
||||
$$ \sigma_i = (\hat{\mathbf{r}}^T\mathbf{A}_i^T\mathbf{S}_i^{-2}
|
||||
\mathbf{A}_i\hat{\mathbf{r}})^{-1/2}, $$
|
||||
|
||||
$$ \mathbf{H} = \frac{1}{\sigma_1}\mathbf{A}_1^T \mathbf{S}_1^2 \mathbf{A}_1 +
|
||||
\frac{1}{\sigma_2}\mathbf{A}_2^T \mathbf{S}_2^2 \mathbf{A}_2 $$
|
||||
|
||||
|
||||
Here, we use the distance of closest approach approximation given by the
|
||||
Perram reference, namely
|
||||
|
||||
$$ h = |r| - \sigma_{12}, $$
|
||||
|
||||
$$ \sigma_{12} = [ \frac{1}{2} \hat{\mathbf{r}}^T
|
||||
\mathbf{G}^{-1} \hat{\mathbf{r}}]^{ -1/2 }, $$
|
||||
|
||||
and
|
||||
|
||||
$$ \mathbf{G} = \mathbf{A}_1^T \mathbf{S}_1^2 \mathbf{A}_1 +
|
||||
\mathbf{A}_2^T \mathbf{S}_2^2 \mathbf{A}_2 $$
|
||||
|
||||
\vspace{0.3in}
|
||||
|
||||
The RE-squared anisotropic interaction between a
|
||||
ellipsoidal particle and a Lennard-Jones sphere is defined
|
||||
as the $\lim_{a_2->0}U$ under the constraints that
|
||||
$a_2=b_2=c_2$ and $\frac{4}{3}\pi a_2^3\rho=1$:
|
||||
|
||||
$$ U_{\mathrm{elj}}=U_{A_{\mathrm{elj}}}+U_{R_{\mathrm{elj}}}, $$
|
||||
|
||||
$$ U_{\alpha_{\mathrm{elj}}}=(\frac{3\sigma^3c_\alpha^3}
|
||||
{4\pi h_{\mathrm{elj}}^3})\frac{A_{12_{\mathrm{elj}}}}
|
||||
{m_\alpha}(\frac\sigma{h_{\mathrm{elj}}})^{n_\alpha}
|
||||
(1+o_\alpha\chi_{\mathrm{elj}}\frac\sigma{h_{\mathrm{elj}}}) \times
|
||||
\frac{a_1b_1c_1}{(a_1+h_{\mathrm{elj}}/p_\alpha)
|
||||
(b_1+h_{\mathrm{elj}}/p_\alpha)(c_1+h_{\mathrm{elj}}/p_\alpha)}, $$
|
||||
|
||||
$$ A_{12_{\mathrm{elj}}}=4\pi^2\epsilon_{\mathrm{LJ}}(\rho\sigma^3), $$
|
||||
|
||||
with $h_{\mathrm{elj}}$ and $\chi_{\mathrm{elj}}$ calculated as above
|
||||
by replacing $B$ with $B_{\mathrm{elj}}$ and $G$ with $G_{\mathrm{elj}}$:
|
||||
|
||||
$$ \mathbf{B}_{\mathrm{elj}} = \mathbf{A}_1^T \mathbf{E}_1 \mathbf{A}_1 + I, $$
|
||||
|
||||
$$ \mathbf{G}_{\mathrm{elj}} = \mathbf{A}_1^T \mathbf{S}_1^2 \mathbf{A}_1.$$
|
||||
|
||||
\vspace{0.3in}
|
||||
|
||||
The interaction between two LJ spheres is calculated as:
|
||||
|
||||
$$
|
||||
U_{\mathrm{lj}} = 4 \epsilon \left[ \left(\frac{\sigma}{|\mathbf{r}|}\right)^{12} -
|
||||
\left(\frac{\sigma}{|\mathbf{r}|}\right)^6 \right]
|
||||
$$
|
||||
|
||||
\vspace{0.3in}
|
||||
|
||||
The analytic derivatives are used for all force and torque calculation.
|
||||
|
||||
\end{document}
|
Loading…
Reference in New Issue