git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@6695 f3b2605a-c512-4ea7-a41b-209d697bcdaa

This commit is contained in:
sjplimp 2011-08-16 23:39:57 +00:00
parent d154636d09
commit 2698bab9a2
6 changed files with 70 additions and 43 deletions

BIN
doc/Eqs/pair_dipole_sf.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 55 KiB

View File

@ -3,51 +3,49 @@
\begin{document}
\begin{eqnarray*}
E_{LJ} & = & 4\epsilon \left\{\left[ \left( \frac{\sigma}{r} \right)^{12} - \left( \frac{\sigma}{r} \right)^6 \right]
+ \left[ 6\left( \frac{\sigma}{r_c} \right)^{12} - 3\left( \frac{\sigma}{r_c} \right)^6 \right] \left(\frac{r}{r_c}\right)^2
-7\left( \frac{\sigma}{r_c} \right)^{12} +4\left( \frac{\sigma}{r_c} \right)^6\right\}\\
E_{qq} & = & \frac{q_i q_j}{r}\left(1-\frac{r}{r_c}\right)^2 \\
E_{pq} & = & E_{ji} = -\frac{q}{r^3} \left[1-3\left(\frac{r}{r_\mathrm{c}}\right)^2+2\left(\frac{r}{r_\mathrm{c}}\right)^3\right](\vec{p} \bullet \vec{r})
\\
E_{qp} & = & E_{ij} = \frac{q}{r^3}\left[1-3\left(\frac{r}{r_\mathrm{c}}\right)^2+2\left(\frac{r}{r_\mathrm{c}}\right)^3\right] (\vec{p} \bullet \vec{r})
\\
E_{pp} & = & \left[1-4\left(\frac{r}{r_c}\right)^3+3\left(\frac{r}{r_c}\right)^4\right]\left[\frac{1}{r^3} (\vec{p_i} \bullet \vec{p_j}) - \frac{3}{r^5} (\vec{p_i} \bullet \vec{r}) (\vec{p_j} \bullet \vec{r})\right]
E_{LJ} & = & 4\epsilon \left\{ \left[ \left( \frac{\sigma}{r} \right)^{\!12} -
\left( \frac{\sigma}{r} \right)^{\!6} \right] +
\left[ 6\left( \frac{\sigma}{r_c} \right)^{\!12} -
3\left(\frac{\sigma}{r_c}\right)^{\!6}\right]\left(\frac{r}{r_c}\right)^{\!2}
- 7\left( \frac{\sigma}{r_c} \right)^{\!12} +
4\left( \frac{\sigma}{r_c} \right)^{\!6}\right\} \\
E_{qq} & = & \frac{q_i q_j}{r}\left(1-\frac{r}{r_c}\right)^{\!2} \\
E_{pq} & = & E_{ji} = -\frac{q}{r^3} \left[ 1 -
3\left(\frac{r}{r_c}\right)^{\!2} +
2\left(\frac{r}{r_c}\right)^{\!3}\right] (\vec{p}\bullet\vec{r}) \\
E_{qp} & = & E_{ij} = \frac{q}{r^3} \left[ 1 -
3\left(\frac{r}{r_c}\right)^{\!2} +
2\left(\frac{r}{r_c}\right)^{\!3}\right] (\vec{p}\bullet\vec{r}) \\
E_{pp} & = & \left[1-4\left(\frac{r}{r_c}\right)^{\!3} +
3\left(\frac{r}{r_c}\right)^{\!4}\right]\left[\frac{1}{r^3}
(\vec{p_i} \bullet \vec{p_j}) - \frac{3}{r^5}
(\vec{p_i} \bullet \vec{r}) (\vec{p_j} \bullet \vec{r})\right] \\
\end{eqnarray*}
\begin{eqnarray*}
F_{LJ} & = & \left\{\left[48\epsilon \left(\frac{\sigma}{r}\right)^{12} -
24\epsilon \left(\frac{\sigma}{r}\right)^6 \right]\frac{1}{r^2} -
\left[48\epsilon \left(\frac{\sigma}{r_c}\right)^{12} -
24\epsilon \left(\frac{\sigma}{r_c}\right)^6 \right]\frac{1}{r_c^2}
\right\}\vec{r}\\
F_{qq} & = & \frac{q_i q_j}{r}\left(\frac{1}{r^2}-\frac{1}{r_c^2}\right)
\vec{r} \\
F_{pq} &=& F_{ij } = -\frac{3q}{r^5}\left[1-\left(\frac{r}{r_\mathrm{c}}\right)^2\right] (\vec{p} \bullet \vec{r}) \vec{r}+\frac{q}{r^3}\left[1-3\left(\frac{r}{r_\mathrm{c}}\right)^2+2\left(\frac{r}{r_\mathrm{c}}\right)^3\right] \vec{p} \\
F_{qp} &=& F_{ij} = \frac{3q}{r^5}\left[1-\left(\frac{r}{r_\mathrm{c}}\right)^2\right] (\vec{p} \bullet \vec{r}) \vec{r}-\frac{q}{r^3}\left[1-3\left(\frac{r}{r_\mathrm{c}}\right)^2+2\left(\frac{r}{r_\mathrm{c}}\right)^3\right] \vec{p} \\
F_{pp} & = & \frac{3}{r^5} \left\{\left[1-\left(\frac{r}{r_c}\right)^4\right]
\left[(\vec{p_i} \bullet \vec{p_j}) -
\frac{3}{r^2} (\vec{p_i} \bullet \vec{r})
(\vec{p_j} \bullet \vec{r})\right]
\vec{r} \right\\&&
+ \left\left[1-4\left(\frac{r}{r_c}\right)^3+3\left(\frac{r}{r_c}\right)^4\right]
\left[ (\vec{p_j} \bullet \vec{r}) \vec{p_i} +
(\vec{p_i} \bullet \vec{r}) \vec{p_j} -\frac{2}{r^2}
(\vec{p_i} \bullet \vec{r})
(\vec{p_j} \bullet \vec{r})\vec{r}\right]
\right\}\\
\end{eqnarray*}
\begin{eqnarray*}
T_{pq} = T_{ij} & = & \frac{q_j}{r^3}\left[1-3\left(\frac{r}{r_\mathrm{c}}\right)^2+2\left(\frac{r}{r_\mathrm{c}}\right)^3\right] (\vec{p_i} \times \vec{r}) \\
T_{qp} = T_{ji} & = & - \frac{q_i}{r^3}\left[1-3\left(\frac{r}{r_\mathrm{c}}\right)^2+2\left(\frac{r}{r_\mathrm{c}}\right)^3\right] (\vec{p_j} \times \vec{r}) \\
T_{pp} = T_{ij} & = & -\frac{1}{r^3}\left[1-4\left(\frac{r}{r_c}\right)^3+3\left(\frac{r}{r_c}\right)^4\right] (\vec{p_i} \times \vec{p_j}) +
\frac{3}{r^5}\left[1-4\left(\frac{r}{r_c}\right)^3+3\left(\frac{r}{r_c}\right)^4\right] (\vec{p_j} \bullet \vec{r})
(\vec{p_i} \times \vec{r}) \\
T_{pp} = T_{ji} & = & -\frac{1}{r^3} \left[1-4\left(\frac{r}{r_c}\right)^3+3\left(\frac{r}{r_c}\right)^4\right](\vec{p_j} \times \vec{p_i}) +
\frac{3}{r^5}\left[1-4\left(\frac{r}{r_c}\right)^3+3\left(\frac{r}{r_c}\right)^4\right] (\vec{p_i} \bullet \vec{r})
(\vec{p_j} \times \vec{r}) \\
F_{LJ} & = & \left\{\left[48\epsilon \left(\frac{\sigma}{r}\right)^{\!12} -
24\epsilon \left(\frac{\sigma}{r}\right)^{\!6} \right]\frac{1}{r^2} -
\left[48\epsilon \left(\frac{\sigma}{r_c}\right)^{\!12} - 24\epsilon
\left(\frac{\sigma}{r_c}\right)^{\!6} \right]\frac{1}{r_c^2}\right\}\vec{r}\\
F_{qq} & = & \frac{q_i q_j}{r}\left(\frac{1}{r^2} -
\frac{1}{r_c^2}\right)\vec{r} \\
F_{pq} &=& F_{ij } = -\frac{3q}{r^5} \left[ 1 -
\left(\frac{r}{r_c}\right)^{\!2}\right](\vec{p}\bullet\vec{r})\vec{r} +
\frac{q}{r^3}\left[1-3\left(\frac{r}{r_c}\right)^{\!2} +
2\left(\frac{r}{r_c}\right)^{\!3}\right] \vec{p} \\
F_{qp} &=& F_{ij} = \frac{3q}{r^5} \left[ 1 -
\left(\frac{r}{r_c}\right)^{\!2}\right] (\vec{p}\bullet\vec{r})\vec{r} -
\frac{q}{r^3}\left[1-3\left(\frac{r}{r_c}\right)^{\!2} +
2\left(\frac{r}{r_c}\right)^{\!3}\right] \vec{p} \\
F_{pp} & = &\frac{3}{r^5}\Bigg\{\left[1-\left(\frac{r}{r_c}\right)^{\!4}\right]
\left[(\vec{p_i}\bullet\vec{p_j}) - \frac{3}{r^2} (\vec{p_i}\bullet\vec{r})
(\vec{p_j} \bullet \vec{r})\right] \vec{r} + \\
& & \left[1 -
4\left(\frac{r}{r_c}\right)^{\!3}+3\left(\frac{r}{r_c}\right)^{\!4}\right]
\left[ (\vec{p_j} \bullet \vec{r}) \vec{p_i} + (\vec{p_i} \bullet \vec{r})
\vec{p_j} -\frac{2}{r^2} (\vec{p_i} \bullet \vec{r})
(\vec{p_j} \bullet \vec{r})\vec{r}\right] \Bigg\} \\
\end{eqnarray*}
\end{document}

BIN
doc/Eqs/pair_dipole_sf2.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 24 KiB

View File

@ -0,0 +1,24 @@
\documentclass[12pt]{article}
\begin{document}
\begin{eqnarray*}
T_{pq} = T_{ij} & = & \frac{q_j}{r^3} \left[ 1 -
3\left(\frac{r}{r_c}\right)^{\!2} +
2\left(\frac{r}{r_c}\right)^{\!3}\right] (\vec{p_i}\times\vec{r}) \\
T_{qp} = T_{ji} & = & - \frac{q_i}{r^3} \left[ 1 -
3\left(\frac{r}{r_c}\right)^{\!2} +
2\left(\frac{r}{r_c}\right)^{\!3} \right] (\vec{p_j}\times\vec{r}) \\
T_{pp} = T_{ij} & = & -\frac{1}{r^3}\left[1-4\left(\frac{r}{r_c}\right)^{\!3} +
e3\left(\frac{r}{r_c}\right)^{\!4}\right] (\vec{p_i} \times \vec{p_j}) + \\
& & \frac{3}{r^5}\left[1-4\left(\frac{r}{r_c}\right)^{\!3} +
3\left(\frac{r}{r_c}\right)^{\!4}\right] (\vec{p_j}\bullet\vec{r})
(\vec{p_i} \times \vec{r}) \\
T_{pp} = T_{ji} & = & -\frac{1}{r^3}\left[1-4\left(\frac{r}{r_c}\right)^{\!3} +
3\left(\frac{r}{r_c}\right)^{\!4}\right](\vec{p_j} \times \vec{p_i}) + \\
& & \frac{3}{r^5}\left[1-4\left(\frac{r}{r_c}\right)^{\!3} +
3\left(\frac{r}{r_c}\right)^{\!4}\right] (\vec{p_i} \bullet \vec{r})
(\vec{p_j} \times \vec{r}) \\
\end{eqnarray*}
\end{document}

View File

@ -65,7 +65,10 @@ particles I and J:
</P>
<CENTER><IMG SRC = "Eqs/pair_dipole_sf.jpg">
</CENTER>
<P>where qi and qj are the charges on the two particles, pi and pj are
<CENTER><IMG SRC = "Eqs/pair_dipole_sf2.jpg">
</CENTER>
<P>where epsilon and sigma are the standard LJ parameters, r_c is the
cutoff, qi and qj are the charges on the two particles, pi and pj are
the dipole moment vectors of the two particles, r is their separation
distance, and the vector r = Ri - Rj is the separation vector between
the two particles. Note that Eqq and Fqq are simply Coulombic energy

View File

@ -59,8 +59,10 @@ these formulas for the energy (E), force (F), and torque (T) between
particles I and J:
:c,image(Eqs/pair_dipole_sf.jpg)
:c,image(Eqs/pair_dipole_sf2.jpg)
where qi and qj are the charges on the two particles, pi and pj are
where epsilon and sigma are the standard LJ parameters, r_c is the
cutoff, qi and qj are the charges on the two particles, pi and pj are
the dipole moment vectors of the two particles, r is their separation
distance, and the vector r = Ri - Rj is the separation vector between
the two particles. Note that Eqq and Fqq are simply Coulombic energy