git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@7435 f3b2605a-c512-4ea7-a41b-209d697bcdaa

This commit is contained in:
sjplimp 2012-01-06 17:41:26 +00:00
parent 033d0e6546
commit 1215b8accc
37 changed files with 7012 additions and 0 deletions

View File

@ -5,6 +5,7 @@
//#include<stdio.h>
#include<iostream>
#include<string>
#include<cstdio>
template<typename T>
class Array {

View File

@ -3,6 +3,7 @@
#include <string>
#include <iostream>
#include <cstdio>
template<typename T>
class Array2D {

62
lib/linalg/Makefile.gfortran Executable file
View File

@ -0,0 +1,62 @@
# *
# *_________________________________________________________________________*
# * Minimal BLAS/LAPACK Library for ATC
# To compile and link LAMMPS to the linalg library generated by this Makefile,
# try appending the following definitions to the standard definitions in
# whatever LAMMPS Makefile your are using.
# CCFLAGS = -I../../lib/linalg
# LINKFLAGS = -L../../lib/libalg
# USRLIB = -llinalg -lgfortran
SHELL = /bin/sh
# ------ FILES ------
SRC = dasum.f daxpy.f dcopy.f ddot.f dgecon.f dgemm.f dgemv.f dger.f dgetf2.f dgetrf.f dgetri.f dlabad.f dlamch.f dlacn2.f dlange.f dlassq.f dlaswp.f dlatrs.f drscl.f dscal.f dswap.f dtrmm.f dtrmv.f dtrsm.f dtrsv.f dtrti2.f dtrtri.f idamax.f ieeeck.f ilaenv.f iparmq.f lsame.f xerbla.f
FILES = $(SRC) Makefile.*
# ------ DEFINITIONS ------
LIB = liblinalg.a
OBJ = $(SRC:.f=.o)
# ------ SETTINGS ------
FC = gfortran
FFLAGS = -O3 -march=native -mpc64 \
-ffast-math -funroll-loops -fstrict-aliasing -Wall -W -Wno-uninitialized -fno-second-underscore
FFLAGS0 = -O0 -march=native -mpc64 \
-Wall -W -Wno-uninitialized -fno-second-underscore
ARCHIVE = ar
AR = ar
ARCHFLAG = -rcs
USRLIB =
SYSLIB =
# ------ MAKE PROCEDURE ------
lib: $(OBJ)
$(ARCHIVE) $(ARFLAGS) $(LIB) $(OBJ)
# ------ COMPILE RULES ------
%.o:%.F
$(F90) $(F90FLAGS) -c $<
%.o:%.f
$(FC) $(FFLAGS) -c $<
dlamch.o: dlamch.f
$(FC) $(FFLAGS0) -c $<
# ------ CLEAN ------
clean:
-rm *.o *.mod *~ $(LIB)
tar:
-tar -czvf ../linalg.tar.gz $(FILES)

62
lib/linalg/Makefile.mingw_cross Executable file
View File

@ -0,0 +1,62 @@
# *
# *_________________________________________________________________________*
# * Minimal BLAS/LAPACK Library for ATC
# To compile and link LAMMPS to the linalg library generated by this Makefile,
# try appending the following definitions to the standard definitions in
# whatever LAMMPS Makefile your are using.
# CCFLAGS = -I../../lib/linalg
# LINKFLAGS = -L../../lib/libalg
# USRLIB = -llinalg -lgfortran
SHELL = /bin/sh
# ------ FILES ------
SRC = dasum.f daxpy.f dcopy.f ddot.f dgecon.f dgemm.f dgemv.f dger.f dgetf2.f dgetrf.f dgetri.f dlabad.f dlamch.f dlacn2.f dlange.f dlassq.f dlaswp.f dlatrs.f drscl.f dscal.f dswap.f dtrmm.f dtrmv.f dtrsm.f dtrsv.f dtrti2.f dtrtri.f idamax.f ieeeck.f ilaenv.f iparmq.f lsame.f xerbla.f
FILES = $(SRC) Makefile
# ------ DEFINITIONS ------
LIB = liblinalg.a
OBJ = $(SRC:.f=.o)
# ------ SETTINGS ------
FC = i686-pc-mingw32-gfortran
FFLAGS = -O3 -march=i686 -mtune=generic -mfpmath=387 -mpc64 \
-ffast-math -funroll-loops -fstrict-aliasing -Wall -W -Wno-uninitialized -fno-second-underscore
FFLAGS0 = -O0 -march=i686 -mtune=generic -mfpmath=387 -mpc64 \
-Wall -W -Wno-uninitialized -fno-second-underscore
ARCHIVE = i686-pc-mingw32-ar
AR = i686-pc-mingw32-ar
ARCHFLAG = -rcs
USRLIB =
SYSLIB =
# ------ MAKE PROCEDURE ------
lib: $(OBJ)
$(ARCHIVE) $(ARFLAGS) $(LIB) $(OBJ)
# ------ COMPILE RULES ------
%.o:%.F
$(F90) $(F90FLAGS) -c $<
%.o:%.f
$(FC) $(FFLAGS) -c $<
dlamch.o: dlamch.f
$(FC) $(FFLAGS0) -c $<
# ------ CLEAN ------
clean:
-rm *.o *.mod *~ $(LIB)
tar:
-tar -cvf ../linalg.tar $(FILES)

62
lib/linalg/dasum.f Normal file
View File

@ -0,0 +1,62 @@
DOUBLE PRECISION FUNCTION DASUM(N,DX,INCX)
* .. Scalar Arguments ..
INTEGER INCX,N
* ..
* .. Array Arguments ..
DOUBLE PRECISION DX(*)
* ..
*
* Purpose
* =======
*
* DASUM takes the sum of the absolute values.
*
* Further Details
* ===============
*
* jack dongarra, linpack, 3/11/78.
* modified 3/93 to return if incx .le. 0.
* modified 12/3/93, array(1) declarations changed to array(*)
*
* =====================================================================
*
* .. Local Scalars ..
DOUBLE PRECISION DTEMP
INTEGER I,M,MP1,NINCX
* ..
* .. Intrinsic Functions ..
INTRINSIC DABS,MOD
* ..
DASUM = 0.0d0
DTEMP = 0.0d0
IF (N.LE.0 .OR. INCX.LE.0) RETURN
IF (INCX.EQ.1) GO TO 20
*
* code for increment not equal to 1
*
NINCX = N*INCX
DO 10 I = 1,NINCX,INCX
DTEMP = DTEMP + DABS(DX(I))
10 CONTINUE
DASUM = DTEMP
RETURN
*
* code for increment equal to 1
*
*
* clean-up loop
*
20 M = MOD(N,6)
IF (M.EQ.0) GO TO 40
DO 30 I = 1,M
DTEMP = DTEMP + DABS(DX(I))
30 CONTINUE
IF (N.LT.6) GO TO 60
40 MP1 = M + 1
DO 50 I = MP1,N,6
DTEMP = DTEMP + DABS(DX(I)) + DABS(DX(I+1)) + DABS(DX(I+2)) +
+ DABS(DX(I+3)) + DABS(DX(I+4)) + DABS(DX(I+5))
50 CONTINUE
60 DASUM = DTEMP
RETURN
END

67
lib/linalg/daxpy.f Normal file
View File

@ -0,0 +1,67 @@
SUBROUTINE DAXPY(N,DA,DX,INCX,DY,INCY)
* .. Scalar Arguments ..
DOUBLE PRECISION DA
INTEGER INCX,INCY,N
* ..
* .. Array Arguments ..
DOUBLE PRECISION DX(*),DY(*)
* ..
*
* Purpose
* =======
*
* DAXPY constant times a vector plus a vector.
* uses unrolled loops for increments equal to one.
*
* Further Details
* ===============
*
* jack dongarra, linpack, 3/11/78.
* modified 12/3/93, array(1) declarations changed to array(*)
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER I,IX,IY,M,MP1
* ..
* .. Intrinsic Functions ..
INTRINSIC MOD
* ..
IF (N.LE.0) RETURN
IF (DA.EQ.0.0d0) RETURN
IF (INCX.EQ.1 .AND. INCY.EQ.1) GO TO 20
*
* code for unequal increments or equal increments
* not equal to 1
*
IX = 1
IY = 1
IF (INCX.LT.0) IX = (-N+1)*INCX + 1
IF (INCY.LT.0) IY = (-N+1)*INCY + 1
DO 10 I = 1,N
DY(IY) = DY(IY) + DA*DX(IX)
IX = IX + INCX
IY = IY + INCY
10 CONTINUE
RETURN
*
* code for both increments equal to 1
*
*
* clean-up loop
*
20 M = MOD(N,4)
IF (M.EQ.0) GO TO 40
DO 30 I = 1,M
DY(I) = DY(I) + DA*DX(I)
30 CONTINUE
IF (N.LT.4) RETURN
40 MP1 = M + 1
DO 50 I = MP1,N,4
DY(I) = DY(I) + DA*DX(I)
DY(I+1) = DY(I+1) + DA*DX(I+1)
DY(I+2) = DY(I+2) + DA*DX(I+2)
DY(I+3) = DY(I+3) + DA*DX(I+3)
50 CONTINUE
RETURN
END

68
lib/linalg/dcopy.f Normal file
View File

@ -0,0 +1,68 @@
SUBROUTINE DCOPY(N,DX,INCX,DY,INCY)
* .. Scalar Arguments ..
INTEGER INCX,INCY,N
* ..
* .. Array Arguments ..
DOUBLE PRECISION DX(*),DY(*)
* ..
*
* Purpose
* =======
*
* DCOPY copies a vector, x, to a vector, y.
* uses unrolled loops for increments equal to one.
*
* Further Details
* ===============
*
* jack dongarra, linpack, 3/11/78.
* modified 12/3/93, array(1) declarations changed to array(*)
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER I,IX,IY,M,MP1
* ..
* .. Intrinsic Functions ..
INTRINSIC MOD
* ..
IF (N.LE.0) RETURN
IF (INCX.EQ.1 .AND. INCY.EQ.1) GO TO 20
*
* code for unequal increments or equal increments
* not equal to 1
*
IX = 1
IY = 1
IF (INCX.LT.0) IX = (-N+1)*INCX + 1
IF (INCY.LT.0) IY = (-N+1)*INCY + 1
DO 10 I = 1,N
DY(IY) = DX(IX)
IX = IX + INCX
IY = IY + INCY
10 CONTINUE
RETURN
*
* code for both increments equal to 1
*
*
* clean-up loop
*
20 M = MOD(N,7)
IF (M.EQ.0) GO TO 40
DO 30 I = 1,M
DY(I) = DX(I)
30 CONTINUE
IF (N.LT.7) RETURN
40 MP1 = M + 1
DO 50 I = MP1,N,7
DY(I) = DX(I)
DY(I+1) = DX(I+1)
DY(I+2) = DX(I+2)
DY(I+3) = DX(I+3)
DY(I+4) = DX(I+4)
DY(I+5) = DX(I+5)
DY(I+6) = DX(I+6)
50 CONTINUE
RETURN
END

68
lib/linalg/ddot.f Normal file
View File

@ -0,0 +1,68 @@
DOUBLE PRECISION FUNCTION DDOT(N,DX,INCX,DY,INCY)
* .. Scalar Arguments ..
INTEGER INCX,INCY,N
* ..
* .. Array Arguments ..
DOUBLE PRECISION DX(*),DY(*)
* ..
*
* Purpose
* =======
*
* DDOT forms the dot product of two vectors.
* uses unrolled loops for increments equal to one.
*
* Further Details
* ===============
*
* jack dongarra, linpack, 3/11/78.
* modified 12/3/93, array(1) declarations changed to array(*)
*
* =====================================================================
*
* .. Local Scalars ..
DOUBLE PRECISION DTEMP
INTEGER I,IX,IY,M,MP1
* ..
* .. Intrinsic Functions ..
INTRINSIC MOD
* ..
DDOT = 0.0d0
DTEMP = 0.0d0
IF (N.LE.0) RETURN
IF (INCX.EQ.1 .AND. INCY.EQ.1) GO TO 20
*
* code for unequal increments or equal increments
* not equal to 1
*
IX = 1
IY = 1
IF (INCX.LT.0) IX = (-N+1)*INCX + 1
IF (INCY.LT.0) IY = (-N+1)*INCY + 1
DO 10 I = 1,N
DTEMP = DTEMP + DX(IX)*DY(IY)
IX = IX + INCX
IY = IY + INCY
10 CONTINUE
DDOT = DTEMP
RETURN
*
* code for both increments equal to 1
*
*
* clean-up loop
*
20 M = MOD(N,5)
IF (M.EQ.0) GO TO 40
DO 30 I = 1,M
DTEMP = DTEMP + DX(I)*DY(I)
30 CONTINUE
IF (N.LT.5) GO TO 60
40 MP1 = M + 1
DO 50 I = MP1,N,5
DTEMP = DTEMP + DX(I)*DY(I) + DX(I+1)*DY(I+1) +
+ DX(I+2)*DY(I+2) + DX(I+3)*DY(I+3) + DX(I+4)*DY(I+4)
50 CONTINUE
60 DDOT = DTEMP
RETURN
END

186
lib/linalg/dgecon.f Normal file
View File

@ -0,0 +1,186 @@
SUBROUTINE DGECON( NORM, N, A, LDA, ANORM, RCOND, WORK, IWORK,
$ INFO )
*
* -- LAPACK routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2006
*
* Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH.
*
* .. Scalar Arguments ..
CHARACTER NORM
INTEGER INFO, LDA, N
DOUBLE PRECISION ANORM, RCOND
* ..
* .. Array Arguments ..
INTEGER IWORK( * )
DOUBLE PRECISION A( LDA, * ), WORK( * )
* ..
*
* Purpose
* =======
*
* DGECON estimates the reciprocal of the condition number of a general
* real matrix A, in either the 1-norm or the infinity-norm, using
* the LU factorization computed by DGETRF.
*
* An estimate is obtained for norm(inv(A)), and the reciprocal of the
* condition number is computed as
* RCOND = 1 / ( norm(A) * norm(inv(A)) ).
*
* Arguments
* =========
*
* NORM (input) CHARACTER*1
* Specifies whether the 1-norm condition number or the
* infinity-norm condition number is required:
* = '1' or 'O': 1-norm;
* = 'I': Infinity-norm.
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* A (input) DOUBLE PRECISION array, dimension (LDA,N)
* The factors L and U from the factorization A = P*L*U
* as computed by DGETRF.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* ANORM (input) DOUBLE PRECISION
* If NORM = '1' or 'O', the 1-norm of the original matrix A.
* If NORM = 'I', the infinity-norm of the original matrix A.
*
* RCOND (output) DOUBLE PRECISION
* The reciprocal of the condition number of the matrix A,
* computed as RCOND = 1/(norm(A) * norm(inv(A))).
*
* WORK (workspace) DOUBLE PRECISION array, dimension (4*N)
*
* IWORK (workspace) INTEGER array, dimension (N)
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL ONENRM
CHARACTER NORMIN
INTEGER IX, KASE, KASE1
DOUBLE PRECISION AINVNM, SCALE, SL, SMLNUM, SU
* ..
* .. Local Arrays ..
INTEGER ISAVE( 3 )
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER IDAMAX
DOUBLE PRECISION DLAMCH
EXTERNAL LSAME, IDAMAX, DLAMCH
* ..
* .. External Subroutines ..
EXTERNAL DLACN2, DLATRS, DRSCL, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' )
IF( .NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -4
ELSE IF( ANORM.LT.ZERO ) THEN
INFO = -5
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DGECON', -INFO )
RETURN
END IF
*
* Quick return if possible
*
RCOND = ZERO
IF( N.EQ.0 ) THEN
RCOND = ONE
RETURN
ELSE IF( ANORM.EQ.ZERO ) THEN
RETURN
END IF
*
SMLNUM = DLAMCH( 'Safe minimum' )
*
* Estimate the norm of inv(A).
*
AINVNM = ZERO
NORMIN = 'N'
IF( ONENRM ) THEN
KASE1 = 1
ELSE
KASE1 = 2
END IF
KASE = 0
10 CONTINUE
CALL DLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE )
IF( KASE.NE.0 ) THEN
IF( KASE.EQ.KASE1 ) THEN
*
* Multiply by inv(L).
*
CALL DLATRS( 'Lower', 'No transpose', 'Unit', NORMIN, N, A,
$ LDA, WORK, SL, WORK( 2*N+1 ), INFO )
*
* Multiply by inv(U).
*
CALL DLATRS( 'Upper', 'No transpose', 'Non-unit', NORMIN, N,
$ A, LDA, WORK, SU, WORK( 3*N+1 ), INFO )
ELSE
*
* Multiply by inv(U').
*
CALL DLATRS( 'Upper', 'Transpose', 'Non-unit', NORMIN, N, A,
$ LDA, WORK, SU, WORK( 3*N+1 ), INFO )
*
* Multiply by inv(L').
*
CALL DLATRS( 'Lower', 'Transpose', 'Unit', NORMIN, N, A,
$ LDA, WORK, SL, WORK( 2*N+1 ), INFO )
END IF
*
* Divide X by 1/(SL*SU) if doing so will not cause overflow.
*
SCALE = SL*SU
NORMIN = 'Y'
IF( SCALE.NE.ONE ) THEN
IX = IDAMAX( N, WORK, 1 )
IF( SCALE.LT.ABS( WORK( IX ) )*SMLNUM .OR. SCALE.EQ.ZERO )
$ GO TO 20
CALL DRSCL( N, SCALE, WORK, 1 )
END IF
GO TO 10
END IF
*
* Compute the estimate of the reciprocal condition number.
*
IF( AINVNM.NE.ZERO )
$ RCOND = ( ONE / AINVNM ) / ANORM
*
20 CONTINUE
RETURN
*
* End of DGECON
*
END

316
lib/linalg/dgemm.f Normal file
View File

@ -0,0 +1,316 @@
SUBROUTINE DGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
* .. Scalar Arguments ..
DOUBLE PRECISION ALPHA,BETA
INTEGER K,LDA,LDB,LDC,M,N
CHARACTER TRANSA,TRANSB
* ..
* .. Array Arguments ..
DOUBLE PRECISION A(LDA,*),B(LDB,*),C(LDC,*)
* ..
*
* Purpose
* =======
*
* DGEMM performs one of the matrix-matrix operations
*
* C := alpha*op( A )*op( B ) + beta*C,
*
* where op( X ) is one of
*
* op( X ) = X or op( X ) = X',
*
* alpha and beta are scalars, and A, B and C are matrices, with op( A )
* an m by k matrix, op( B ) a k by n matrix and C an m by n matrix.
*
* Arguments
* ==========
*
* TRANSA - CHARACTER*1.
* On entry, TRANSA specifies the form of op( A ) to be used in
* the matrix multiplication as follows:
*
* TRANSA = 'N' or 'n', op( A ) = A.
*
* TRANSA = 'T' or 't', op( A ) = A'.
*
* TRANSA = 'C' or 'c', op( A ) = A'.
*
* Unchanged on exit.
*
* TRANSB - CHARACTER*1.
* On entry, TRANSB specifies the form of op( B ) to be used in
* the matrix multiplication as follows:
*
* TRANSB = 'N' or 'n', op( B ) = B.
*
* TRANSB = 'T' or 't', op( B ) = B'.
*
* TRANSB = 'C' or 'c', op( B ) = B'.
*
* Unchanged on exit.
*
* M - INTEGER.
* On entry, M specifies the number of rows of the matrix
* op( A ) and of the matrix C. M must be at least zero.
* Unchanged on exit.
*
* N - INTEGER.
* On entry, N specifies the number of columns of the matrix
* op( B ) and the number of columns of the matrix C. N must be
* at least zero.
* Unchanged on exit.
*
* K - INTEGER.
* On entry, K specifies the number of columns of the matrix
* op( A ) and the number of rows of the matrix op( B ). K must
* be at least zero.
* Unchanged on exit.
*
* ALPHA - DOUBLE PRECISION.
* On entry, ALPHA specifies the scalar alpha.
* Unchanged on exit.
*
* A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is
* k when TRANSA = 'N' or 'n', and is m otherwise.
* Before entry with TRANSA = 'N' or 'n', the leading m by k
* part of the array A must contain the matrix A, otherwise
* the leading k by m part of the array A must contain the
* matrix A.
* Unchanged on exit.
*
* LDA - INTEGER.
* On entry, LDA specifies the first dimension of A as declared
* in the calling (sub) program. When TRANSA = 'N' or 'n' then
* LDA must be at least max( 1, m ), otherwise LDA must be at
* least max( 1, k ).
* Unchanged on exit.
*
* B - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is
* n when TRANSB = 'N' or 'n', and is k otherwise.
* Before entry with TRANSB = 'N' or 'n', the leading k by n
* part of the array B must contain the matrix B, otherwise
* the leading n by k part of the array B must contain the
* matrix B.
* Unchanged on exit.
*
* LDB - INTEGER.
* On entry, LDB specifies the first dimension of B as declared
* in the calling (sub) program. When TRANSB = 'N' or 'n' then
* LDB must be at least max( 1, k ), otherwise LDB must be at
* least max( 1, n ).
* Unchanged on exit.
*
* BETA - DOUBLE PRECISION.
* On entry, BETA specifies the scalar beta. When BETA is
* supplied as zero then C need not be set on input.
* Unchanged on exit.
*
* C - DOUBLE PRECISION array of DIMENSION ( LDC, n ).
* Before entry, the leading m by n part of the array C must
* contain the matrix C, except when beta is zero, in which
* case C need not be set on entry.
* On exit, the array C is overwritten by the m by n matrix
* ( alpha*op( A )*op( B ) + beta*C ).
*
* LDC - INTEGER.
* On entry, LDC specifies the first dimension of C as declared
* in the calling (sub) program. LDC must be at least
* max( 1, m ).
* Unchanged on exit.
*
* Further Details
* ===============
*
* Level 3 Blas routine.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* =====================================================================
*
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Local Scalars ..
DOUBLE PRECISION TEMP
INTEGER I,INFO,J,L,NCOLA,NROWA,NROWB
LOGICAL NOTA,NOTB
* ..
* .. Parameters ..
DOUBLE PRECISION ONE,ZERO
PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
* ..
*
* Set NOTA and NOTB as true if A and B respectively are not
* transposed and set NROWA, NCOLA and NROWB as the number of rows
* and columns of A and the number of rows of B respectively.
*
NOTA = LSAME(TRANSA,'N')
NOTB = LSAME(TRANSB,'N')
IF (NOTA) THEN
NROWA = M
NCOLA = K
ELSE
NROWA = K
NCOLA = M
END IF
IF (NOTB) THEN
NROWB = K
ELSE
NROWB = N
END IF
*
* Test the input parameters.
*
INFO = 0
IF ((.NOT.NOTA) .AND. (.NOT.LSAME(TRANSA,'C')) .AND.
+ (.NOT.LSAME(TRANSA,'T'))) THEN
INFO = 1
ELSE IF ((.NOT.NOTB) .AND. (.NOT.LSAME(TRANSB,'C')) .AND.
+ (.NOT.LSAME(TRANSB,'T'))) THEN
INFO = 2
ELSE IF (M.LT.0) THEN
INFO = 3
ELSE IF (N.LT.0) THEN
INFO = 4
ELSE IF (K.LT.0) THEN
INFO = 5
ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
INFO = 8
ELSE IF (LDB.LT.MAX(1,NROWB)) THEN
INFO = 10
ELSE IF (LDC.LT.MAX(1,M)) THEN
INFO = 13
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('DGEMM ',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
+ (((ALPHA.EQ.ZERO).OR. (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN
*
* And if alpha.eq.zero.
*
IF (ALPHA.EQ.ZERO) THEN
IF (BETA.EQ.ZERO) THEN
DO 20 J = 1,N
DO 10 I = 1,M
C(I,J) = ZERO
10 CONTINUE
20 CONTINUE
ELSE
DO 40 J = 1,N
DO 30 I = 1,M
C(I,J) = BETA*C(I,J)
30 CONTINUE
40 CONTINUE
END IF
RETURN
END IF
*
* Start the operations.
*
IF (NOTB) THEN
IF (NOTA) THEN
*
* Form C := alpha*A*B + beta*C.
*
DO 90 J = 1,N
IF (BETA.EQ.ZERO) THEN
DO 50 I = 1,M
C(I,J) = ZERO
50 CONTINUE
ELSE IF (BETA.NE.ONE) THEN
DO 60 I = 1,M
C(I,J) = BETA*C(I,J)
60 CONTINUE
END IF
DO 80 L = 1,K
IF (B(L,J).NE.ZERO) THEN
TEMP = ALPHA*B(L,J)
DO 70 I = 1,M
C(I,J) = C(I,J) + TEMP*A(I,L)
70 CONTINUE
END IF
80 CONTINUE
90 CONTINUE
ELSE
*
* Form C := alpha*A'*B + beta*C
*
DO 120 J = 1,N
DO 110 I = 1,M
TEMP = ZERO
DO 100 L = 1,K
TEMP = TEMP + A(L,I)*B(L,J)
100 CONTINUE
IF (BETA.EQ.ZERO) THEN
C(I,J) = ALPHA*TEMP
ELSE
C(I,J) = ALPHA*TEMP + BETA*C(I,J)
END IF
110 CONTINUE
120 CONTINUE
END IF
ELSE
IF (NOTA) THEN
*
* Form C := alpha*A*B' + beta*C
*
DO 170 J = 1,N
IF (BETA.EQ.ZERO) THEN
DO 130 I = 1,M
C(I,J) = ZERO
130 CONTINUE
ELSE IF (BETA.NE.ONE) THEN
DO 140 I = 1,M
C(I,J) = BETA*C(I,J)
140 CONTINUE
END IF
DO 160 L = 1,K
IF (B(J,L).NE.ZERO) THEN
TEMP = ALPHA*B(J,L)
DO 150 I = 1,M
C(I,J) = C(I,J) + TEMP*A(I,L)
150 CONTINUE
END IF
160 CONTINUE
170 CONTINUE
ELSE
*
* Form C := alpha*A'*B' + beta*C
*
DO 200 J = 1,N
DO 190 I = 1,M
TEMP = ZERO
DO 180 L = 1,K
TEMP = TEMP + A(L,I)*B(J,L)
180 CONTINUE
IF (BETA.EQ.ZERO) THEN
C(I,J) = ALPHA*TEMP
ELSE
C(I,J) = ALPHA*TEMP + BETA*C(I,J)
END IF
190 CONTINUE
200 CONTINUE
END IF
END IF
*
RETURN
*
* End of DGEMM .
*
END

264
lib/linalg/dgemv.f Normal file
View File

@ -0,0 +1,264 @@
SUBROUTINE DGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
* .. Scalar Arguments ..
DOUBLE PRECISION ALPHA,BETA
INTEGER INCX,INCY,LDA,M,N
CHARACTER TRANS
* ..
* .. Array Arguments ..
DOUBLE PRECISION A(LDA,*),X(*),Y(*)
* ..
*
* Purpose
* =======
*
* DGEMV performs one of the matrix-vector operations
*
* y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y,
*
* where alpha and beta are scalars, x and y are vectors and A is an
* m by n matrix.
*
* Arguments
* ==========
*
* TRANS - CHARACTER*1.
* On entry, TRANS specifies the operation to be performed as
* follows:
*
* TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
*
* TRANS = 'T' or 't' y := alpha*A'*x + beta*y.
*
* TRANS = 'C' or 'c' y := alpha*A'*x + beta*y.
*
* Unchanged on exit.
*
* M - INTEGER.
* On entry, M specifies the number of rows of the matrix A.
* M must be at least zero.
* Unchanged on exit.
*
* N - INTEGER.
* On entry, N specifies the number of columns of the matrix A.
* N must be at least zero.
* Unchanged on exit.
*
* ALPHA - DOUBLE PRECISION.
* On entry, ALPHA specifies the scalar alpha.
* Unchanged on exit.
*
* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
* Before entry, the leading m by n part of the array A must
* contain the matrix of coefficients.
* Unchanged on exit.
*
* LDA - INTEGER.
* On entry, LDA specifies the first dimension of A as declared
* in the calling (sub) program. LDA must be at least
* max( 1, m ).
* Unchanged on exit.
*
* X - DOUBLE PRECISION array of DIMENSION at least
* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
* and at least
* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
* Before entry, the incremented array X must contain the
* vector x.
* Unchanged on exit.
*
* INCX - INTEGER.
* On entry, INCX specifies the increment for the elements of
* X. INCX must not be zero.
* Unchanged on exit.
*
* BETA - DOUBLE PRECISION.
* On entry, BETA specifies the scalar beta. When BETA is
* supplied as zero then Y need not be set on input.
* Unchanged on exit.
*
* Y - DOUBLE PRECISION array of DIMENSION at least
* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
* and at least
* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
* Before entry with BETA non-zero, the incremented array Y
* must contain the vector y. On exit, Y is overwritten by the
* updated vector y.
*
* INCY - INTEGER.
* On entry, INCY specifies the increment for the elements of
* Y. INCY must not be zero.
* Unchanged on exit.
*
* Further Details
* ===============
*
* Level 2 Blas routine.
*
* -- Written on 22-October-1986.
* Jack Dongarra, Argonne National Lab.
* Jeremy Du Croz, Nag Central Office.
* Sven Hammarling, Nag Central Office.
* Richard Hanson, Sandia National Labs.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE,ZERO
PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
* ..
* .. Local Scalars ..
DOUBLE PRECISION TEMP
INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY,LENX,LENY
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
*
* Test the input parameters.
*
INFO = 0
IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
+ .NOT.LSAME(TRANS,'C')) THEN
INFO = 1
ELSE IF (M.LT.0) THEN
INFO = 2
ELSE IF (N.LT.0) THEN
INFO = 3
ELSE IF (LDA.LT.MAX(1,M)) THEN
INFO = 6
ELSE IF (INCX.EQ.0) THEN
INFO = 8
ELSE IF (INCY.EQ.0) THEN
INFO = 11
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('DGEMV ',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
+ ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
*
* Set LENX and LENY, the lengths of the vectors x and y, and set
* up the start points in X and Y.
*
IF (LSAME(TRANS,'N')) THEN
LENX = N
LENY = M
ELSE
LENX = M
LENY = N
END IF
IF (INCX.GT.0) THEN
KX = 1
ELSE
KX = 1 - (LENX-1)*INCX
END IF
IF (INCY.GT.0) THEN
KY = 1
ELSE
KY = 1 - (LENY-1)*INCY
END IF
*
* Start the operations. In this version the elements of A are
* accessed sequentially with one pass through A.
*
* First form y := beta*y.
*
IF (BETA.NE.ONE) THEN
IF (INCY.EQ.1) THEN
IF (BETA.EQ.ZERO) THEN
DO 10 I = 1,LENY
Y(I) = ZERO
10 CONTINUE
ELSE
DO 20 I = 1,LENY
Y(I) = BETA*Y(I)
20 CONTINUE
END IF
ELSE
IY = KY
IF (BETA.EQ.ZERO) THEN
DO 30 I = 1,LENY
Y(IY) = ZERO
IY = IY + INCY
30 CONTINUE
ELSE
DO 40 I = 1,LENY
Y(IY) = BETA*Y(IY)
IY = IY + INCY
40 CONTINUE
END IF
END IF
END IF
IF (ALPHA.EQ.ZERO) RETURN
IF (LSAME(TRANS,'N')) THEN
*
* Form y := alpha*A*x + y.
*
JX = KX
IF (INCY.EQ.1) THEN
DO 60 J = 1,N
IF (X(JX).NE.ZERO) THEN
TEMP = ALPHA*X(JX)
DO 50 I = 1,M
Y(I) = Y(I) + TEMP*A(I,J)
50 CONTINUE
END IF
JX = JX + INCX
60 CONTINUE
ELSE
DO 80 J = 1,N
IF (X(JX).NE.ZERO) THEN
TEMP = ALPHA*X(JX)
IY = KY
DO 70 I = 1,M
Y(IY) = Y(IY) + TEMP*A(I,J)
IY = IY + INCY
70 CONTINUE
END IF
JX = JX + INCX
80 CONTINUE
END IF
ELSE
*
* Form y := alpha*A'*x + y.
*
JY = KY
IF (INCX.EQ.1) THEN
DO 100 J = 1,N
TEMP = ZERO
DO 90 I = 1,M
TEMP = TEMP + A(I,J)*X(I)
90 CONTINUE
Y(JY) = Y(JY) + ALPHA*TEMP
JY = JY + INCY
100 CONTINUE
ELSE
DO 120 J = 1,N
TEMP = ZERO
IX = KX
DO 110 I = 1,M
TEMP = TEMP + A(I,J)*X(IX)
IX = IX + INCX
110 CONTINUE
Y(JY) = Y(JY) + ALPHA*TEMP
JY = JY + INCY
120 CONTINUE
END IF
END IF
*
RETURN
*
* End of DGEMV .
*
END

162
lib/linalg/dger.f Normal file
View File

@ -0,0 +1,162 @@
SUBROUTINE DGER(M,N,ALPHA,X,INCX,Y,INCY,A,LDA)
* .. Scalar Arguments ..
DOUBLE PRECISION ALPHA
INTEGER INCX,INCY,LDA,M,N
* ..
* .. Array Arguments ..
DOUBLE PRECISION A(LDA,*),X(*),Y(*)
* ..
*
* Purpose
* =======
*
* DGER performs the rank 1 operation
*
* A := alpha*x*y' + A,
*
* where alpha is a scalar, x is an m element vector, y is an n element
* vector and A is an m by n matrix.
*
* Arguments
* ==========
*
* M - INTEGER.
* On entry, M specifies the number of rows of the matrix A.
* M must be at least zero.
* Unchanged on exit.
*
* N - INTEGER.
* On entry, N specifies the number of columns of the matrix A.
* N must be at least zero.
* Unchanged on exit.
*
* ALPHA - DOUBLE PRECISION.
* On entry, ALPHA specifies the scalar alpha.
* Unchanged on exit.
*
* X - DOUBLE PRECISION array of dimension at least
* ( 1 + ( m - 1 )*abs( INCX ) ).
* Before entry, the incremented array X must contain the m
* element vector x.
* Unchanged on exit.
*
* INCX - INTEGER.
* On entry, INCX specifies the increment for the elements of
* X. INCX must not be zero.
* Unchanged on exit.
*
* Y - DOUBLE PRECISION array of dimension at least
* ( 1 + ( n - 1 )*abs( INCY ) ).
* Before entry, the incremented array Y must contain the n
* element vector y.
* Unchanged on exit.
*
* INCY - INTEGER.
* On entry, INCY specifies the increment for the elements of
* Y. INCY must not be zero.
* Unchanged on exit.
*
* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
* Before entry, the leading m by n part of the array A must
* contain the matrix of coefficients. On exit, A is
* overwritten by the updated matrix.
*
* LDA - INTEGER.
* On entry, LDA specifies the first dimension of A as declared
* in the calling (sub) program. LDA must be at least
* max( 1, m ).
* Unchanged on exit.
*
* Further Details
* ===============
*
* Level 2 Blas routine.
*
* -- Written on 22-October-1986.
* Jack Dongarra, Argonne National Lab.
* Jeremy Du Croz, Nag Central Office.
* Sven Hammarling, Nag Central Office.
* Richard Hanson, Sandia National Labs.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER (ZERO=0.0D+0)
* ..
* .. Local Scalars ..
DOUBLE PRECISION TEMP
INTEGER I,INFO,IX,J,JY,KX
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
*
* Test the input parameters.
*
INFO = 0
IF (M.LT.0) THEN
INFO = 1
ELSE IF (N.LT.0) THEN
INFO = 2
ELSE IF (INCX.EQ.0) THEN
INFO = 5
ELSE IF (INCY.EQ.0) THEN
INFO = 7
ELSE IF (LDA.LT.MAX(1,M)) THEN
INFO = 9
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('DGER ',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF ((M.EQ.0) .OR. (N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
*
* Start the operations. In this version the elements of A are
* accessed sequentially with one pass through A.
*
IF (INCY.GT.0) THEN
JY = 1
ELSE
JY = 1 - (N-1)*INCY
END IF
IF (INCX.EQ.1) THEN
DO 20 J = 1,N
IF (Y(JY).NE.ZERO) THEN
TEMP = ALPHA*Y(JY)
DO 10 I = 1,M
A(I,J) = A(I,J) + X(I)*TEMP
10 CONTINUE
END IF
JY = JY + INCY
20 CONTINUE
ELSE
IF (INCX.GT.0) THEN
KX = 1
ELSE
KX = 1 - (M-1)*INCX
END IF
DO 40 J = 1,N
IF (Y(JY).NE.ZERO) THEN
TEMP = ALPHA*Y(JY)
IX = KX
DO 30 I = 1,M
A(I,J) = A(I,J) + X(IX)*TEMP
IX = IX + INCX
30 CONTINUE
END IF
JY = JY + INCY
40 CONTINUE
END IF
*
RETURN
*
* End of DGER .
*
END

148
lib/linalg/dgetf2.f Normal file
View File

@ -0,0 +1,148 @@
SUBROUTINE DGETF2( M, N, A, LDA, IPIV, INFO )
*
* -- LAPACK routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2006
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, M, N
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
DOUBLE PRECISION A( LDA, * )
* ..
*
* Purpose
* =======
*
* DGETF2 computes an LU factorization of a general m-by-n matrix A
* using partial pivoting with row interchanges.
*
* The factorization has the form
* A = P * L * U
* where P is a permutation matrix, L is lower triangular with unit
* diagonal elements (lower trapezoidal if m > n), and U is upper
* triangular (upper trapezoidal if m < n).
*
* This is the right-looking Level 2 BLAS version of the algorithm.
*
* Arguments
* =========
*
* M (input) INTEGER
* The number of rows of the matrix A. M >= 0.
*
* N (input) INTEGER
* The number of columns of the matrix A. N >= 0.
*
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
* On entry, the m by n matrix to be factored.
* On exit, the factors L and U from the factorization
* A = P*L*U; the unit diagonal elements of L are not stored.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,M).
*
* IPIV (output) INTEGER array, dimension (min(M,N))
* The pivot indices; for 1 <= i <= min(M,N), row i of the
* matrix was interchanged with row IPIV(i).
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -k, the k-th argument had an illegal value
* > 0: if INFO = k, U(k,k) is exactly zero. The factorization
* has been completed, but the factor U is exactly
* singular, and division by zero will occur if it is used
* to solve a system of equations.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
DOUBLE PRECISION SFMIN
INTEGER I, J, JP
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH
INTEGER IDAMAX
EXTERNAL DLAMCH, IDAMAX
* ..
* .. External Subroutines ..
EXTERNAL DGER, DSCAL, DSWAP, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -4
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DGETF2', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( M.EQ.0 .OR. N.EQ.0 )
$ RETURN
*
* Compute machine safe minimum
*
SFMIN = DLAMCH('S')
*
DO 10 J = 1, MIN( M, N )
*
* Find pivot and test for singularity.
*
JP = J - 1 + IDAMAX( M-J+1, A( J, J ), 1 )
IPIV( J ) = JP
IF( A( JP, J ).NE.ZERO ) THEN
*
* Apply the interchange to columns 1:N.
*
IF( JP.NE.J )
$ CALL DSWAP( N, A( J, 1 ), LDA, A( JP, 1 ), LDA )
*
* Compute elements J+1:M of J-th column.
*
IF( J.LT.M ) THEN
IF( ABS(A( J, J )) .GE. SFMIN ) THEN
CALL DSCAL( M-J, ONE / A( J, J ), A( J+1, J ), 1 )
ELSE
DO 20 I = 1, M-J
A( J+I, J ) = A( J+I, J ) / A( J, J )
20 CONTINUE
END IF
END IF
*
ELSE IF( INFO.EQ.0 ) THEN
*
INFO = J
END IF
*
IF( J.LT.MIN( M, N ) ) THEN
*
* Update trailing submatrix.
*
CALL DGER( M-J, N-J, -ONE, A( J+1, J ), 1, A( J, J+1 ), LDA,
$ A( J+1, J+1 ), LDA )
END IF
10 CONTINUE
RETURN
*
* End of DGETF2
*
END

160
lib/linalg/dgetrf.f Normal file
View File

@ -0,0 +1,160 @@
SUBROUTINE DGETRF( M, N, A, LDA, IPIV, INFO )
*
* -- LAPACK routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2006
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, M, N
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
DOUBLE PRECISION A( LDA, * )
* ..
*
* Purpose
* =======
*
* DGETRF computes an LU factorization of a general M-by-N matrix A
* using partial pivoting with row interchanges.
*
* The factorization has the form
* A = P * L * U
* where P is a permutation matrix, L is lower triangular with unit
* diagonal elements (lower trapezoidal if m > n), and U is upper
* triangular (upper trapezoidal if m < n).
*
* This is the right-looking Level 3 BLAS version of the algorithm.
*
* Arguments
* =========
*
* M (input) INTEGER
* The number of rows of the matrix A. M >= 0.
*
* N (input) INTEGER
* The number of columns of the matrix A. N >= 0.
*
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
* On entry, the M-by-N matrix to be factored.
* On exit, the factors L and U from the factorization
* A = P*L*U; the unit diagonal elements of L are not stored.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,M).
*
* IPIV (output) INTEGER array, dimension (min(M,N))
* The pivot indices; for 1 <= i <= min(M,N), row i of the
* matrix was interchanged with row IPIV(i).
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: if INFO = i, U(i,i) is exactly zero. The factorization
* has been completed, but the factor U is exactly
* singular, and division by zero will occur if it is used
* to solve a system of equations.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I, IINFO, J, JB, NB
* ..
* .. External Subroutines ..
EXTERNAL DGEMM, DGETF2, DLASWP, DTRSM, XERBLA
* ..
* .. External Functions ..
INTEGER ILAENV
EXTERNAL ILAENV
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -4
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DGETRF', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( M.EQ.0 .OR. N.EQ.0 )
$ RETURN
*
* Determine the block size for this environment.
*
NB = ILAENV( 1, 'DGETRF', ' ', M, N, -1, -1 )
IF( NB.LE.1 .OR. NB.GE.MIN( M, N ) ) THEN
*
* Use unblocked code.
*
CALL DGETF2( M, N, A, LDA, IPIV, INFO )
ELSE
*
* Use blocked code.
*
DO 20 J = 1, MIN( M, N ), NB
JB = MIN( MIN( M, N )-J+1, NB )
*
* Factor diagonal and subdiagonal blocks and test for exact
* singularity.
*
CALL DGETF2( M-J+1, JB, A( J, J ), LDA, IPIV( J ), IINFO )
*
* Adjust INFO and the pivot indices.
*
IF( INFO.EQ.0 .AND. IINFO.GT.0 )
$ INFO = IINFO + J - 1
DO 10 I = J, MIN( M, J+JB-1 )
IPIV( I ) = J - 1 + IPIV( I )
10 CONTINUE
*
* Apply interchanges to columns 1:J-1.
*
CALL DLASWP( J-1, A, LDA, J, J+JB-1, IPIV, 1 )
*
IF( J+JB.LE.N ) THEN
*
* Apply interchanges to columns J+JB:N.
*
CALL DLASWP( N-J-JB+1, A( 1, J+JB ), LDA, J, J+JB-1,
$ IPIV, 1 )
*
* Compute block row of U.
*
CALL DTRSM( 'Left', 'Lower', 'No transpose', 'Unit', JB,
$ N-J-JB+1, ONE, A( J, J ), LDA, A( J, J+JB ),
$ LDA )
IF( J+JB.LE.M ) THEN
*
* Update trailing submatrix.
*
CALL DGEMM( 'No transpose', 'No transpose', M-J-JB+1,
$ N-J-JB+1, JB, -ONE, A( J+JB, J ), LDA,
$ A( J, J+JB ), LDA, ONE, A( J+JB, J+JB ),
$ LDA )
END IF
END IF
20 CONTINUE
END IF
RETURN
*
* End of DGETRF
*
END

193
lib/linalg/dgetri.f Normal file
View File

@ -0,0 +1,193 @@
SUBROUTINE DGETRI( N, A, LDA, IPIV, WORK, LWORK, INFO )
*
* -- LAPACK routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2006
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LWORK, N
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
DOUBLE PRECISION A( LDA, * ), WORK( * )
* ..
*
* Purpose
* =======
*
* DGETRI computes the inverse of a matrix using the LU factorization
* computed by DGETRF.
*
* This method inverts U and then computes inv(A) by solving the system
* inv(A)*L = inv(U) for inv(A).
*
* Arguments
* =========
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
* On entry, the factors L and U from the factorization
* A = P*L*U as computed by DGETRF.
* On exit, if INFO = 0, the inverse of the original matrix A.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* IPIV (input) INTEGER array, dimension (N)
* The pivot indices from DGETRF; for 1<=i<=N, row i of the
* matrix was interchanged with row IPIV(i).
*
* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
* On exit, if INFO=0, then WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK. LWORK >= max(1,N).
* For optimal performance LWORK >= N*NB, where NB is
* the optimal blocksize returned by ILAENV.
*
* If LWORK = -1, then a workspace query is assumed; the routine
* only calculates the optimal size of the WORK array, returns
* this value as the first entry of the WORK array, and no error
* message related to LWORK is issued by XERBLA.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: if INFO = i, U(i,i) is exactly zero; the matrix is
* singular and its inverse could not be computed.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL LQUERY
INTEGER I, IWS, J, JB, JJ, JP, LDWORK, LWKOPT, NB,
$ NBMIN, NN
* ..
* .. External Functions ..
INTEGER ILAENV
EXTERNAL ILAENV
* ..
* .. External Subroutines ..
EXTERNAL DGEMM, DGEMV, DSWAP, DTRSM, DTRTRI, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
NB = ILAENV( 1, 'DGETRI', ' ', N, -1, -1, -1 )
LWKOPT = N*NB
WORK( 1 ) = LWKOPT
LQUERY = ( LWORK.EQ.-1 )
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -3
ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
INFO = -6
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DGETRI', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Form inv(U). If INFO > 0 from DTRTRI, then U is singular,
* and the inverse is not computed.
*
CALL DTRTRI( 'Upper', 'Non-unit', N, A, LDA, INFO )
IF( INFO.GT.0 )
$ RETURN
*
NBMIN = 2
LDWORK = N
IF( NB.GT.1 .AND. NB.LT.N ) THEN
IWS = MAX( LDWORK*NB, 1 )
IF( LWORK.LT.IWS ) THEN
NB = LWORK / LDWORK
NBMIN = MAX( 2, ILAENV( 2, 'DGETRI', ' ', N, -1, -1, -1 ) )
END IF
ELSE
IWS = N
END IF
*
* Solve the equation inv(A)*L = inv(U) for inv(A).
*
IF( NB.LT.NBMIN .OR. NB.GE.N ) THEN
*
* Use unblocked code.
*
DO 20 J = N, 1, -1
*
* Copy current column of L to WORK and replace with zeros.
*
DO 10 I = J + 1, N
WORK( I ) = A( I, J )
A( I, J ) = ZERO
10 CONTINUE
*
* Compute current column of inv(A).
*
IF( J.LT.N )
$ CALL DGEMV( 'No transpose', N, N-J, -ONE, A( 1, J+1 ),
$ LDA, WORK( J+1 ), 1, ONE, A( 1, J ), 1 )
20 CONTINUE
ELSE
*
* Use blocked code.
*
NN = ( ( N-1 ) / NB )*NB + 1
DO 50 J = NN, 1, -NB
JB = MIN( NB, N-J+1 )
*
* Copy current block column of L to WORK and replace with
* zeros.
*
DO 40 JJ = J, J + JB - 1
DO 30 I = JJ + 1, N
WORK( I+( JJ-J )*LDWORK ) = A( I, JJ )
A( I, JJ ) = ZERO
30 CONTINUE
40 CONTINUE
*
* Compute current block column of inv(A).
*
IF( J+JB.LE.N )
$ CALL DGEMM( 'No transpose', 'No transpose', N, JB,
$ N-J-JB+1, -ONE, A( 1, J+JB ), LDA,
$ WORK( J+JB ), LDWORK, ONE, A( 1, J ), LDA )
CALL DTRSM( 'Right', 'Lower', 'No transpose', 'Unit', N, JB,
$ ONE, WORK( J ), LDWORK, A( 1, J ), LDA )
50 CONTINUE
END IF
*
* Apply column interchanges.
*
DO 60 J = N - 1, 1, -1
JP = IPIV( J )
IF( JP.NE.J )
$ CALL DSWAP( N, A( 1, J ), 1, A( 1, JP ), 1 )
60 CONTINUE
*
WORK( 1 ) = IWS
RETURN
*
* End of DGETRI
*
END

56
lib/linalg/dlabad.f Normal file
View File

@ -0,0 +1,56 @@
SUBROUTINE DLABAD( SMALL, LARGE )
*
* -- LAPACK auxiliary routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2006
*
* .. Scalar Arguments ..
DOUBLE PRECISION LARGE, SMALL
* ..
*
* Purpose
* =======
*
* DLABAD takes as input the values computed by DLAMCH for underflow and
* overflow, and returns the square root of each of these values if the
* log of LARGE is sufficiently large. This subroutine is intended to
* identify machines with a large exponent range, such as the Crays, and
* redefine the underflow and overflow limits to be the square roots of
* the values computed by DLAMCH. This subroutine is needed because
* DLAMCH does not compensate for poor arithmetic in the upper half of
* the exponent range, as is found on a Cray.
*
* Arguments
* =========
*
* SMALL (input/output) DOUBLE PRECISION
* On entry, the underflow threshold as computed by DLAMCH.
* On exit, if LOG10(LARGE) is sufficiently large, the square
* root of SMALL, otherwise unchanged.
*
* LARGE (input/output) DOUBLE PRECISION
* On entry, the overflow threshold as computed by DLAMCH.
* On exit, if LOG10(LARGE) is sufficiently large, the square
* root of LARGE, otherwise unchanged.
*
* =====================================================================
*
* .. Intrinsic Functions ..
INTRINSIC LOG10, SQRT
* ..
* .. Executable Statements ..
*
* If it looks like we're on a Cray, take the square root of
* SMALL and LARGE to avoid overflow and underflow problems.
*
IF( LOG10( LARGE ).GT.2000.D0 ) THEN
SMALL = SQRT( SMALL )
LARGE = SQRT( LARGE )
END IF
*
RETURN
*
* End of DLABAD
*
END

215
lib/linalg/dlacn2.f Normal file
View File

@ -0,0 +1,215 @@
SUBROUTINE DLACN2( N, V, X, ISGN, EST, KASE, ISAVE )
*
* -- LAPACK auxiliary routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2006
*
* .. Scalar Arguments ..
INTEGER KASE, N
DOUBLE PRECISION EST
* ..
* .. Array Arguments ..
INTEGER ISGN( * ), ISAVE( 3 )
DOUBLE PRECISION V( * ), X( * )
* ..
*
* Purpose
* =======
*
* DLACN2 estimates the 1-norm of a square, real matrix A.
* Reverse communication is used for evaluating matrix-vector products.
*
* Arguments
* =========
*
* N (input) INTEGER
* The order of the matrix. N >= 1.
*
* V (workspace) DOUBLE PRECISION array, dimension (N)
* On the final return, V = A*W, where EST = norm(V)/norm(W)
* (W is not returned).
*
* X (input/output) DOUBLE PRECISION array, dimension (N)
* On an intermediate return, X should be overwritten by
* A * X, if KASE=1,
* A' * X, if KASE=2,
* and DLACN2 must be re-called with all the other parameters
* unchanged.
*
* ISGN (workspace) INTEGER array, dimension (N)
*
* EST (input/output) DOUBLE PRECISION
* On entry with KASE = 1 or 2 and ISAVE(1) = 3, EST should be
* unchanged from the previous call to DLACN2.
* On exit, EST is an estimate (a lower bound) for norm(A).
*
* KASE (input/output) INTEGER
* On the initial call to DLACN2, KASE should be 0.
* On an intermediate return, KASE will be 1 or 2, indicating
* whether X should be overwritten by A * X or A' * X.
* On the final return from DLACN2, KASE will again be 0.
*
* ISAVE (input/output) INTEGER array, dimension (3)
* ISAVE is used to save variables between calls to DLACN2
*
* Further Details
* ======= =======
*
* Contributed by Nick Higham, University of Manchester.
* Originally named SONEST, dated March 16, 1988.
*
* Reference: N.J. Higham, "FORTRAN codes for estimating the one-norm of
* a real or complex matrix, with applications to condition estimation",
* ACM Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, December 1988.
*
* This is a thread safe version of DLACON, which uses the array ISAVE
* in place of a SAVE statement, as follows:
*
* DLACON DLACN2
* JUMP ISAVE(1)
* J ISAVE(2)
* ITER ISAVE(3)
*
* =====================================================================
*
* .. Parameters ..
INTEGER ITMAX
PARAMETER ( ITMAX = 5 )
DOUBLE PRECISION ZERO, ONE, TWO
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I, JLAST
DOUBLE PRECISION ALTSGN, ESTOLD, TEMP
* ..
* .. External Functions ..
INTEGER IDAMAX
DOUBLE PRECISION DASUM
EXTERNAL IDAMAX, DASUM
* ..
* .. External Subroutines ..
EXTERNAL DCOPY
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, NINT, SIGN
* ..
* .. Executable Statements ..
*
IF( KASE.EQ.0 ) THEN
DO 10 I = 1, N
X( I ) = ONE / DBLE( N )
10 CONTINUE
KASE = 1
ISAVE( 1 ) = 1
RETURN
END IF
*
GO TO ( 20, 40, 70, 110, 140 )ISAVE( 1 )
*
* ................ ENTRY (ISAVE( 1 ) = 1)
* FIRST ITERATION. X HAS BEEN OVERWRITTEN BY A*X.
*
20 CONTINUE
IF( N.EQ.1 ) THEN
V( 1 ) = X( 1 )
EST = ABS( V( 1 ) )
* ... QUIT
GO TO 150
END IF
EST = DASUM( N, X, 1 )
*
DO 30 I = 1, N
X( I ) = SIGN( ONE, X( I ) )
ISGN( I ) = NINT( X( I ) )
30 CONTINUE
KASE = 2
ISAVE( 1 ) = 2
RETURN
*
* ................ ENTRY (ISAVE( 1 ) = 2)
* FIRST ITERATION. X HAS BEEN OVERWRITTEN BY TRANSPOSE(A)*X.
*
40 CONTINUE
ISAVE( 2 ) = IDAMAX( N, X, 1 )
ISAVE( 3 ) = 2
*
* MAIN LOOP - ITERATIONS 2,3,...,ITMAX.
*
50 CONTINUE
DO 60 I = 1, N
X( I ) = ZERO
60 CONTINUE
X( ISAVE( 2 ) ) = ONE
KASE = 1
ISAVE( 1 ) = 3
RETURN
*
* ................ ENTRY (ISAVE( 1 ) = 3)
* X HAS BEEN OVERWRITTEN BY A*X.
*
70 CONTINUE
CALL DCOPY( N, X, 1, V, 1 )
ESTOLD = EST
EST = DASUM( N, V, 1 )
DO 80 I = 1, N
IF( NINT( SIGN( ONE, X( I ) ) ).NE.ISGN( I ) )
$ GO TO 90
80 CONTINUE
* REPEATED SIGN VECTOR DETECTED, HENCE ALGORITHM HAS CONVERGED.
GO TO 120
*
90 CONTINUE
* TEST FOR CYCLING.
IF( EST.LE.ESTOLD )
$ GO TO 120
*
DO 100 I = 1, N
X( I ) = SIGN( ONE, X( I ) )
ISGN( I ) = NINT( X( I ) )
100 CONTINUE
KASE = 2
ISAVE( 1 ) = 4
RETURN
*
* ................ ENTRY (ISAVE( 1 ) = 4)
* X HAS BEEN OVERWRITTEN BY TRANSPOSE(A)*X.
*
110 CONTINUE
JLAST = ISAVE( 2 )
ISAVE( 2 ) = IDAMAX( N, X, 1 )
IF( ( X( JLAST ).NE.ABS( X( ISAVE( 2 ) ) ) ) .AND.
$ ( ISAVE( 3 ).LT.ITMAX ) ) THEN
ISAVE( 3 ) = ISAVE( 3 ) + 1
GO TO 50
END IF
*
* ITERATION COMPLETE. FINAL STAGE.
*
120 CONTINUE
ALTSGN = ONE
DO 130 I = 1, N
X( I ) = ALTSGN*( ONE+DBLE( I-1 ) / DBLE( N-1 ) )
ALTSGN = -ALTSGN
130 CONTINUE
KASE = 1
ISAVE( 1 ) = 5
RETURN
*
* ................ ENTRY (ISAVE( 1 ) = 5)
* X HAS BEEN OVERWRITTEN BY A*X.
*
140 CONTINUE
TEMP = TWO*( DASUM( N, X, 1 ) / DBLE( 3*N ) )
IF( TEMP.GT.EST ) THEN
CALL DCOPY( N, X, 1, V, 1 )
EST = TEMP
END IF
*
150 CONTINUE
KASE = 0
RETURN
*
* End of DLACN2
*
END

852
lib/linalg/dlamch.f Normal file
View File

@ -0,0 +1,852 @@
DOUBLE PRECISION FUNCTION DLAMCH( CMACH )
*
* -- LAPACK auxiliary routine (version 3.2) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
CHARACTER CMACH
* ..
*
* Purpose
* =======
*
* DLAMCH determines double precision machine parameters.
*
* Arguments
* =========
*
* CMACH (input) CHARACTER*1
* Specifies the value to be returned by DLAMCH:
* = 'E' or 'e', DLAMCH := eps
* = 'S' or 's , DLAMCH := sfmin
* = 'B' or 'b', DLAMCH := base
* = 'P' or 'p', DLAMCH := eps*base
* = 'N' or 'n', DLAMCH := t
* = 'R' or 'r', DLAMCH := rnd
* = 'M' or 'm', DLAMCH := emin
* = 'U' or 'u', DLAMCH := rmin
* = 'L' or 'l', DLAMCH := emax
* = 'O' or 'o', DLAMCH := rmax
*
* where
*
* eps = relative machine precision
* sfmin = safe minimum, such that 1/sfmin does not overflow
* base = base of the machine
* prec = eps*base
* t = number of (base) digits in the mantissa
* rnd = 1.0 when rounding occurs in addition, 0.0 otherwise
* emin = minimum exponent before (gradual) underflow
* rmin = underflow threshold - base**(emin-1)
* emax = largest exponent before overflow
* rmax = overflow threshold - (base**emax)*(1-eps)
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL FIRST, LRND
INTEGER BETA, IMAX, IMIN, IT
DOUBLE PRECISION BASE, EMAX, EMIN, EPS, PREC, RMACH, RMAX, RMIN,
$ RND, SFMIN, SMALL, T
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL DLAMC2
* ..
* .. Save statement ..
SAVE FIRST, EPS, SFMIN, BASE, T, RND, EMIN, RMIN,
$ EMAX, RMAX, PREC
* ..
* .. Data statements ..
DATA FIRST / .TRUE. /
* ..
* .. Executable Statements ..
*
IF( FIRST ) THEN
CALL DLAMC2( BETA, IT, LRND, EPS, IMIN, RMIN, IMAX, RMAX )
BASE = BETA
T = IT
IF( LRND ) THEN
RND = ONE
EPS = ( BASE**( 1-IT ) ) / 2
ELSE
RND = ZERO
EPS = BASE**( 1-IT )
END IF
PREC = EPS*BASE
EMIN = IMIN
EMAX = IMAX
SFMIN = RMIN
SMALL = ONE / RMAX
IF( SMALL.GE.SFMIN ) THEN
*
* Use SMALL plus a bit, to avoid the possibility of rounding
* causing overflow when computing 1/sfmin.
*
SFMIN = SMALL*( ONE+EPS )
END IF
END IF
*
IF( LSAME( CMACH, 'E' ) ) THEN
RMACH = EPS
ELSE IF( LSAME( CMACH, 'S' ) ) THEN
RMACH = SFMIN
ELSE IF( LSAME( CMACH, 'B' ) ) THEN
RMACH = BASE
ELSE IF( LSAME( CMACH, 'P' ) ) THEN
RMACH = PREC
ELSE IF( LSAME( CMACH, 'N' ) ) THEN
RMACH = T
ELSE IF( LSAME( CMACH, 'R' ) ) THEN
RMACH = RND
ELSE IF( LSAME( CMACH, 'M' ) ) THEN
RMACH = EMIN
ELSE IF( LSAME( CMACH, 'U' ) ) THEN
RMACH = RMIN
ELSE IF( LSAME( CMACH, 'L' ) ) THEN
RMACH = EMAX
ELSE IF( LSAME( CMACH, 'O' ) ) THEN
RMACH = RMAX
END IF
*
DLAMCH = RMACH
FIRST = .FALSE.
RETURN
*
* End of DLAMCH
*
END
*
************************************************************************
*
SUBROUTINE DLAMC1( BETA, T, RND, IEEE1 )
*
* -- LAPACK auxiliary routine (version 3.2) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
LOGICAL IEEE1, RND
INTEGER BETA, T
* ..
*
* Purpose
* =======
*
* DLAMC1 determines the machine parameters given by BETA, T, RND, and
* IEEE1.
*
* Arguments
* =========
*
* BETA (output) INTEGER
* The base of the machine.
*
* T (output) INTEGER
* The number of ( BETA ) digits in the mantissa.
*
* RND (output) LOGICAL
* Specifies whether proper rounding ( RND = .TRUE. ) or
* chopping ( RND = .FALSE. ) occurs in addition. This may not
* be a reliable guide to the way in which the machine performs
* its arithmetic.
*
* IEEE1 (output) LOGICAL
* Specifies whether rounding appears to be done in the IEEE
* 'round to nearest' style.
*
* Further Details
* ===============
*
* The routine is based on the routine ENVRON by Malcolm and
* incorporates suggestions by Gentleman and Marovich. See
*
* Malcolm M. A. (1972) Algorithms to reveal properties of
* floating-point arithmetic. Comms. of the ACM, 15, 949-951.
*
* Gentleman W. M. and Marovich S. B. (1974) More on algorithms
* that reveal properties of floating point arithmetic units.
* Comms. of the ACM, 17, 276-277.
*
* =====================================================================
*
* .. Local Scalars ..
LOGICAL FIRST, LIEEE1, LRND
INTEGER LBETA, LT
DOUBLE PRECISION A, B, C, F, ONE, QTR, SAVEC, T1, T2
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMC3
EXTERNAL DLAMC3
* ..
* .. Save statement ..
SAVE FIRST, LIEEE1, LBETA, LRND, LT
* ..
* .. Data statements ..
DATA FIRST / .TRUE. /
* ..
* .. Executable Statements ..
*
IF( FIRST ) THEN
ONE = 1
*
* LBETA, LIEEE1, LT and LRND are the local values of BETA,
* IEEE1, T and RND.
*
* Throughout this routine we use the function DLAMC3 to ensure
* that relevant values are stored and not held in registers, or
* are not affected by optimizers.
*
* Compute a = 2.0**m with the smallest positive integer m such
* that
*
* fl( a + 1.0 ) = a.
*
A = 1
C = 1
*
*+ WHILE( C.EQ.ONE )LOOP
10 CONTINUE
IF( C.EQ.ONE ) THEN
A = 2*A
C = DLAMC3( A, ONE )
C = DLAMC3( C, -A )
GO TO 10
END IF
*+ END WHILE
*
* Now compute b = 2.0**m with the smallest positive integer m
* such that
*
* fl( a + b ) .gt. a.
*
B = 1
C = DLAMC3( A, B )
*
*+ WHILE( C.EQ.A )LOOP
20 CONTINUE
IF( C.EQ.A ) THEN
B = 2*B
C = DLAMC3( A, B )
GO TO 20
END IF
*+ END WHILE
*
* Now compute the base. a and c are neighbouring floating point
* numbers in the interval ( beta**t, beta**( t + 1 ) ) and so
* their difference is beta. Adding 0.25 to c is to ensure that it
* is truncated to beta and not ( beta - 1 ).
*
QTR = ONE / 4
SAVEC = C
C = DLAMC3( C, -A )
LBETA = C + QTR
*
* Now determine whether rounding or chopping occurs, by adding a
* bit less than beta/2 and a bit more than beta/2 to a.
*
B = LBETA
F = DLAMC3( B / 2, -B / 100 )
C = DLAMC3( F, A )
IF( C.EQ.A ) THEN
LRND = .TRUE.
ELSE
LRND = .FALSE.
END IF
F = DLAMC3( B / 2, B / 100 )
C = DLAMC3( F, A )
IF( ( LRND ) .AND. ( C.EQ.A ) )
$ LRND = .FALSE.
*
* Try and decide whether rounding is done in the IEEE 'round to
* nearest' style. B/2 is half a unit in the last place of the two
* numbers A and SAVEC. Furthermore, A is even, i.e. has last bit
* zero, and SAVEC is odd. Thus adding B/2 to A should not change
* A, but adding B/2 to SAVEC should change SAVEC.
*
T1 = DLAMC3( B / 2, A )
T2 = DLAMC3( B / 2, SAVEC )
LIEEE1 = ( T1.EQ.A ) .AND. ( T2.GT.SAVEC ) .AND. LRND
*
* Now find the mantissa, t. It should be the integer part of
* log to the base beta of a, however it is safer to determine t
* by powering. So we find t as the smallest positive integer for
* which
*
* fl( beta**t + 1.0 ) = 1.0.
*
LT = 0
A = 1
C = 1
*
*+ WHILE( C.EQ.ONE )LOOP
30 CONTINUE
IF( C.EQ.ONE ) THEN
LT = LT + 1
A = A*LBETA
C = DLAMC3( A, ONE )
C = DLAMC3( C, -A )
GO TO 30
END IF
*+ END WHILE
*
END IF
*
BETA = LBETA
T = LT
RND = LRND
IEEE1 = LIEEE1
FIRST = .FALSE.
RETURN
*
* End of DLAMC1
*
END
*
************************************************************************
*
SUBROUTINE DLAMC2( BETA, T, RND, EPS, EMIN, RMIN, EMAX, RMAX )
*
* -- LAPACK auxiliary routine (version 3.2) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
LOGICAL RND
INTEGER BETA, EMAX, EMIN, T
DOUBLE PRECISION EPS, RMAX, RMIN
* ..
*
* Purpose
* =======
*
* DLAMC2 determines the machine parameters specified in its argument
* list.
*
* Arguments
* =========
*
* BETA (output) INTEGER
* The base of the machine.
*
* T (output) INTEGER
* The number of ( BETA ) digits in the mantissa.
*
* RND (output) LOGICAL
* Specifies whether proper rounding ( RND = .TRUE. ) or
* chopping ( RND = .FALSE. ) occurs in addition. This may not
* be a reliable guide to the way in which the machine performs
* its arithmetic.
*
* EPS (output) DOUBLE PRECISION
* The smallest positive number such that
*
* fl( 1.0 - EPS ) .LT. 1.0,
*
* where fl denotes the computed value.
*
* EMIN (output) INTEGER
* The minimum exponent before (gradual) underflow occurs.
*
* RMIN (output) DOUBLE PRECISION
* The smallest normalized number for the machine, given by
* BASE**( EMIN - 1 ), where BASE is the floating point value
* of BETA.
*
* EMAX (output) INTEGER
* The maximum exponent before overflow occurs.
*
* RMAX (output) DOUBLE PRECISION
* The largest positive number for the machine, given by
* BASE**EMAX * ( 1 - EPS ), where BASE is the floating point
* value of BETA.
*
* Further Details
* ===============
*
* The computation of EPS is based on a routine PARANOIA by
* W. Kahan of the University of California at Berkeley.
*
* =====================================================================
*
* .. Local Scalars ..
LOGICAL FIRST, IEEE, IWARN, LIEEE1, LRND
INTEGER GNMIN, GPMIN, I, LBETA, LEMAX, LEMIN, LT,
$ NGNMIN, NGPMIN
DOUBLE PRECISION A, B, C, HALF, LEPS, LRMAX, LRMIN, ONE, RBASE,
$ SIXTH, SMALL, THIRD, TWO, ZERO
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMC3
EXTERNAL DLAMC3
* ..
* .. External Subroutines ..
EXTERNAL DLAMC1, DLAMC4, DLAMC5
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN
* ..
* .. Save statement ..
SAVE FIRST, IWARN, LBETA, LEMAX, LEMIN, LEPS, LRMAX,
$ LRMIN, LT
* ..
* .. Data statements ..
DATA FIRST / .TRUE. / , IWARN / .FALSE. /
* ..
* .. Executable Statements ..
*
IF( FIRST ) THEN
ZERO = 0
ONE = 1
TWO = 2
*
* LBETA, LT, LRND, LEPS, LEMIN and LRMIN are the local values of
* BETA, T, RND, EPS, EMIN and RMIN.
*
* Throughout this routine we use the function DLAMC3 to ensure
* that relevant values are stored and not held in registers, or
* are not affected by optimizers.
*
* DLAMC1 returns the parameters LBETA, LT, LRND and LIEEE1.
*
CALL DLAMC1( LBETA, LT, LRND, LIEEE1 )
*
* Start to find EPS.
*
B = LBETA
A = B**( -LT )
LEPS = A
*
* Try some tricks to see whether or not this is the correct EPS.
*
B = TWO / 3
HALF = ONE / 2
SIXTH = DLAMC3( B, -HALF )
THIRD = DLAMC3( SIXTH, SIXTH )
B = DLAMC3( THIRD, -HALF )
B = DLAMC3( B, SIXTH )
B = ABS( B )
IF( B.LT.LEPS )
$ B = LEPS
*
LEPS = 1
*
*+ WHILE( ( LEPS.GT.B ).AND.( B.GT.ZERO ) )LOOP
10 CONTINUE
IF( ( LEPS.GT.B ) .AND. ( B.GT.ZERO ) ) THEN
LEPS = B
C = DLAMC3( HALF*LEPS, ( TWO**5 )*( LEPS**2 ) )
C = DLAMC3( HALF, -C )
B = DLAMC3( HALF, C )
C = DLAMC3( HALF, -B )
B = DLAMC3( HALF, C )
GO TO 10
END IF
*+ END WHILE
*
IF( A.LT.LEPS )
$ LEPS = A
*
* Computation of EPS complete.
*
* Now find EMIN. Let A = + or - 1, and + or - (1 + BASE**(-3)).
* Keep dividing A by BETA until (gradual) underflow occurs. This
* is detected when we cannot recover the previous A.
*
RBASE = ONE / LBETA
SMALL = ONE
DO 20 I = 1, 3
SMALL = DLAMC3( SMALL*RBASE, ZERO )
20 CONTINUE
A = DLAMC3( ONE, SMALL )
CALL DLAMC4( NGPMIN, ONE, LBETA )
CALL DLAMC4( NGNMIN, -ONE, LBETA )
CALL DLAMC4( GPMIN, A, LBETA )
CALL DLAMC4( GNMIN, -A, LBETA )
IEEE = .FALSE.
*
IF( ( NGPMIN.EQ.NGNMIN ) .AND. ( GPMIN.EQ.GNMIN ) ) THEN
IF( NGPMIN.EQ.GPMIN ) THEN
LEMIN = NGPMIN
* ( Non twos-complement machines, no gradual underflow;
* e.g., VAX )
ELSE IF( ( GPMIN-NGPMIN ).EQ.3 ) THEN
LEMIN = NGPMIN - 1 + LT
IEEE = .TRUE.
* ( Non twos-complement machines, with gradual underflow;
* e.g., IEEE standard followers )
ELSE
LEMIN = MIN( NGPMIN, GPMIN )
* ( A guess; no known machine )
IWARN = .TRUE.
END IF
*
ELSE IF( ( NGPMIN.EQ.GPMIN ) .AND. ( NGNMIN.EQ.GNMIN ) ) THEN
IF( ABS( NGPMIN-NGNMIN ).EQ.1 ) THEN
LEMIN = MAX( NGPMIN, NGNMIN )
* ( Twos-complement machines, no gradual underflow;
* e.g., CYBER 205 )
ELSE
LEMIN = MIN( NGPMIN, NGNMIN )
* ( A guess; no known machine )
IWARN = .TRUE.
END IF
*
ELSE IF( ( ABS( NGPMIN-NGNMIN ).EQ.1 ) .AND.
$ ( GPMIN.EQ.GNMIN ) ) THEN
IF( ( GPMIN-MIN( NGPMIN, NGNMIN ) ).EQ.3 ) THEN
LEMIN = MAX( NGPMIN, NGNMIN ) - 1 + LT
* ( Twos-complement machines with gradual underflow;
* no known machine )
ELSE
LEMIN = MIN( NGPMIN, NGNMIN )
* ( A guess; no known machine )
IWARN = .TRUE.
END IF
*
ELSE
LEMIN = MIN( NGPMIN, NGNMIN, GPMIN, GNMIN )
* ( A guess; no known machine )
IWARN = .TRUE.
END IF
FIRST = .FALSE.
***
* Comment out this if block if EMIN is ok
IF( IWARN ) THEN
FIRST = .TRUE.
WRITE( 6, FMT = 9999 )LEMIN
END IF
***
*
* Assume IEEE arithmetic if we found denormalised numbers above,
* or if arithmetic seems to round in the IEEE style, determined
* in routine DLAMC1. A true IEEE machine should have both things
* true; however, faulty machines may have one or the other.
*
IEEE = IEEE .OR. LIEEE1
*
* Compute RMIN by successive division by BETA. We could compute
* RMIN as BASE**( EMIN - 1 ), but some machines underflow during
* this computation.
*
LRMIN = 1
DO 30 I = 1, 1 - LEMIN
LRMIN = DLAMC3( LRMIN*RBASE, ZERO )
30 CONTINUE
*
* Finally, call DLAMC5 to compute EMAX and RMAX.
*
CALL DLAMC5( LBETA, LT, LEMIN, IEEE, LEMAX, LRMAX )
END IF
*
BETA = LBETA
T = LT
RND = LRND
EPS = LEPS
EMIN = LEMIN
RMIN = LRMIN
EMAX = LEMAX
RMAX = LRMAX
*
RETURN
*
9999 FORMAT( / / ' WARNING. The value EMIN may be incorrect:-',
$ ' EMIN = ', I8, /
$ ' If, after inspection, the value EMIN looks',
$ ' acceptable please comment out ',
$ / ' the IF block as marked within the code of routine',
$ ' DLAMC2,', / ' otherwise supply EMIN explicitly.', / )
*
* End of DLAMC2
*
END
*
************************************************************************
*
DOUBLE PRECISION FUNCTION DLAMC3( A, B )
*
* -- LAPACK auxiliary routine (version 3.2) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
DOUBLE PRECISION A, B
* ..
*
* Purpose
* =======
*
* DLAMC3 is intended to force A and B to be stored prior to doing
* the addition of A and B , for use in situations where optimizers
* might hold one of these in a register.
*
* Arguments
* =========
*
* A (input) DOUBLE PRECISION
* B (input) DOUBLE PRECISION
* The values A and B.
*
* =====================================================================
*
* .. Executable Statements ..
*
DLAMC3 = A + B
*
RETURN
*
* End of DLAMC3
*
END
*
************************************************************************
*
SUBROUTINE DLAMC4( EMIN, START, BASE )
*
* -- LAPACK auxiliary routine (version 3.2) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
INTEGER BASE, EMIN
DOUBLE PRECISION START
* ..
*
* Purpose
* =======
*
* DLAMC4 is a service routine for DLAMC2.
*
* Arguments
* =========
*
* EMIN (output) INTEGER
* The minimum exponent before (gradual) underflow, computed by
* setting A = START and dividing by BASE until the previous A
* can not be recovered.
*
* START (input) DOUBLE PRECISION
* The starting point for determining EMIN.
*
* BASE (input) INTEGER
* The base of the machine.
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER I
DOUBLE PRECISION A, B1, B2, C1, C2, D1, D2, ONE, RBASE, ZERO
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMC3
EXTERNAL DLAMC3
* ..
* .. Executable Statements ..
*
A = START
ONE = 1
RBASE = ONE / BASE
ZERO = 0
EMIN = 1
B1 = DLAMC3( A*RBASE, ZERO )
C1 = A
C2 = A
D1 = A
D2 = A
*+ WHILE( ( C1.EQ.A ).AND.( C2.EQ.A ).AND.
* $ ( D1.EQ.A ).AND.( D2.EQ.A ) )LOOP
10 CONTINUE
IF( ( C1.EQ.A ) .AND. ( C2.EQ.A ) .AND. ( D1.EQ.A ) .AND.
$ ( D2.EQ.A ) ) THEN
EMIN = EMIN - 1
A = B1
B1 = DLAMC3( A / BASE, ZERO )
C1 = DLAMC3( B1*BASE, ZERO )
D1 = ZERO
DO 20 I = 1, BASE
D1 = D1 + B1
20 CONTINUE
B2 = DLAMC3( A*RBASE, ZERO )
C2 = DLAMC3( B2 / RBASE, ZERO )
D2 = ZERO
DO 30 I = 1, BASE
D2 = D2 + B2
30 CONTINUE
GO TO 10
END IF
*+ END WHILE
*
RETURN
*
* End of DLAMC4
*
END
*
************************************************************************
*
SUBROUTINE DLAMC5( BETA, P, EMIN, IEEE, EMAX, RMAX )
*
* -- LAPACK auxiliary routine (version 3.2) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
LOGICAL IEEE
INTEGER BETA, EMAX, EMIN, P
DOUBLE PRECISION RMAX
* ..
*
* Purpose
* =======
*
* DLAMC5 attempts to compute RMAX, the largest machine floating-point
* number, without overflow. It assumes that EMAX + abs(EMIN) sum
* approximately to a power of 2. It will fail on machines where this
* assumption does not hold, for example, the Cyber 205 (EMIN = -28625,
* EMAX = 28718). It will also fail if the value supplied for EMIN is
* too large (i.e. too close to zero), probably with overflow.
*
* Arguments
* =========
*
* BETA (input) INTEGER
* The base of floating-point arithmetic.
*
* P (input) INTEGER
* The number of base BETA digits in the mantissa of a
* floating-point value.
*
* EMIN (input) INTEGER
* The minimum exponent before (gradual) underflow.
*
* IEEE (input) LOGICAL
* A logical flag specifying whether or not the arithmetic
* system is thought to comply with the IEEE standard.
*
* EMAX (output) INTEGER
* The largest exponent before overflow
*
* RMAX (output) DOUBLE PRECISION
* The largest machine floating-point number.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
* ..
* .. Local Scalars ..
INTEGER EXBITS, EXPSUM, I, LEXP, NBITS, TRY, UEXP
DOUBLE PRECISION OLDY, RECBAS, Y, Z
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMC3
EXTERNAL DLAMC3
* ..
* .. Intrinsic Functions ..
INTRINSIC MOD
* ..
* .. Executable Statements ..
*
* First compute LEXP and UEXP, two powers of 2 that bound
* abs(EMIN). We then assume that EMAX + abs(EMIN) will sum
* approximately to the bound that is closest to abs(EMIN).
* (EMAX is the exponent of the required number RMAX).
*
LEXP = 1
EXBITS = 1
10 CONTINUE
TRY = LEXP*2
IF( TRY.LE.( -EMIN ) ) THEN
LEXP = TRY
EXBITS = EXBITS + 1
GO TO 10
END IF
IF( LEXP.EQ.-EMIN ) THEN
UEXP = LEXP
ELSE
UEXP = TRY
EXBITS = EXBITS + 1
END IF
*
* Now -LEXP is less than or equal to EMIN, and -UEXP is greater
* than or equal to EMIN. EXBITS is the number of bits needed to
* store the exponent.
*
IF( ( UEXP+EMIN ).GT.( -LEXP-EMIN ) ) THEN
EXPSUM = 2*LEXP
ELSE
EXPSUM = 2*UEXP
END IF
*
* EXPSUM is the exponent range, approximately equal to
* EMAX - EMIN + 1 .
*
EMAX = EXPSUM + EMIN - 1
NBITS = 1 + EXBITS + P
*
* NBITS is the total number of bits needed to store a
* floating-point number.
*
IF( ( MOD( NBITS, 2 ).EQ.1 ) .AND. ( BETA.EQ.2 ) ) THEN
*
* Either there are an odd number of bits used to store a
* floating-point number, which is unlikely, or some bits are
* not used in the representation of numbers, which is possible,
* (e.g. Cray machines) or the mantissa has an implicit bit,
* (e.g. IEEE machines, Dec Vax machines), which is perhaps the
* most likely. We have to assume the last alternative.
* If this is true, then we need to reduce EMAX by one because
* there must be some way of representing zero in an implicit-bit
* system. On machines like Cray, we are reducing EMAX by one
* unnecessarily.
*
EMAX = EMAX - 1
END IF
*
IF( IEEE ) THEN
*
* Assume we are on an IEEE machine which reserves one exponent
* for infinity and NaN.
*
EMAX = EMAX - 1
END IF
*
* Now create RMAX, the largest machine number, which should
* be equal to (1.0 - BETA**(-P)) * BETA**EMAX .
*
* First compute 1.0 - BETA**(-P), being careful that the
* result is less than 1.0 .
*
RECBAS = ONE / BETA
Z = BETA - ONE
Y = ZERO
DO 20 I = 1, P
Z = Z*RECBAS
IF( Y.LT.ONE )
$ OLDY = Y
Y = DLAMC3( Y, Z )
20 CONTINUE
IF( Y.GE.ONE )
$ Y = OLDY
*
* Now multiply by BETA**EMAX to get RMAX.
*
DO 30 I = 1, EMAX
Y = DLAMC3( Y*BETA, ZERO )
30 CONTINUE
*
RMAX = Y
RETURN
*
* End of DLAMC5
*
END

145
lib/linalg/dlange.f Normal file
View File

@ -0,0 +1,145 @@
DOUBLE PRECISION FUNCTION DLANGE( NORM, M, N, A, LDA, WORK )
*
* -- LAPACK auxiliary routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2006
*
* .. Scalar Arguments ..
CHARACTER NORM
INTEGER LDA, M, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), WORK( * )
* ..
*
* Purpose
* =======
*
* DLANGE returns the value of the one norm, or the Frobenius norm, or
* the infinity norm, or the element of largest absolute value of a
* real matrix A.
*
* Description
* ===========
*
* DLANGE returns the value
*
* DLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
* (
* ( norm1(A), NORM = '1', 'O' or 'o'
* (
* ( normI(A), NORM = 'I' or 'i'
* (
* ( normF(A), NORM = 'F', 'f', 'E' or 'e'
*
* where norm1 denotes the one norm of a matrix (maximum column sum),
* normI denotes the infinity norm of a matrix (maximum row sum) and
* normF denotes the Frobenius norm of a matrix (square root of sum of
* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
*
* Arguments
* =========
*
* NORM (input) CHARACTER*1
* Specifies the value to be returned in DLANGE as described
* above.
*
* M (input) INTEGER
* The number of rows of the matrix A. M >= 0. When M = 0,
* DLANGE is set to zero.
*
* N (input) INTEGER
* The number of columns of the matrix A. N >= 0. When N = 0,
* DLANGE is set to zero.
*
* A (input) DOUBLE PRECISION array, dimension (LDA,N)
* The m by n matrix A.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(M,1).
*
* WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
* where LWORK >= M when NORM = 'I'; otherwise, WORK is not
* referenced.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I, J
DOUBLE PRECISION SCALE, SUM, VALUE
* ..
* .. External Subroutines ..
EXTERNAL DLASSQ
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN, SQRT
* ..
* .. Executable Statements ..
*
IF( MIN( M, N ).EQ.0 ) THEN
VALUE = ZERO
ELSE IF( LSAME( NORM, 'M' ) ) THEN
*
* Find max(abs(A(i,j))).
*
VALUE = ZERO
DO 20 J = 1, N
DO 10 I = 1, M
VALUE = MAX( VALUE, ABS( A( I, J ) ) )
10 CONTINUE
20 CONTINUE
ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
*
* Find norm1(A).
*
VALUE = ZERO
DO 40 J = 1, N
SUM = ZERO
DO 30 I = 1, M
SUM = SUM + ABS( A( I, J ) )
30 CONTINUE
VALUE = MAX( VALUE, SUM )
40 CONTINUE
ELSE IF( LSAME( NORM, 'I' ) ) THEN
*
* Find normI(A).
*
DO 50 I = 1, M
WORK( I ) = ZERO
50 CONTINUE
DO 70 J = 1, N
DO 60 I = 1, M
WORK( I ) = WORK( I ) + ABS( A( I, J ) )
60 CONTINUE
70 CONTINUE
VALUE = ZERO
DO 80 I = 1, M
VALUE = MAX( VALUE, WORK( I ) )
80 CONTINUE
ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
* Find normF(A).
*
SCALE = ZERO
SUM = ONE
DO 90 J = 1, N
CALL DLASSQ( M, A( 1, J ), 1, SCALE, SUM )
90 CONTINUE
VALUE = SCALE*SQRT( SUM )
END IF
*
DLANGE = VALUE
RETURN
*
* End of DLANGE
*
END

89
lib/linalg/dlassq.f Normal file
View File

@ -0,0 +1,89 @@
SUBROUTINE DLASSQ( N, X, INCX, SCALE, SUMSQ )
*
* -- LAPACK auxiliary routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2006
*
* .. Scalar Arguments ..
INTEGER INCX, N
DOUBLE PRECISION SCALE, SUMSQ
* ..
* .. Array Arguments ..
DOUBLE PRECISION X( * )
* ..
*
* Purpose
* =======
*
* DLASSQ returns the values scl and smsq such that
*
* ( scl**2 )*smsq = x( 1 )**2 +...+ x( n )**2 + ( scale**2 )*sumsq,
*
* where x( i ) = X( 1 + ( i - 1 )*INCX ). The value of sumsq is
* assumed to be non-negative and scl returns the value
*
* scl = max( scale, abs( x( i ) ) ).
*
* scale and sumsq must be supplied in SCALE and SUMSQ and
* scl and smsq are overwritten on SCALE and SUMSQ respectively.
*
* The routine makes only one pass through the vector x.
*
* Arguments
* =========
*
* N (input) INTEGER
* The number of elements to be used from the vector X.
*
* X (input) DOUBLE PRECISION array, dimension (N)
* The vector for which a scaled sum of squares is computed.
* x( i ) = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n.
*
* INCX (input) INTEGER
* The increment between successive values of the vector X.
* INCX > 0.
*
* SCALE (input/output) DOUBLE PRECISION
* On entry, the value scale in the equation above.
* On exit, SCALE is overwritten with scl , the scaling factor
* for the sum of squares.
*
* SUMSQ (input/output) DOUBLE PRECISION
* On entry, the value sumsq in the equation above.
* On exit, SUMSQ is overwritten with smsq , the basic sum of
* squares from which scl has been factored out.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
INTEGER IX
DOUBLE PRECISION ABSXI
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS
* ..
* .. Executable Statements ..
*
IF( N.GT.0 ) THEN
DO 10 IX = 1, 1 + ( N-1 )*INCX, INCX
IF( X( IX ).NE.ZERO ) THEN
ABSXI = ABS( X( IX ) )
IF( SCALE.LT.ABSXI ) THEN
SUMSQ = 1 + SUMSQ*( SCALE / ABSXI )**2
SCALE = ABSXI
ELSE
SUMSQ = SUMSQ + ( ABSXI / SCALE )**2
END IF
END IF
10 CONTINUE
END IF
RETURN
*
* End of DLASSQ
*
END

120
lib/linalg/dlaswp.f Normal file
View File

@ -0,0 +1,120 @@
SUBROUTINE DLASWP( N, A, LDA, K1, K2, IPIV, INCX )
*
* -- LAPACK auxiliary routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2006
*
* .. Scalar Arguments ..
INTEGER INCX, K1, K2, LDA, N
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
DOUBLE PRECISION A( LDA, * )
* ..
*
* Purpose
* =======
*
* DLASWP performs a series of row interchanges on the matrix A.
* One row interchange is initiated for each of rows K1 through K2 of A.
*
* Arguments
* =========
*
* N (input) INTEGER
* The number of columns of the matrix A.
*
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
* On entry, the matrix of column dimension N to which the row
* interchanges will be applied.
* On exit, the permuted matrix.
*
* LDA (input) INTEGER
* The leading dimension of the array A.
*
* K1 (input) INTEGER
* The first element of IPIV for which a row interchange will
* be done.
*
* K2 (input) INTEGER
* The last element of IPIV for which a row interchange will
* be done.
*
* IPIV (input) INTEGER array, dimension (K2*abs(INCX))
* The vector of pivot indices. Only the elements in positions
* K1 through K2 of IPIV are accessed.
* IPIV(K) = L implies rows K and L are to be interchanged.
*
* INCX (input) INTEGER
* The increment between successive values of IPIV. If IPIV
* is negative, the pivots are applied in reverse order.
*
* Further Details
* ===============
*
* Modified by
* R. C. Whaley, Computer Science Dept., Univ. of Tenn., Knoxville, USA
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER I, I1, I2, INC, IP, IX, IX0, J, K, N32
DOUBLE PRECISION TEMP
* ..
* .. Executable Statements ..
*
* Interchange row I with row IPIV(I) for each of rows K1 through K2.
*
IF( INCX.GT.0 ) THEN
IX0 = K1
I1 = K1
I2 = K2
INC = 1
ELSE IF( INCX.LT.0 ) THEN
IX0 = 1 + ( 1-K2 )*INCX
I1 = K2
I2 = K1
INC = -1
ELSE
RETURN
END IF
*
N32 = ( N / 32 )*32
IF( N32.NE.0 ) THEN
DO 30 J = 1, N32, 32
IX = IX0
DO 20 I = I1, I2, INC
IP = IPIV( IX )
IF( IP.NE.I ) THEN
DO 10 K = J, J + 31
TEMP = A( I, K )
A( I, K ) = A( IP, K )
A( IP, K ) = TEMP
10 CONTINUE
END IF
IX = IX + INCX
20 CONTINUE
30 CONTINUE
END IF
IF( N32.NE.N ) THEN
N32 = N32 + 1
IX = IX0
DO 50 I = I1, I2, INC
IP = IPIV( IX )
IF( IP.NE.I ) THEN
DO 40 K = N32, N
TEMP = A( I, K )
A( I, K ) = A( IP, K )
A( IP, K ) = TEMP
40 CONTINUE
END IF
IX = IX + INCX
50 CONTINUE
END IF
*
RETURN
*
* End of DLASWP
*
END

702
lib/linalg/dlatrs.f Normal file
View File

@ -0,0 +1,702 @@
SUBROUTINE DLATRS( UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE,
$ CNORM, INFO )
*
* -- LAPACK auxiliary routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2006
*
* .. Scalar Arguments ..
CHARACTER DIAG, NORMIN, TRANS, UPLO
INTEGER INFO, LDA, N
DOUBLE PRECISION SCALE
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), CNORM( * ), X( * )
* ..
*
* Purpose
* =======
*
* DLATRS solves one of the triangular systems
*
* A *x = s*b or A'*x = s*b
*
* with scaling to prevent overflow. Here A is an upper or lower
* triangular matrix, A' denotes the transpose of A, x and b are
* n-element vectors, and s is a scaling factor, usually less than
* or equal to 1, chosen so that the components of x will be less than
* the overflow threshold. If the unscaled problem will not cause
* overflow, the Level 2 BLAS routine DTRSV is called. If the matrix A
* is singular (A(j,j) = 0 for some j), then s is set to 0 and a
* non-trivial solution to A*x = 0 is returned.
*
* Arguments
* =========
*
* UPLO (input) CHARACTER*1
* Specifies whether the matrix A is upper or lower triangular.
* = 'U': Upper triangular
* = 'L': Lower triangular
*
* TRANS (input) CHARACTER*1
* Specifies the operation applied to A.
* = 'N': Solve A * x = s*b (No transpose)
* = 'T': Solve A'* x = s*b (Transpose)
* = 'C': Solve A'* x = s*b (Conjugate transpose = Transpose)
*
* DIAG (input) CHARACTER*1
* Specifies whether or not the matrix A is unit triangular.
* = 'N': Non-unit triangular
* = 'U': Unit triangular
*
* NORMIN (input) CHARACTER*1
* Specifies whether CNORM has been set or not.
* = 'Y': CNORM contains the column norms on entry
* = 'N': CNORM is not set on entry. On exit, the norms will
* be computed and stored in CNORM.
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* A (input) DOUBLE PRECISION array, dimension (LDA,N)
* The triangular matrix A. If UPLO = 'U', the leading n by n
* upper triangular part of the array A contains the upper
* triangular matrix, and the strictly lower triangular part of
* A is not referenced. If UPLO = 'L', the leading n by n lower
* triangular part of the array A contains the lower triangular
* matrix, and the strictly upper triangular part of A is not
* referenced. If DIAG = 'U', the diagonal elements of A are
* also not referenced and are assumed to be 1.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max (1,N).
*
* X (input/output) DOUBLE PRECISION array, dimension (N)
* On entry, the right hand side b of the triangular system.
* On exit, X is overwritten by the solution vector x.
*
* SCALE (output) DOUBLE PRECISION
* The scaling factor s for the triangular system
* A * x = s*b or A'* x = s*b.
* If SCALE = 0, the matrix A is singular or badly scaled, and
* the vector x is an exact or approximate solution to A*x = 0.
*
* CNORM (input or output) DOUBLE PRECISION array, dimension (N)
*
* If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
* contains the norm of the off-diagonal part of the j-th column
* of A. If TRANS = 'N', CNORM(j) must be greater than or equal
* to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
* must be greater than or equal to the 1-norm.
*
* If NORMIN = 'N', CNORM is an output argument and CNORM(j)
* returns the 1-norm of the offdiagonal part of the j-th column
* of A.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -k, the k-th argument had an illegal value
*
* Further Details
* ======= =======
*
* A rough bound on x is computed; if that is less than overflow, DTRSV
* is called, otherwise, specific code is used which checks for possible
* overflow or divide-by-zero at every operation.
*
* A columnwise scheme is used for solving A*x = b. The basic algorithm
* if A is lower triangular is
*
* x[1:n] := b[1:n]
* for j = 1, ..., n
* x(j) := x(j) / A(j,j)
* x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
* end
*
* Define bounds on the components of x after j iterations of the loop:
* M(j) = bound on x[1:j]
* G(j) = bound on x[j+1:n]
* Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
*
* Then for iteration j+1 we have
* M(j+1) <= G(j) / | A(j+1,j+1) |
* G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
* <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
*
* where CNORM(j+1) is greater than or equal to the infinity-norm of
* column j+1 of A, not counting the diagonal. Hence
*
* G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
* 1<=i<=j
* and
*
* |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
* 1<=i< j
*
* Since |x(j)| <= M(j), we use the Level 2 BLAS routine DTRSV if the
* reciprocal of the largest M(j), j=1,..,n, is larger than
* max(underflow, 1/overflow).
*
* The bound on x(j) is also used to determine when a step in the
* columnwise method can be performed without fear of overflow. If
* the computed bound is greater than a large constant, x is scaled to
* prevent overflow, but if the bound overflows, x is set to 0, x(j) to
* 1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
*
* Similarly, a row-wise scheme is used to solve A'*x = b. The basic
* algorithm for A upper triangular is
*
* for j = 1, ..., n
* x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
* end
*
* We simultaneously compute two bounds
* G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
* M(j) = bound on x(i), 1<=i<=j
*
* The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
* add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
* Then the bound on x(j) is
*
* M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
*
* <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
* 1<=i<=j
*
* and we can safely call DTRSV if 1/M(n) and 1/G(n) are both greater
* than max(underflow, 1/overflow).
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, HALF, ONE
PARAMETER ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL NOTRAN, NOUNIT, UPPER
INTEGER I, IMAX, J, JFIRST, JINC, JLAST
DOUBLE PRECISION BIGNUM, GROW, REC, SMLNUM, SUMJ, TJJ, TJJS,
$ TMAX, TSCAL, USCAL, XBND, XJ, XMAX
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER IDAMAX
DOUBLE PRECISION DASUM, DDOT, DLAMCH
EXTERNAL LSAME, IDAMAX, DASUM, DDOT, DLAMCH
* ..
* .. External Subroutines ..
EXTERNAL DAXPY, DSCAL, DTRSV, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN
* ..
* .. Executable Statements ..
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
NOTRAN = LSAME( TRANS, 'N' )
NOUNIT = LSAME( DIAG, 'N' )
*
* Test the input parameters.
*
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
$ LSAME( TRANS, 'C' ) ) THEN
INFO = -2
ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
INFO = -3
ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
$ LSAME( NORMIN, 'N' ) ) THEN
INFO = -4
ELSE IF( N.LT.0 ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -7
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DLATRS', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Determine machine dependent parameters to control overflow.
*
SMLNUM = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' )
BIGNUM = ONE / SMLNUM
SCALE = ONE
*
IF( LSAME( NORMIN, 'N' ) ) THEN
*
* Compute the 1-norm of each column, not including the diagonal.
*
IF( UPPER ) THEN
*
* A is upper triangular.
*
DO 10 J = 1, N
CNORM( J ) = DASUM( J-1, A( 1, J ), 1 )
10 CONTINUE
ELSE
*
* A is lower triangular.
*
DO 20 J = 1, N - 1
CNORM( J ) = DASUM( N-J, A( J+1, J ), 1 )
20 CONTINUE
CNORM( N ) = ZERO
END IF
END IF
*
* Scale the column norms by TSCAL if the maximum element in CNORM is
* greater than BIGNUM.
*
IMAX = IDAMAX( N, CNORM, 1 )
TMAX = CNORM( IMAX )
IF( TMAX.LE.BIGNUM ) THEN
TSCAL = ONE
ELSE
TSCAL = ONE / ( SMLNUM*TMAX )
CALL DSCAL( N, TSCAL, CNORM, 1 )
END IF
*
* Compute a bound on the computed solution vector to see if the
* Level 2 BLAS routine DTRSV can be used.
*
J = IDAMAX( N, X, 1 )
XMAX = ABS( X( J ) )
XBND = XMAX
IF( NOTRAN ) THEN
*
* Compute the growth in A * x = b.
*
IF( UPPER ) THEN
JFIRST = N
JLAST = 1
JINC = -1
ELSE
JFIRST = 1
JLAST = N
JINC = 1
END IF
*
IF( TSCAL.NE.ONE ) THEN
GROW = ZERO
GO TO 50
END IF
*
IF( NOUNIT ) THEN
*
* A is non-unit triangular.
*
* Compute GROW = 1/G(j) and XBND = 1/M(j).
* Initially, G(0) = max{x(i), i=1,...,n}.
*
GROW = ONE / MAX( XBND, SMLNUM )
XBND = GROW
DO 30 J = JFIRST, JLAST, JINC
*
* Exit the loop if the growth factor is too small.
*
IF( GROW.LE.SMLNUM )
$ GO TO 50
*
* M(j) = G(j-1) / abs(A(j,j))
*
TJJ = ABS( A( J, J ) )
XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
*
* G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
*
GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
ELSE
*
* G(j) could overflow, set GROW to 0.
*
GROW = ZERO
END IF
30 CONTINUE
GROW = XBND
ELSE
*
* A is unit triangular.
*
* Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
*
GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
DO 40 J = JFIRST, JLAST, JINC
*
* Exit the loop if the growth factor is too small.
*
IF( GROW.LE.SMLNUM )
$ GO TO 50
*
* G(j) = G(j-1)*( 1 + CNORM(j) )
*
GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
40 CONTINUE
END IF
50 CONTINUE
*
ELSE
*
* Compute the growth in A' * x = b.
*
IF( UPPER ) THEN
JFIRST = 1
JLAST = N
JINC = 1
ELSE
JFIRST = N
JLAST = 1
JINC = -1
END IF
*
IF( TSCAL.NE.ONE ) THEN
GROW = ZERO
GO TO 80
END IF
*
IF( NOUNIT ) THEN
*
* A is non-unit triangular.
*
* Compute GROW = 1/G(j) and XBND = 1/M(j).
* Initially, M(0) = max{x(i), i=1,...,n}.
*
GROW = ONE / MAX( XBND, SMLNUM )
XBND = GROW
DO 60 J = JFIRST, JLAST, JINC
*
* Exit the loop if the growth factor is too small.
*
IF( GROW.LE.SMLNUM )
$ GO TO 80
*
* G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
*
XJ = ONE + CNORM( J )
GROW = MIN( GROW, XBND / XJ )
*
* M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
*
TJJ = ABS( A( J, J ) )
IF( XJ.GT.TJJ )
$ XBND = XBND*( TJJ / XJ )
60 CONTINUE
GROW = MIN( GROW, XBND )
ELSE
*
* A is unit triangular.
*
* Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
*
GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
DO 70 J = JFIRST, JLAST, JINC
*
* Exit the loop if the growth factor is too small.
*
IF( GROW.LE.SMLNUM )
$ GO TO 80
*
* G(j) = ( 1 + CNORM(j) )*G(j-1)
*
XJ = ONE + CNORM( J )
GROW = GROW / XJ
70 CONTINUE
END IF
80 CONTINUE
END IF
*
IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
*
* Use the Level 2 BLAS solve if the reciprocal of the bound on
* elements of X is not too small.
*
CALL DTRSV( UPLO, TRANS, DIAG, N, A, LDA, X, 1 )
ELSE
*
* Use a Level 1 BLAS solve, scaling intermediate results.
*
IF( XMAX.GT.BIGNUM ) THEN
*
* Scale X so that its components are less than or equal to
* BIGNUM in absolute value.
*
SCALE = BIGNUM / XMAX
CALL DSCAL( N, SCALE, X, 1 )
XMAX = BIGNUM
END IF
*
IF( NOTRAN ) THEN
*
* Solve A * x = b
*
DO 110 J = JFIRST, JLAST, JINC
*
* Compute x(j) = b(j) / A(j,j), scaling x if necessary.
*
XJ = ABS( X( J ) )
IF( NOUNIT ) THEN
TJJS = A( J, J )*TSCAL
ELSE
TJJS = TSCAL
IF( TSCAL.EQ.ONE )
$ GO TO 100
END IF
TJJ = ABS( TJJS )
IF( TJJ.GT.SMLNUM ) THEN
*
* abs(A(j,j)) > SMLNUM:
*
IF( TJJ.LT.ONE ) THEN
IF( XJ.GT.TJJ*BIGNUM ) THEN
*
* Scale x by 1/b(j).
*
REC = ONE / XJ
CALL DSCAL( N, REC, X, 1 )
SCALE = SCALE*REC
XMAX = XMAX*REC
END IF
END IF
X( J ) = X( J ) / TJJS
XJ = ABS( X( J ) )
ELSE IF( TJJ.GT.ZERO ) THEN
*
* 0 < abs(A(j,j)) <= SMLNUM:
*
IF( XJ.GT.TJJ*BIGNUM ) THEN
*
* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
* to avoid overflow when dividing by A(j,j).
*
REC = ( TJJ*BIGNUM ) / XJ
IF( CNORM( J ).GT.ONE ) THEN
*
* Scale by 1/CNORM(j) to avoid overflow when
* multiplying x(j) times column j.
*
REC = REC / CNORM( J )
END IF
CALL DSCAL( N, REC, X, 1 )
SCALE = SCALE*REC
XMAX = XMAX*REC
END IF
X( J ) = X( J ) / TJJS
XJ = ABS( X( J ) )
ELSE
*
* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
* scale = 0, and compute a solution to A*x = 0.
*
DO 90 I = 1, N
X( I ) = ZERO
90 CONTINUE
X( J ) = ONE
XJ = ONE
SCALE = ZERO
XMAX = ZERO
END IF
100 CONTINUE
*
* Scale x if necessary to avoid overflow when adding a
* multiple of column j of A.
*
IF( XJ.GT.ONE ) THEN
REC = ONE / XJ
IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
*
* Scale x by 1/(2*abs(x(j))).
*
REC = REC*HALF
CALL DSCAL( N, REC, X, 1 )
SCALE = SCALE*REC
END IF
ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
*
* Scale x by 1/2.
*
CALL DSCAL( N, HALF, X, 1 )
SCALE = SCALE*HALF
END IF
*
IF( UPPER ) THEN
IF( J.GT.1 ) THEN
*
* Compute the update
* x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j)
*
CALL DAXPY( J-1, -X( J )*TSCAL, A( 1, J ), 1, X,
$ 1 )
I = IDAMAX( J-1, X, 1 )
XMAX = ABS( X( I ) )
END IF
ELSE
IF( J.LT.N ) THEN
*
* Compute the update
* x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j)
*
CALL DAXPY( N-J, -X( J )*TSCAL, A( J+1, J ), 1,
$ X( J+1 ), 1 )
I = J + IDAMAX( N-J, X( J+1 ), 1 )
XMAX = ABS( X( I ) )
END IF
END IF
110 CONTINUE
*
ELSE
*
* Solve A' * x = b
*
DO 160 J = JFIRST, JLAST, JINC
*
* Compute x(j) = b(j) - sum A(k,j)*x(k).
* k<>j
*
XJ = ABS( X( J ) )
USCAL = TSCAL
REC = ONE / MAX( XMAX, ONE )
IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
*
* If x(j) could overflow, scale x by 1/(2*XMAX).
*
REC = REC*HALF
IF( NOUNIT ) THEN
TJJS = A( J, J )*TSCAL
ELSE
TJJS = TSCAL
END IF
TJJ = ABS( TJJS )
IF( TJJ.GT.ONE ) THEN
*
* Divide by A(j,j) when scaling x if A(j,j) > 1.
*
REC = MIN( ONE, REC*TJJ )
USCAL = USCAL / TJJS
END IF
IF( REC.LT.ONE ) THEN
CALL DSCAL( N, REC, X, 1 )
SCALE = SCALE*REC
XMAX = XMAX*REC
END IF
END IF
*
SUMJ = ZERO
IF( USCAL.EQ.ONE ) THEN
*
* If the scaling needed for A in the dot product is 1,
* call DDOT to perform the dot product.
*
IF( UPPER ) THEN
SUMJ = DDOT( J-1, A( 1, J ), 1, X, 1 )
ELSE IF( J.LT.N ) THEN
SUMJ = DDOT( N-J, A( J+1, J ), 1, X( J+1 ), 1 )
END IF
ELSE
*
* Otherwise, use in-line code for the dot product.
*
IF( UPPER ) THEN
DO 120 I = 1, J - 1
SUMJ = SUMJ + ( A( I, J )*USCAL )*X( I )
120 CONTINUE
ELSE IF( J.LT.N ) THEN
DO 130 I = J + 1, N
SUMJ = SUMJ + ( A( I, J )*USCAL )*X( I )
130 CONTINUE
END IF
END IF
*
IF( USCAL.EQ.TSCAL ) THEN
*
* Compute x(j) := ( x(j) - sumj ) / A(j,j) if 1/A(j,j)
* was not used to scale the dotproduct.
*
X( J ) = X( J ) - SUMJ
XJ = ABS( X( J ) )
IF( NOUNIT ) THEN
TJJS = A( J, J )*TSCAL
ELSE
TJJS = TSCAL
IF( TSCAL.EQ.ONE )
$ GO TO 150
END IF
*
* Compute x(j) = x(j) / A(j,j), scaling if necessary.
*
TJJ = ABS( TJJS )
IF( TJJ.GT.SMLNUM ) THEN
*
* abs(A(j,j)) > SMLNUM:
*
IF( TJJ.LT.ONE ) THEN
IF( XJ.GT.TJJ*BIGNUM ) THEN
*
* Scale X by 1/abs(x(j)).
*
REC = ONE / XJ
CALL DSCAL( N, REC, X, 1 )
SCALE = SCALE*REC
XMAX = XMAX*REC
END IF
END IF
X( J ) = X( J ) / TJJS
ELSE IF( TJJ.GT.ZERO ) THEN
*
* 0 < abs(A(j,j)) <= SMLNUM:
*
IF( XJ.GT.TJJ*BIGNUM ) THEN
*
* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
*
REC = ( TJJ*BIGNUM ) / XJ
CALL DSCAL( N, REC, X, 1 )
SCALE = SCALE*REC
XMAX = XMAX*REC
END IF
X( J ) = X( J ) / TJJS
ELSE
*
* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
* scale = 0, and compute a solution to A'*x = 0.
*
DO 140 I = 1, N
X( I ) = ZERO
140 CONTINUE
X( J ) = ONE
SCALE = ZERO
XMAX = ZERO
END IF
150 CONTINUE
ELSE
*
* Compute x(j) := x(j) / A(j,j) - sumj if the dot
* product has already been divided by 1/A(j,j).
*
X( J ) = X( J ) / TJJS - SUMJ
END IF
XMAX = MAX( XMAX, ABS( X( J ) ) )
160 CONTINUE
END IF
SCALE = SCALE / TSCAL
END IF
*
* Scale the column norms by 1/TSCAL for return.
*
IF( TSCAL.NE.ONE ) THEN
CALL DSCAL( N, ONE / TSCAL, CNORM, 1 )
END IF
*
RETURN
*
* End of DLATRS
*
END

115
lib/linalg/drscl.f Normal file
View File

@ -0,0 +1,115 @@
SUBROUTINE DRSCL( N, SA, SX, INCX )
*
* -- LAPACK auxiliary routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2006
*
* .. Scalar Arguments ..
INTEGER INCX, N
DOUBLE PRECISION SA
* ..
* .. Array Arguments ..
DOUBLE PRECISION SX( * )
* ..
*
* Purpose
* =======
*
* DRSCL multiplies an n-element real vector x by the real scalar 1/a.
* This is done without overflow or underflow as long as
* the final result x/a does not overflow or underflow.
*
* Arguments
* =========
*
* N (input) INTEGER
* The number of components of the vector x.
*
* SA (input) DOUBLE PRECISION
* The scalar a which is used to divide each component of x.
* SA must be >= 0, or the subroutine will divide by zero.
*
* SX (input/output) DOUBLE PRECISION array, dimension
* (1+(N-1)*abs(INCX))
* The n-element vector x.
*
* INCX (input) INTEGER
* The increment between successive values of the vector SX.
* > 0: SX(1) = X(1) and SX(1+(i-1)*INCX) = x(i), 1< i<= n
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL DONE
DOUBLE PRECISION BIGNUM, CDEN, CDEN1, CNUM, CNUM1, MUL, SMLNUM
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH
* ..
* .. External Subroutines ..
EXTERNAL DSCAL
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( N.LE.0 )
$ RETURN
*
* Get machine parameters
*
SMLNUM = DLAMCH( 'S' )
BIGNUM = ONE / SMLNUM
CALL DLABAD( SMLNUM, BIGNUM )
*
* Initialize the denominator to SA and the numerator to 1.
*
CDEN = SA
CNUM = ONE
*
10 CONTINUE
CDEN1 = CDEN*SMLNUM
CNUM1 = CNUM / BIGNUM
IF( ABS( CDEN1 ).GT.ABS( CNUM ) .AND. CNUM.NE.ZERO ) THEN
*
* Pre-multiply X by SMLNUM if CDEN is large compared to CNUM.
*
MUL = SMLNUM
DONE = .FALSE.
CDEN = CDEN1
ELSE IF( ABS( CNUM1 ).GT.ABS( CDEN ) ) THEN
*
* Pre-multiply X by BIGNUM if CDEN is small compared to CNUM.
*
MUL = BIGNUM
DONE = .FALSE.
CNUM = CNUM1
ELSE
*
* Multiply X by CNUM / CDEN and return.
*
MUL = CNUM / CDEN
DONE = .TRUE.
END IF
*
* Scale the vector X by MUL
*
CALL DSCAL( N, MUL, SX, INCX )
*
IF( .NOT.DONE )
$ GO TO 10
*
RETURN
*
* End of DRSCL
*
END

62
lib/linalg/dscal.f Normal file
View File

@ -0,0 +1,62 @@
SUBROUTINE DSCAL(N,DA,DX,INCX)
* .. Scalar Arguments ..
DOUBLE PRECISION DA
INTEGER INCX,N
* ..
* .. Array Arguments ..
DOUBLE PRECISION DX(*)
* ..
*
* Purpose
* =======
*
* DSCAL scales a vector by a constant.
* uses unrolled loops for increment equal to one.
*
* Further Details
* ===============
*
* jack dongarra, linpack, 3/11/78.
* modified 3/93 to return if incx .le. 0.
* modified 12/3/93, array(1) declarations changed to array(*)
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER I,M,MP1,NINCX
* ..
* .. Intrinsic Functions ..
INTRINSIC MOD
* ..
IF (N.LE.0 .OR. INCX.LE.0) RETURN
IF (INCX.EQ.1) GO TO 20
*
* code for increment not equal to 1
*
NINCX = N*INCX
DO 10 I = 1,NINCX,INCX
DX(I) = DA*DX(I)
10 CONTINUE
RETURN
*
* code for increment equal to 1
*
*
* clean-up loop
*
20 M = MOD(N,5)
IF (M.EQ.0) GO TO 40
DO 30 I = 1,M
DX(I) = DA*DX(I)
30 CONTINUE
IF (N.LT.5) RETURN
40 MP1 = M + 1
DO 50 I = MP1,N,5
DX(I) = DA*DX(I)
DX(I+1) = DA*DX(I+1)
DX(I+2) = DA*DX(I+2)
DX(I+3) = DA*DX(I+3)
DX(I+4) = DA*DX(I+4)
50 CONTINUE
RETURN
END

75
lib/linalg/dswap.f Normal file
View File

@ -0,0 +1,75 @@
SUBROUTINE DSWAP(N,DX,INCX,DY,INCY)
* .. Scalar Arguments ..
INTEGER INCX,INCY,N
* ..
* .. Array Arguments ..
DOUBLE PRECISION DX(*),DY(*)
* ..
*
* Purpose
* =======
*
* interchanges two vectors.
* uses unrolled loops for increments equal one.
*
* Further Details
* ===============
*
* jack dongarra, linpack, 3/11/78.
* modified 12/3/93, array(1) declarations changed to array(*)
*
* =====================================================================
*
* .. Local Scalars ..
DOUBLE PRECISION DTEMP
INTEGER I,IX,IY,M,MP1
* ..
* .. Intrinsic Functions ..
INTRINSIC MOD
* ..
IF (N.LE.0) RETURN
IF (INCX.EQ.1 .AND. INCY.EQ.1) GO TO 20
*
* code for unequal increments or equal increments not equal
* to 1
*
IX = 1
IY = 1
IF (INCX.LT.0) IX = (-N+1)*INCX + 1
IF (INCY.LT.0) IY = (-N+1)*INCY + 1
DO 10 I = 1,N
DTEMP = DX(IX)
DX(IX) = DY(IY)
DY(IY) = DTEMP
IX = IX + INCX
IY = IY + INCY
10 CONTINUE
RETURN
*
* code for both increments equal to 1
*
*
* clean-up loop
*
20 M = MOD(N,3)
IF (M.EQ.0) GO TO 40
DO 30 I = 1,M
DTEMP = DX(I)
DX(I) = DY(I)
DY(I) = DTEMP
30 CONTINUE
IF (N.LT.3) RETURN
40 MP1 = M + 1
DO 50 I = MP1,N,3
DTEMP = DX(I)
DX(I) = DY(I)
DY(I) = DTEMP
DTEMP = DX(I+1)
DX(I+1) = DY(I+1)
DY(I+1) = DTEMP
DTEMP = DX(I+2)
DX(I+2) = DY(I+2)
DY(I+2) = DTEMP
50 CONTINUE
RETURN
END

349
lib/linalg/dtrmm.f Normal file
View File

@ -0,0 +1,349 @@
SUBROUTINE DTRMM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
* .. Scalar Arguments ..
DOUBLE PRECISION ALPHA
INTEGER LDA,LDB,M,N
CHARACTER DIAG,SIDE,TRANSA,UPLO
* ..
* .. Array Arguments ..
DOUBLE PRECISION A(LDA,*),B(LDB,*)
* ..
*
* Purpose
* =======
*
* DTRMM performs one of the matrix-matrix operations
*
* B := alpha*op( A )*B, or B := alpha*B*op( A ),
*
* where alpha is a scalar, B is an m by n matrix, A is a unit, or
* non-unit, upper or lower triangular matrix and op( A ) is one of
*
* op( A ) = A or op( A ) = A'.
*
* Arguments
* ==========
*
* SIDE - CHARACTER*1.
* On entry, SIDE specifies whether op( A ) multiplies B from
* the left or right as follows:
*
* SIDE = 'L' or 'l' B := alpha*op( A )*B.
*
* SIDE = 'R' or 'r' B := alpha*B*op( A ).
*
* Unchanged on exit.
*
* UPLO - CHARACTER*1.
* On entry, UPLO specifies whether the matrix A is an upper or
* lower triangular matrix as follows:
*
* UPLO = 'U' or 'u' A is an upper triangular matrix.
*
* UPLO = 'L' or 'l' A is a lower triangular matrix.
*
* Unchanged on exit.
*
* TRANSA - CHARACTER*1.
* On entry, TRANSA specifies the form of op( A ) to be used in
* the matrix multiplication as follows:
*
* TRANSA = 'N' or 'n' op( A ) = A.
*
* TRANSA = 'T' or 't' op( A ) = A'.
*
* TRANSA = 'C' or 'c' op( A ) = A'.
*
* Unchanged on exit.
*
* DIAG - CHARACTER*1.
* On entry, DIAG specifies whether or not A is unit triangular
* as follows:
*
* DIAG = 'U' or 'u' A is assumed to be unit triangular.
*
* DIAG = 'N' or 'n' A is not assumed to be unit
* triangular.
*
* Unchanged on exit.
*
* M - INTEGER.
* On entry, M specifies the number of rows of B. M must be at
* least zero.
* Unchanged on exit.
*
* N - INTEGER.
* On entry, N specifies the number of columns of B. N must be
* at least zero.
* Unchanged on exit.
*
* ALPHA - DOUBLE PRECISION.
* On entry, ALPHA specifies the scalar alpha. When alpha is
* zero then A is not referenced and B need not be set before
* entry.
* Unchanged on exit.
*
* A - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m
* when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'.
* Before entry with UPLO = 'U' or 'u', the leading k by k
* upper triangular part of the array A must contain the upper
* triangular matrix and the strictly lower triangular part of
* A is not referenced.
* Before entry with UPLO = 'L' or 'l', the leading k by k
* lower triangular part of the array A must contain the lower
* triangular matrix and the strictly upper triangular part of
* A is not referenced.
* Note that when DIAG = 'U' or 'u', the diagonal elements of
* A are not referenced either, but are assumed to be unity.
* Unchanged on exit.
*
* LDA - INTEGER.
* On entry, LDA specifies the first dimension of A as declared
* in the calling (sub) program. When SIDE = 'L' or 'l' then
* LDA must be at least max( 1, m ), when SIDE = 'R' or 'r'
* then LDA must be at least max( 1, n ).
* Unchanged on exit.
*
* B - DOUBLE PRECISION array of DIMENSION ( LDB, n ).
* Before entry, the leading m by n part of the array B must
* contain the matrix B, and on exit is overwritten by the
* transformed matrix.
*
* LDB - INTEGER.
* On entry, LDB specifies the first dimension of B as declared
* in the calling (sub) program. LDB must be at least
* max( 1, m ).
* Unchanged on exit.
*
* Further Details
* ===============
*
* Level 3 Blas routine.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* =====================================================================
*
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Local Scalars ..
DOUBLE PRECISION TEMP
INTEGER I,INFO,J,K,NROWA
LOGICAL LSIDE,NOUNIT,UPPER
* ..
* .. Parameters ..
DOUBLE PRECISION ONE,ZERO
PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
* ..
*
* Test the input parameters.
*
LSIDE = LSAME(SIDE,'L')
IF (LSIDE) THEN
NROWA = M
ELSE
NROWA = N
END IF
NOUNIT = LSAME(DIAG,'N')
UPPER = LSAME(UPLO,'U')
*
INFO = 0
IF ((.NOT.LSIDE) .AND. (.NOT.LSAME(SIDE,'R'))) THEN
INFO = 1
ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
INFO = 2
ELSE IF ((.NOT.LSAME(TRANSA,'N')) .AND.
+ (.NOT.LSAME(TRANSA,'T')) .AND.
+ (.NOT.LSAME(TRANSA,'C'))) THEN
INFO = 3
ELSE IF ((.NOT.LSAME(DIAG,'U')) .AND. (.NOT.LSAME(DIAG,'N'))) THEN
INFO = 4
ELSE IF (M.LT.0) THEN
INFO = 5
ELSE IF (N.LT.0) THEN
INFO = 6
ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
INFO = 9
ELSE IF (LDB.LT.MAX(1,M)) THEN
INFO = 11
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('DTRMM ',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF (M.EQ.0 .OR. N.EQ.0) RETURN
*
* And when alpha.eq.zero.
*
IF (ALPHA.EQ.ZERO) THEN
DO 20 J = 1,N
DO 10 I = 1,M
B(I,J) = ZERO
10 CONTINUE
20 CONTINUE
RETURN
END IF
*
* Start the operations.
*
IF (LSIDE) THEN
IF (LSAME(TRANSA,'N')) THEN
*
* Form B := alpha*A*B.
*
IF (UPPER) THEN
DO 50 J = 1,N
DO 40 K = 1,M
IF (B(K,J).NE.ZERO) THEN
TEMP = ALPHA*B(K,J)
DO 30 I = 1,K - 1
B(I,J) = B(I,J) + TEMP*A(I,K)
30 CONTINUE
IF (NOUNIT) TEMP = TEMP*A(K,K)
B(K,J) = TEMP
END IF
40 CONTINUE
50 CONTINUE
ELSE
DO 80 J = 1,N
DO 70 K = M,1,-1
IF (B(K,J).NE.ZERO) THEN
TEMP = ALPHA*B(K,J)
B(K,J) = TEMP
IF (NOUNIT) B(K,J) = B(K,J)*A(K,K)
DO 60 I = K + 1,M
B(I,J) = B(I,J) + TEMP*A(I,K)
60 CONTINUE
END IF
70 CONTINUE
80 CONTINUE
END IF
ELSE
*
* Form B := alpha*A'*B.
*
IF (UPPER) THEN
DO 110 J = 1,N
DO 100 I = M,1,-1
TEMP = B(I,J)
IF (NOUNIT) TEMP = TEMP*A(I,I)
DO 90 K = 1,I - 1
TEMP = TEMP + A(K,I)*B(K,J)
90 CONTINUE
B(I,J) = ALPHA*TEMP
100 CONTINUE
110 CONTINUE
ELSE
DO 140 J = 1,N
DO 130 I = 1,M
TEMP = B(I,J)
IF (NOUNIT) TEMP = TEMP*A(I,I)
DO 120 K = I + 1,M
TEMP = TEMP + A(K,I)*B(K,J)
120 CONTINUE
B(I,J) = ALPHA*TEMP
130 CONTINUE
140 CONTINUE
END IF
END IF
ELSE
IF (LSAME(TRANSA,'N')) THEN
*
* Form B := alpha*B*A.
*
IF (UPPER) THEN
DO 180 J = N,1,-1
TEMP = ALPHA
IF (NOUNIT) TEMP = TEMP*A(J,J)
DO 150 I = 1,M
B(I,J) = TEMP*B(I,J)
150 CONTINUE
DO 170 K = 1,J - 1
IF (A(K,J).NE.ZERO) THEN
TEMP = ALPHA*A(K,J)
DO 160 I = 1,M
B(I,J) = B(I,J) + TEMP*B(I,K)
160 CONTINUE
END IF
170 CONTINUE
180 CONTINUE
ELSE
DO 220 J = 1,N
TEMP = ALPHA
IF (NOUNIT) TEMP = TEMP*A(J,J)
DO 190 I = 1,M
B(I,J) = TEMP*B(I,J)
190 CONTINUE
DO 210 K = J + 1,N
IF (A(K,J).NE.ZERO) THEN
TEMP = ALPHA*A(K,J)
DO 200 I = 1,M
B(I,J) = B(I,J) + TEMP*B(I,K)
200 CONTINUE
END IF
210 CONTINUE
220 CONTINUE
END IF
ELSE
*
* Form B := alpha*B*A'.
*
IF (UPPER) THEN
DO 260 K = 1,N
DO 240 J = 1,K - 1
IF (A(J,K).NE.ZERO) THEN
TEMP = ALPHA*A(J,K)
DO 230 I = 1,M
B(I,J) = B(I,J) + TEMP*B(I,K)
230 CONTINUE
END IF
240 CONTINUE
TEMP = ALPHA
IF (NOUNIT) TEMP = TEMP*A(K,K)
IF (TEMP.NE.ONE) THEN
DO 250 I = 1,M
B(I,K) = TEMP*B(I,K)
250 CONTINUE
END IF
260 CONTINUE
ELSE
DO 300 K = N,1,-1
DO 280 J = K + 1,N
IF (A(J,K).NE.ZERO) THEN
TEMP = ALPHA*A(J,K)
DO 270 I = 1,M
B(I,J) = B(I,J) + TEMP*B(I,K)
270 CONTINUE
END IF
280 CONTINUE
TEMP = ALPHA
IF (NOUNIT) TEMP = TEMP*A(K,K)
IF (TEMP.NE.ONE) THEN
DO 290 I = 1,M
B(I,K) = TEMP*B(I,K)
290 CONTINUE
END IF
300 CONTINUE
END IF
END IF
END IF
*
RETURN
*
* End of DTRMM .
*
END

281
lib/linalg/dtrmv.f Normal file
View File

@ -0,0 +1,281 @@
SUBROUTINE DTRMV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
* .. Scalar Arguments ..
INTEGER INCX,LDA,N
CHARACTER DIAG,TRANS,UPLO
* ..
* .. Array Arguments ..
DOUBLE PRECISION A(LDA,*),X(*)
* ..
*
* Purpose
* =======
*
* DTRMV performs one of the matrix-vector operations
*
* x := A*x, or x := A'*x,
*
* where x is an n element vector and A is an n by n unit, or non-unit,
* upper or lower triangular matrix.
*
* Arguments
* ==========
*
* UPLO - CHARACTER*1.
* On entry, UPLO specifies whether the matrix is an upper or
* lower triangular matrix as follows:
*
* UPLO = 'U' or 'u' A is an upper triangular matrix.
*
* UPLO = 'L' or 'l' A is a lower triangular matrix.
*
* Unchanged on exit.
*
* TRANS - CHARACTER*1.
* On entry, TRANS specifies the operation to be performed as
* follows:
*
* TRANS = 'N' or 'n' x := A*x.
*
* TRANS = 'T' or 't' x := A'*x.
*
* TRANS = 'C' or 'c' x := A'*x.
*
* Unchanged on exit.
*
* DIAG - CHARACTER*1.
* On entry, DIAG specifies whether or not A is unit
* triangular as follows:
*
* DIAG = 'U' or 'u' A is assumed to be unit triangular.
*
* DIAG = 'N' or 'n' A is not assumed to be unit
* triangular.
*
* Unchanged on exit.
*
* N - INTEGER.
* On entry, N specifies the order of the matrix A.
* N must be at least zero.
* Unchanged on exit.
*
* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
* Before entry with UPLO = 'U' or 'u', the leading n by n
* upper triangular part of the array A must contain the upper
* triangular matrix and the strictly lower triangular part of
* A is not referenced.
* Before entry with UPLO = 'L' or 'l', the leading n by n
* lower triangular part of the array A must contain the lower
* triangular matrix and the strictly upper triangular part of
* A is not referenced.
* Note that when DIAG = 'U' or 'u', the diagonal elements of
* A are not referenced either, but are assumed to be unity.
* Unchanged on exit.
*
* LDA - INTEGER.
* On entry, LDA specifies the first dimension of A as declared
* in the calling (sub) program. LDA must be at least
* max( 1, n ).
* Unchanged on exit.
*
* X - DOUBLE PRECISION array of dimension at least
* ( 1 + ( n - 1 )*abs( INCX ) ).
* Before entry, the incremented array X must contain the n
* element vector x. On exit, X is overwritten with the
* tranformed vector x.
*
* INCX - INTEGER.
* On entry, INCX specifies the increment for the elements of
* X. INCX must not be zero.
* Unchanged on exit.
*
* Further Details
* ===============
*
* Level 2 Blas routine.
*
* -- Written on 22-October-1986.
* Jack Dongarra, Argonne National Lab.
* Jeremy Du Croz, Nag Central Office.
* Sven Hammarling, Nag Central Office.
* Richard Hanson, Sandia National Labs.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER (ZERO=0.0D+0)
* ..
* .. Local Scalars ..
DOUBLE PRECISION TEMP
INTEGER I,INFO,IX,J,JX,KX
LOGICAL NOUNIT
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
*
* Test the input parameters.
*
INFO = 0
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
INFO = 1
ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
+ .NOT.LSAME(TRANS,'C')) THEN
INFO = 2
ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
INFO = 3
ELSE IF (N.LT.0) THEN
INFO = 4
ELSE IF (LDA.LT.MAX(1,N)) THEN
INFO = 6
ELSE IF (INCX.EQ.0) THEN
INFO = 8
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('DTRMV ',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF (N.EQ.0) RETURN
*
NOUNIT = LSAME(DIAG,'N')
*
* Set up the start point in X if the increment is not unity. This
* will be ( N - 1 )*INCX too small for descending loops.
*
IF (INCX.LE.0) THEN
KX = 1 - (N-1)*INCX
ELSE IF (INCX.NE.1) THEN
KX = 1
END IF
*
* Start the operations. In this version the elements of A are
* accessed sequentially with one pass through A.
*
IF (LSAME(TRANS,'N')) THEN
*
* Form x := A*x.
*
IF (LSAME(UPLO,'U')) THEN
IF (INCX.EQ.1) THEN
DO 20 J = 1,N
IF (X(J).NE.ZERO) THEN
TEMP = X(J)
DO 10 I = 1,J - 1
X(I) = X(I) + TEMP*A(I,J)
10 CONTINUE
IF (NOUNIT) X(J) = X(J)*A(J,J)
END IF
20 CONTINUE
ELSE
JX = KX
DO 40 J = 1,N
IF (X(JX).NE.ZERO) THEN
TEMP = X(JX)
IX = KX
DO 30 I = 1,J - 1
X(IX) = X(IX) + TEMP*A(I,J)
IX = IX + INCX
30 CONTINUE
IF (NOUNIT) X(JX) = X(JX)*A(J,J)
END IF
JX = JX + INCX
40 CONTINUE
END IF
ELSE
IF (INCX.EQ.1) THEN
DO 60 J = N,1,-1
IF (X(J).NE.ZERO) THEN
TEMP = X(J)
DO 50 I = N,J + 1,-1
X(I) = X(I) + TEMP*A(I,J)
50 CONTINUE
IF (NOUNIT) X(J) = X(J)*A(J,J)
END IF
60 CONTINUE
ELSE
KX = KX + (N-1)*INCX
JX = KX
DO 80 J = N,1,-1
IF (X(JX).NE.ZERO) THEN
TEMP = X(JX)
IX = KX
DO 70 I = N,J + 1,-1
X(IX) = X(IX) + TEMP*A(I,J)
IX = IX - INCX
70 CONTINUE
IF (NOUNIT) X(JX) = X(JX)*A(J,J)
END IF
JX = JX - INCX
80 CONTINUE
END IF
END IF
ELSE
*
* Form x := A'*x.
*
IF (LSAME(UPLO,'U')) THEN
IF (INCX.EQ.1) THEN
DO 100 J = N,1,-1
TEMP = X(J)
IF (NOUNIT) TEMP = TEMP*A(J,J)
DO 90 I = J - 1,1,-1
TEMP = TEMP + A(I,J)*X(I)
90 CONTINUE
X(J) = TEMP
100 CONTINUE
ELSE
JX = KX + (N-1)*INCX
DO 120 J = N,1,-1
TEMP = X(JX)
IX = JX
IF (NOUNIT) TEMP = TEMP*A(J,J)
DO 110 I = J - 1,1,-1
IX = IX - INCX
TEMP = TEMP + A(I,J)*X(IX)
110 CONTINUE
X(JX) = TEMP
JX = JX - INCX
120 CONTINUE
END IF
ELSE
IF (INCX.EQ.1) THEN
DO 140 J = 1,N
TEMP = X(J)
IF (NOUNIT) TEMP = TEMP*A(J,J)
DO 130 I = J + 1,N
TEMP = TEMP + A(I,J)*X(I)
130 CONTINUE
X(J) = TEMP
140 CONTINUE
ELSE
JX = KX
DO 160 J = 1,N
TEMP = X(JX)
IX = JX
IF (NOUNIT) TEMP = TEMP*A(J,J)
DO 150 I = J + 1,N
IX = IX + INCX
TEMP = TEMP + A(I,J)*X(IX)
150 CONTINUE
X(JX) = TEMP
JX = JX + INCX
160 CONTINUE
END IF
END IF
END IF
*
RETURN
*
* End of DTRMV .
*
END

376
lib/linalg/dtrsm.f Normal file
View File

@ -0,0 +1,376 @@
SUBROUTINE DTRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
* .. Scalar Arguments ..
DOUBLE PRECISION ALPHA
INTEGER LDA,LDB,M,N
CHARACTER DIAG,SIDE,TRANSA,UPLO
* ..
* .. Array Arguments ..
DOUBLE PRECISION A(LDA,*),B(LDB,*)
* ..
*
* Purpose
* =======
*
* DTRSM solves one of the matrix equations
*
* op( A )*X = alpha*B, or X*op( A ) = alpha*B,
*
* where alpha is a scalar, X and B are m by n matrices, A is a unit, or
* non-unit, upper or lower triangular matrix and op( A ) is one of
*
* op( A ) = A or op( A ) = A'.
*
* The matrix X is overwritten on B.
*
* Arguments
* ==========
*
* SIDE - CHARACTER*1.
* On entry, SIDE specifies whether op( A ) appears on the left
* or right of X as follows:
*
* SIDE = 'L' or 'l' op( A )*X = alpha*B.
*
* SIDE = 'R' or 'r' X*op( A ) = alpha*B.
*
* Unchanged on exit.
*
* UPLO - CHARACTER*1.
* On entry, UPLO specifies whether the matrix A is an upper or
* lower triangular matrix as follows:
*
* UPLO = 'U' or 'u' A is an upper triangular matrix.
*
* UPLO = 'L' or 'l' A is a lower triangular matrix.
*
* Unchanged on exit.
*
* TRANSA - CHARACTER*1.
* On entry, TRANSA specifies the form of op( A ) to be used in
* the matrix multiplication as follows:
*
* TRANSA = 'N' or 'n' op( A ) = A.
*
* TRANSA = 'T' or 't' op( A ) = A'.
*
* TRANSA = 'C' or 'c' op( A ) = A'.
*
* Unchanged on exit.
*
* DIAG - CHARACTER*1.
* On entry, DIAG specifies whether or not A is unit triangular
* as follows:
*
* DIAG = 'U' or 'u' A is assumed to be unit triangular.
*
* DIAG = 'N' or 'n' A is not assumed to be unit
* triangular.
*
* Unchanged on exit.
*
* M - INTEGER.
* On entry, M specifies the number of rows of B. M must be at
* least zero.
* Unchanged on exit.
*
* N - INTEGER.
* On entry, N specifies the number of columns of B. N must be
* at least zero.
* Unchanged on exit.
*
* ALPHA - DOUBLE PRECISION.
* On entry, ALPHA specifies the scalar alpha. When alpha is
* zero then A is not referenced and B need not be set before
* entry.
* Unchanged on exit.
*
* A - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m
* when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'.
* Before entry with UPLO = 'U' or 'u', the leading k by k
* upper triangular part of the array A must contain the upper
* triangular matrix and the strictly lower triangular part of
* A is not referenced.
* Before entry with UPLO = 'L' or 'l', the leading k by k
* lower triangular part of the array A must contain the lower
* triangular matrix and the strictly upper triangular part of
* A is not referenced.
* Note that when DIAG = 'U' or 'u', the diagonal elements of
* A are not referenced either, but are assumed to be unity.
* Unchanged on exit.
*
* LDA - INTEGER.
* On entry, LDA specifies the first dimension of A as declared
* in the calling (sub) program. When SIDE = 'L' or 'l' then
* LDA must be at least max( 1, m ), when SIDE = 'R' or 'r'
* then LDA must be at least max( 1, n ).
* Unchanged on exit.
*
* B - DOUBLE PRECISION array of DIMENSION ( LDB, n ).
* Before entry, the leading m by n part of the array B must
* contain the right-hand side matrix B, and on exit is
* overwritten by the solution matrix X.
*
* LDB - INTEGER.
* On entry, LDB specifies the first dimension of B as declared
* in the calling (sub) program. LDB must be at least
* max( 1, m ).
* Unchanged on exit.
*
* Further Details
* ===============
*
* Level 3 Blas routine.
*
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* =====================================================================
*
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Local Scalars ..
DOUBLE PRECISION TEMP
INTEGER I,INFO,J,K,NROWA
LOGICAL LSIDE,NOUNIT,UPPER
* ..
* .. Parameters ..
DOUBLE PRECISION ONE,ZERO
PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
* ..
*
* Test the input parameters.
*
LSIDE = LSAME(SIDE,'L')
IF (LSIDE) THEN
NROWA = M
ELSE
NROWA = N
END IF
NOUNIT = LSAME(DIAG,'N')
UPPER = LSAME(UPLO,'U')
*
INFO = 0
IF ((.NOT.LSIDE) .AND. (.NOT.LSAME(SIDE,'R'))) THEN
INFO = 1
ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
INFO = 2
ELSE IF ((.NOT.LSAME(TRANSA,'N')) .AND.
+ (.NOT.LSAME(TRANSA,'T')) .AND.
+ (.NOT.LSAME(TRANSA,'C'))) THEN
INFO = 3
ELSE IF ((.NOT.LSAME(DIAG,'U')) .AND. (.NOT.LSAME(DIAG,'N'))) THEN
INFO = 4
ELSE IF (M.LT.0) THEN
INFO = 5
ELSE IF (N.LT.0) THEN
INFO = 6
ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
INFO = 9
ELSE IF (LDB.LT.MAX(1,M)) THEN
INFO = 11
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('DTRSM ',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF (M.EQ.0 .OR. N.EQ.0) RETURN
*
* And when alpha.eq.zero.
*
IF (ALPHA.EQ.ZERO) THEN
DO 20 J = 1,N
DO 10 I = 1,M
B(I,J) = ZERO
10 CONTINUE
20 CONTINUE
RETURN
END IF
*
* Start the operations.
*
IF (LSIDE) THEN
IF (LSAME(TRANSA,'N')) THEN
*
* Form B := alpha*inv( A )*B.
*
IF (UPPER) THEN
DO 60 J = 1,N
IF (ALPHA.NE.ONE) THEN
DO 30 I = 1,M
B(I,J) = ALPHA*B(I,J)
30 CONTINUE
END IF
DO 50 K = M,1,-1
IF (B(K,J).NE.ZERO) THEN
IF (NOUNIT) B(K,J) = B(K,J)/A(K,K)
DO 40 I = 1,K - 1
B(I,J) = B(I,J) - B(K,J)*A(I,K)
40 CONTINUE
END IF
50 CONTINUE
60 CONTINUE
ELSE
DO 100 J = 1,N
IF (ALPHA.NE.ONE) THEN
DO 70 I = 1,M
B(I,J) = ALPHA*B(I,J)
70 CONTINUE
END IF
DO 90 K = 1,M
IF (B(K,J).NE.ZERO) THEN
IF (NOUNIT) B(K,J) = B(K,J)/A(K,K)
DO 80 I = K + 1,M
B(I,J) = B(I,J) - B(K,J)*A(I,K)
80 CONTINUE
END IF
90 CONTINUE
100 CONTINUE
END IF
ELSE
*
* Form B := alpha*inv( A' )*B.
*
IF (UPPER) THEN
DO 130 J = 1,N
DO 120 I = 1,M
TEMP = ALPHA*B(I,J)
DO 110 K = 1,I - 1
TEMP = TEMP - A(K,I)*B(K,J)
110 CONTINUE
IF (NOUNIT) TEMP = TEMP/A(I,I)
B(I,J) = TEMP
120 CONTINUE
130 CONTINUE
ELSE
DO 160 J = 1,N
DO 150 I = M,1,-1
TEMP = ALPHA*B(I,J)
DO 140 K = I + 1,M
TEMP = TEMP - A(K,I)*B(K,J)
140 CONTINUE
IF (NOUNIT) TEMP = TEMP/A(I,I)
B(I,J) = TEMP
150 CONTINUE
160 CONTINUE
END IF
END IF
ELSE
IF (LSAME(TRANSA,'N')) THEN
*
* Form B := alpha*B*inv( A ).
*
IF (UPPER) THEN
DO 210 J = 1,N
IF (ALPHA.NE.ONE) THEN
DO 170 I = 1,M
B(I,J) = ALPHA*B(I,J)
170 CONTINUE
END IF
DO 190 K = 1,J - 1
IF (A(K,J).NE.ZERO) THEN
DO 180 I = 1,M
B(I,J) = B(I,J) - A(K,J)*B(I,K)
180 CONTINUE
END IF
190 CONTINUE
IF (NOUNIT) THEN
TEMP = ONE/A(J,J)
DO 200 I = 1,M
B(I,J) = TEMP*B(I,J)
200 CONTINUE
END IF
210 CONTINUE
ELSE
DO 260 J = N,1,-1
IF (ALPHA.NE.ONE) THEN
DO 220 I = 1,M
B(I,J) = ALPHA*B(I,J)
220 CONTINUE
END IF
DO 240 K = J + 1,N
IF (A(K,J).NE.ZERO) THEN
DO 230 I = 1,M
B(I,J) = B(I,J) - A(K,J)*B(I,K)
230 CONTINUE
END IF
240 CONTINUE
IF (NOUNIT) THEN
TEMP = ONE/A(J,J)
DO 250 I = 1,M
B(I,J) = TEMP*B(I,J)
250 CONTINUE
END IF
260 CONTINUE
END IF
ELSE
*
* Form B := alpha*B*inv( A' ).
*
IF (UPPER) THEN
DO 310 K = N,1,-1
IF (NOUNIT) THEN
TEMP = ONE/A(K,K)
DO 270 I = 1,M
B(I,K) = TEMP*B(I,K)
270 CONTINUE
END IF
DO 290 J = 1,K - 1
IF (A(J,K).NE.ZERO) THEN
TEMP = A(J,K)
DO 280 I = 1,M
B(I,J) = B(I,J) - TEMP*B(I,K)
280 CONTINUE
END IF
290 CONTINUE
IF (ALPHA.NE.ONE) THEN
DO 300 I = 1,M
B(I,K) = ALPHA*B(I,K)
300 CONTINUE
END IF
310 CONTINUE
ELSE
DO 360 K = 1,N
IF (NOUNIT) THEN
TEMP = ONE/A(K,K)
DO 320 I = 1,M
B(I,K) = TEMP*B(I,K)
320 CONTINUE
END IF
DO 340 J = K + 1,N
IF (A(J,K).NE.ZERO) THEN
TEMP = A(J,K)
DO 330 I = 1,M
B(I,J) = B(I,J) - TEMP*B(I,K)
330 CONTINUE
END IF
340 CONTINUE
IF (ALPHA.NE.ONE) THEN
DO 350 I = 1,M
B(I,K) = ALPHA*B(I,K)
350 CONTINUE
END IF
360 CONTINUE
END IF
END IF
END IF
*
RETURN
*
* End of DTRSM .
*
END

282
lib/linalg/dtrsv.f Normal file
View File

@ -0,0 +1,282 @@
SUBROUTINE DTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
* .. Scalar Arguments ..
INTEGER INCX,LDA,N
CHARACTER DIAG,TRANS,UPLO
* ..
* .. Array Arguments ..
DOUBLE PRECISION A(LDA,*),X(*)
* ..
*
* Purpose
* =======
*
* DTRSV solves one of the systems of equations
*
* A*x = b, or A'*x = b,
*
* where b and x are n element vectors and A is an n by n unit, or
* non-unit, upper or lower triangular matrix.
*
* No test for singularity or near-singularity is included in this
* routine. Such tests must be performed before calling this routine.
*
* Arguments
* ==========
*
* UPLO - CHARACTER*1.
* On entry, UPLO specifies whether the matrix is an upper or
* lower triangular matrix as follows:
*
* UPLO = 'U' or 'u' A is an upper triangular matrix.
*
* UPLO = 'L' or 'l' A is a lower triangular matrix.
*
* Unchanged on exit.
*
* TRANS - CHARACTER*1.
* On entry, TRANS specifies the equations to be solved as
* follows:
*
* TRANS = 'N' or 'n' A*x = b.
*
* TRANS = 'T' or 't' A'*x = b.
*
* TRANS = 'C' or 'c' A'*x = b.
*
* Unchanged on exit.
*
* DIAG - CHARACTER*1.
* On entry, DIAG specifies whether or not A is unit
* triangular as follows:
*
* DIAG = 'U' or 'u' A is assumed to be unit triangular.
*
* DIAG = 'N' or 'n' A is not assumed to be unit
* triangular.
*
* Unchanged on exit.
*
* N - INTEGER.
* On entry, N specifies the order of the matrix A.
* N must be at least zero.
* Unchanged on exit.
*
* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
* Before entry with UPLO = 'U' or 'u', the leading n by n
* upper triangular part of the array A must contain the upper
* triangular matrix and the strictly lower triangular part of
* A is not referenced.
* Before entry with UPLO = 'L' or 'l', the leading n by n
* lower triangular part of the array A must contain the lower
* triangular matrix and the strictly upper triangular part of
* A is not referenced.
* Note that when DIAG = 'U' or 'u', the diagonal elements of
* A are not referenced either, but are assumed to be unity.
* Unchanged on exit.
*
* LDA - INTEGER.
* On entry, LDA specifies the first dimension of A as declared
* in the calling (sub) program. LDA must be at least
* max( 1, n ).
* Unchanged on exit.
*
* X - DOUBLE PRECISION array of dimension at least
* ( 1 + ( n - 1 )*abs( INCX ) ).
* Before entry, the incremented array X must contain the n
* element right-hand side vector b. On exit, X is overwritten
* with the solution vector x.
*
* INCX - INTEGER.
* On entry, INCX specifies the increment for the elements of
* X. INCX must not be zero.
* Unchanged on exit.
*
*
* Level 2 Blas routine.
*
* -- Written on 22-October-1986.
* Jack Dongarra, Argonne National Lab.
* Jeremy Du Croz, Nag Central Office.
* Sven Hammarling, Nag Central Office.
* Richard Hanson, Sandia National Labs.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER (ZERO=0.0D+0)
* ..
* .. Local Scalars ..
DOUBLE PRECISION TEMP
INTEGER I,INFO,IX,J,JX,KX
LOGICAL NOUNIT
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
*
* Test the input parameters.
*
INFO = 0
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
INFO = 1
ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
+ .NOT.LSAME(TRANS,'C')) THEN
INFO = 2
ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
INFO = 3
ELSE IF (N.LT.0) THEN
INFO = 4
ELSE IF (LDA.LT.MAX(1,N)) THEN
INFO = 6
ELSE IF (INCX.EQ.0) THEN
INFO = 8
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('DTRSV ',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF (N.EQ.0) RETURN
*
NOUNIT = LSAME(DIAG,'N')
*
* Set up the start point in X if the increment is not unity. This
* will be ( N - 1 )*INCX too small for descending loops.
*
IF (INCX.LE.0) THEN
KX = 1 - (N-1)*INCX
ELSE IF (INCX.NE.1) THEN
KX = 1
END IF
*
* Start the operations. In this version the elements of A are
* accessed sequentially with one pass through A.
*
IF (LSAME(TRANS,'N')) THEN
*
* Form x := inv( A )*x.
*
IF (LSAME(UPLO,'U')) THEN
IF (INCX.EQ.1) THEN
DO 20 J = N,1,-1
IF (X(J).NE.ZERO) THEN
IF (NOUNIT) X(J) = X(J)/A(J,J)
TEMP = X(J)
DO 10 I = J - 1,1,-1
X(I) = X(I) - TEMP*A(I,J)
10 CONTINUE
END IF
20 CONTINUE
ELSE
JX = KX + (N-1)*INCX
DO 40 J = N,1,-1
IF (X(JX).NE.ZERO) THEN
IF (NOUNIT) X(JX) = X(JX)/A(J,J)
TEMP = X(JX)
IX = JX
DO 30 I = J - 1,1,-1
IX = IX - INCX
X(IX) = X(IX) - TEMP*A(I,J)
30 CONTINUE
END IF
JX = JX - INCX
40 CONTINUE
END IF
ELSE
IF (INCX.EQ.1) THEN
DO 60 J = 1,N
IF (X(J).NE.ZERO) THEN
IF (NOUNIT) X(J) = X(J)/A(J,J)
TEMP = X(J)
DO 50 I = J + 1,N
X(I) = X(I) - TEMP*A(I,J)
50 CONTINUE
END IF
60 CONTINUE
ELSE
JX = KX
DO 80 J = 1,N
IF (X(JX).NE.ZERO) THEN
IF (NOUNIT) X(JX) = X(JX)/A(J,J)
TEMP = X(JX)
IX = JX
DO 70 I = J + 1,N
IX = IX + INCX
X(IX) = X(IX) - TEMP*A(I,J)
70 CONTINUE
END IF
JX = JX + INCX
80 CONTINUE
END IF
END IF
ELSE
*
* Form x := inv( A' )*x.
*
IF (LSAME(UPLO,'U')) THEN
IF (INCX.EQ.1) THEN
DO 100 J = 1,N
TEMP = X(J)
DO 90 I = 1,J - 1
TEMP = TEMP - A(I,J)*X(I)
90 CONTINUE
IF (NOUNIT) TEMP = TEMP/A(J,J)
X(J) = TEMP
100 CONTINUE
ELSE
JX = KX
DO 120 J = 1,N
TEMP = X(JX)
IX = KX
DO 110 I = 1,J - 1
TEMP = TEMP - A(I,J)*X(IX)
IX = IX + INCX
110 CONTINUE
IF (NOUNIT) TEMP = TEMP/A(J,J)
X(JX) = TEMP
JX = JX + INCX
120 CONTINUE
END IF
ELSE
IF (INCX.EQ.1) THEN
DO 140 J = N,1,-1
TEMP = X(J)
DO 130 I = N,J + 1,-1
TEMP = TEMP - A(I,J)*X(I)
130 CONTINUE
IF (NOUNIT) TEMP = TEMP/A(J,J)
X(J) = TEMP
140 CONTINUE
ELSE
KX = KX + (N-1)*INCX
JX = KX
DO 160 J = N,1,-1
TEMP = X(JX)
IX = KX
DO 150 I = N,J + 1,-1
TEMP = TEMP - A(I,J)*X(IX)
IX = IX - INCX
150 CONTINUE
IF (NOUNIT) TEMP = TEMP/A(J,J)
X(JX) = TEMP
JX = JX - INCX
160 CONTINUE
END IF
END IF
END IF
*
RETURN
*
* End of DTRSV .
*
END

147
lib/linalg/dtrti2.f Normal file
View File

@ -0,0 +1,147 @@
SUBROUTINE DTRTI2( UPLO, DIAG, N, A, LDA, INFO )
*
* -- LAPACK routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2006
*
* .. Scalar Arguments ..
CHARACTER DIAG, UPLO
INTEGER INFO, LDA, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * )
* ..
*
* Purpose
* =======
*
* DTRTI2 computes the inverse of a real upper or lower triangular
* matrix.
*
* This is the Level 2 BLAS version of the algorithm.
*
* Arguments
* =========
*
* UPLO (input) CHARACTER*1
* Specifies whether the matrix A is upper or lower triangular.
* = 'U': Upper triangular
* = 'L': Lower triangular
*
* DIAG (input) CHARACTER*1
* Specifies whether or not the matrix A is unit triangular.
* = 'N': Non-unit triangular
* = 'U': Unit triangular
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
* On entry, the triangular matrix A. If UPLO = 'U', the
* leading n by n upper triangular part of the array A contains
* the upper triangular matrix, and the strictly lower
* triangular part of A is not referenced. If UPLO = 'L', the
* leading n by n lower triangular part of the array A contains
* the lower triangular matrix, and the strictly upper
* triangular part of A is not referenced. If DIAG = 'U', the
* diagonal elements of A are also not referenced and are
* assumed to be 1.
*
* On exit, the (triangular) inverse of the original matrix, in
* the same storage format.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -k, the k-th argument had an illegal value
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL NOUNIT, UPPER
INTEGER J
DOUBLE PRECISION AJJ
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL DSCAL, DTRMV, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
NOUNIT = LSAME( DIAG, 'N' )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DTRTI2', -INFO )
RETURN
END IF
*
IF( UPPER ) THEN
*
* Compute inverse of upper triangular matrix.
*
DO 10 J = 1, N
IF( NOUNIT ) THEN
A( J, J ) = ONE / A( J, J )
AJJ = -A( J, J )
ELSE
AJJ = -ONE
END IF
*
* Compute elements 1:j-1 of j-th column.
*
CALL DTRMV( 'Upper', 'No transpose', DIAG, J-1, A, LDA,
$ A( 1, J ), 1 )
CALL DSCAL( J-1, AJJ, A( 1, J ), 1 )
10 CONTINUE
ELSE
*
* Compute inverse of lower triangular matrix.
*
DO 20 J = N, 1, -1
IF( NOUNIT ) THEN
A( J, J ) = ONE / A( J, J )
AJJ = -A( J, J )
ELSE
AJJ = -ONE
END IF
IF( J.LT.N ) THEN
*
* Compute elements j+1:n of j-th column.
*
CALL DTRMV( 'Lower', 'No transpose', DIAG, N-J,
$ A( J+1, J+1 ), LDA, A( J+1, J ), 1 )
CALL DSCAL( N-J, AJJ, A( J+1, J ), 1 )
END IF
20 CONTINUE
END IF
*
RETURN
*
* End of DTRTI2
*
END

177
lib/linalg/dtrtri.f Normal file
View File

@ -0,0 +1,177 @@
SUBROUTINE DTRTRI( UPLO, DIAG, N, A, LDA, INFO )
*
* -- LAPACK routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2006
*
* .. Scalar Arguments ..
CHARACTER DIAG, UPLO
INTEGER INFO, LDA, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * )
* ..
*
* Purpose
* =======
*
* DTRTRI computes the inverse of a real upper or lower triangular
* matrix A.
*
* This is the Level 3 BLAS version of the algorithm.
*
* Arguments
* =========
*
* UPLO (input) CHARACTER*1
* = 'U': A is upper triangular;
* = 'L': A is lower triangular.
*
* DIAG (input) CHARACTER*1
* = 'N': A is non-unit triangular;
* = 'U': A is unit triangular.
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
* On entry, the triangular matrix A. If UPLO = 'U', the
* leading N-by-N upper triangular part of the array A contains
* the upper triangular matrix, and the strictly lower
* triangular part of A is not referenced. If UPLO = 'L', the
* leading N-by-N lower triangular part of the array A contains
* the lower triangular matrix, and the strictly upper
* triangular part of A is not referenced. If DIAG = 'U', the
* diagonal elements of A are also not referenced and are
* assumed to be 1.
* On exit, the (triangular) inverse of the original matrix, in
* the same storage format.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: if INFO = i, A(i,i) is exactly zero. The triangular
* matrix is singular and its inverse can not be computed.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL NOUNIT, UPPER
INTEGER J, JB, NB, NN
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
EXTERNAL LSAME, ILAENV
* ..
* .. External Subroutines ..
EXTERNAL DTRMM, DTRSM, DTRTI2, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
NOUNIT = LSAME( DIAG, 'N' )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DTRTRI', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Check for singularity if non-unit.
*
IF( NOUNIT ) THEN
DO 10 INFO = 1, N
IF( A( INFO, INFO ).EQ.ZERO )
$ RETURN
10 CONTINUE
INFO = 0
END IF
*
* Determine the block size for this environment.
*
NB = ILAENV( 1, 'DTRTRI', UPLO // DIAG, N, -1, -1, -1 )
IF( NB.LE.1 .OR. NB.GE.N ) THEN
*
* Use unblocked code
*
CALL DTRTI2( UPLO, DIAG, N, A, LDA, INFO )
ELSE
*
* Use blocked code
*
IF( UPPER ) THEN
*
* Compute inverse of upper triangular matrix
*
DO 20 J = 1, N, NB
JB = MIN( NB, N-J+1 )
*
* Compute rows 1:j-1 of current block column
*
CALL DTRMM( 'Left', 'Upper', 'No transpose', DIAG, J-1,
$ JB, ONE, A, LDA, A( 1, J ), LDA )
CALL DTRSM( 'Right', 'Upper', 'No transpose', DIAG, J-1,
$ JB, -ONE, A( J, J ), LDA, A( 1, J ), LDA )
*
* Compute inverse of current diagonal block
*
CALL DTRTI2( 'Upper', DIAG, JB, A( J, J ), LDA, INFO )
20 CONTINUE
ELSE
*
* Compute inverse of lower triangular matrix
*
NN = ( ( N-1 ) / NB )*NB + 1
DO 30 J = NN, 1, -NB
JB = MIN( NB, N-J+1 )
IF( J+JB.LE.N ) THEN
*
* Compute rows j+jb:n of current block column
*
CALL DTRMM( 'Left', 'Lower', 'No transpose', DIAG,
$ N-J-JB+1, JB, ONE, A( J+JB, J+JB ), LDA,
$ A( J+JB, J ), LDA )
CALL DTRSM( 'Right', 'Lower', 'No transpose', DIAG,
$ N-J-JB+1, JB, -ONE, A( J, J ), LDA,
$ A( J+JB, J ), LDA )
END IF
*
* Compute inverse of current diagonal block
*
CALL DTRTI2( 'Lower', DIAG, JB, A( J, J ), LDA, INFO )
30 CONTINUE
END IF
END IF
*
RETURN
*
* End of DTRTRI
*
END

58
lib/linalg/idamax.f Normal file
View File

@ -0,0 +1,58 @@
INTEGER FUNCTION IDAMAX(N,DX,INCX)
* .. Scalar Arguments ..
INTEGER INCX,N
* ..
* .. Array Arguments ..
DOUBLE PRECISION DX(*)
* ..
*
* Purpose
* =======
*
* IDAMAX finds the index of element having max. absolute value.
*
* Further Details
* ===============
*
* jack dongarra, linpack, 3/11/78.
* modified 3/93 to return if incx .le. 0.
* modified 12/3/93, array(1) declarations changed to array(*)
*
* =====================================================================
*
* .. Local Scalars ..
DOUBLE PRECISION DMAX
INTEGER I,IX
* ..
* .. Intrinsic Functions ..
INTRINSIC DABS
* ..
IDAMAX = 0
IF (N.LT.1 .OR. INCX.LE.0) RETURN
IDAMAX = 1
IF (N.EQ.1) RETURN
IF (INCX.EQ.1) GO TO 20
*
* code for increment not equal to 1
*
IX = 1
DMAX = DABS(DX(1))
IX = IX + INCX
DO 10 I = 2,N
IF (DABS(DX(IX)).LE.DMAX) GO TO 5
IDAMAX = I
DMAX = DABS(DX(IX))
5 IX = IX + INCX
10 CONTINUE
RETURN
*
* code for increment equal to 1
*
20 DMAX = DABS(DX(1))
DO 30 I = 2,N
IF (DABS(DX(I)).LE.DMAX) GO TO 30
IDAMAX = I
DMAX = DABS(DX(I))
30 CONTINUE
RETURN
END

148
lib/linalg/ieeeck.f Normal file
View File

@ -0,0 +1,148 @@
INTEGER FUNCTION IEEECK( ISPEC, ZERO, ONE )
*
* -- LAPACK auxiliary routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2006
*
* .. Scalar Arguments ..
INTEGER ISPEC
REAL ONE, ZERO
* ..
*
* Purpose
* =======
*
* IEEECK is called from the ILAENV to verify that Infinity and
* possibly NaN arithmetic is safe (i.e. will not trap).
*
* Arguments
* =========
*
* ISPEC (input) INTEGER
* Specifies whether to test just for inifinity arithmetic
* or whether to test for infinity and NaN arithmetic.
* = 0: Verify infinity arithmetic only.
* = 1: Verify infinity and NaN arithmetic.
*
* ZERO (input) REAL
* Must contain the value 0.0
* This is passed to prevent the compiler from optimizing
* away this code.
*
* ONE (input) REAL
* Must contain the value 1.0
* This is passed to prevent the compiler from optimizing
* away this code.
*
* RETURN VALUE: INTEGER
* = 0: Arithmetic failed to produce the correct answers
* = 1: Arithmetic produced the correct answers
*
* .. Local Scalars ..
REAL NAN1, NAN2, NAN3, NAN4, NAN5, NAN6, NEGINF,
$ NEGZRO, NEWZRO, POSINF
* ..
* .. Executable Statements ..
IEEECK = 1
*
POSINF = ONE / ZERO
IF( POSINF.LE.ONE ) THEN
IEEECK = 0
RETURN
END IF
*
NEGINF = -ONE / ZERO
IF( NEGINF.GE.ZERO ) THEN
IEEECK = 0
RETURN
END IF
*
NEGZRO = ONE / ( NEGINF+ONE )
IF( NEGZRO.NE.ZERO ) THEN
IEEECK = 0
RETURN
END IF
*
NEGINF = ONE / NEGZRO
IF( NEGINF.GE.ZERO ) THEN
IEEECK = 0
RETURN
END IF
*
NEWZRO = NEGZRO + ZERO
IF( NEWZRO.NE.ZERO ) THEN
IEEECK = 0
RETURN
END IF
*
POSINF = ONE / NEWZRO
IF( POSINF.LE.ONE ) THEN
IEEECK = 0
RETURN
END IF
*
NEGINF = NEGINF*POSINF
IF( NEGINF.GE.ZERO ) THEN
IEEECK = 0
RETURN
END IF
*
POSINF = POSINF*POSINF
IF( POSINF.LE.ONE ) THEN
IEEECK = 0
RETURN
END IF
*
*
*
*
* Return if we were only asked to check infinity arithmetic
*
IF( ISPEC.EQ.0 )
$ RETURN
*
NAN1 = POSINF + NEGINF
*
NAN2 = POSINF / NEGINF
*
NAN3 = POSINF / POSINF
*
NAN4 = POSINF*ZERO
*
NAN5 = NEGINF*NEGZRO
*
NAN6 = NAN5*0.0
*
IF( NAN1.EQ.NAN1 ) THEN
IEEECK = 0
RETURN
END IF
*
IF( NAN2.EQ.NAN2 ) THEN
IEEECK = 0
RETURN
END IF
*
IF( NAN3.EQ.NAN3 ) THEN
IEEECK = 0
RETURN
END IF
*
IF( NAN4.EQ.NAN4 ) THEN
IEEECK = 0
RETURN
END IF
*
IF( NAN5.EQ.NAN5 ) THEN
IEEECK = 0
RETURN
END IF
*
IF( NAN6.EQ.NAN6 ) THEN
IEEECK = 0
RETURN
END IF
*
RETURN
END

555
lib/linalg/ilaenv.f Normal file
View File

@ -0,0 +1,555 @@
INTEGER FUNCTION ILAENV( ISPEC, NAME, OPTS, N1, N2, N3, N4 )
*
* -- LAPACK auxiliary routine (version 3.2.1) --
*
* -- April 2009 --
*
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER*( * ) NAME, OPTS
INTEGER ISPEC, N1, N2, N3, N4
* ..
*
* Purpose
* =======
*
* ILAENV is called from the LAPACK routines to choose problem-dependent
* parameters for the local environment. See ISPEC for a description of
* the parameters.
*
* ILAENV returns an INTEGER
* if ILAENV >= 0: ILAENV returns the value of the parameter specified by ISPEC
* if ILAENV < 0: if ILAENV = -k, the k-th argument had an illegal value.
*
* This version provides a set of parameters which should give good,
* but not optimal, performance on many of the currently available
* computers. Users are encouraged to modify this subroutine to set
* the tuning parameters for their particular machine using the option
* and problem size information in the arguments.
*
* This routine will not function correctly if it is converted to all
* lower case. Converting it to all upper case is allowed.
*
* Arguments
* =========
*
* ISPEC (input) INTEGER
* Specifies the parameter to be returned as the value of
* ILAENV.
* = 1: the optimal blocksize; if this value is 1, an unblocked
* algorithm will give the best performance.
* = 2: the minimum block size for which the block routine
* should be used; if the usable block size is less than
* this value, an unblocked routine should be used.
* = 3: the crossover point (in a block routine, for N less
* than this value, an unblocked routine should be used)
* = 4: the number of shifts, used in the nonsymmetric
* eigenvalue routines (DEPRECATED)
* = 5: the minimum column dimension for blocking to be used;
* rectangular blocks must have dimension at least k by m,
* where k is given by ILAENV(2,...) and m by ILAENV(5,...)
* = 6: the crossover point for the SVD (when reducing an m by n
* matrix to bidiagonal form, if max(m,n)/min(m,n) exceeds
* this value, a QR factorization is used first to reduce
* the matrix to a triangular form.)
* = 7: the number of processors
* = 8: the crossover point for the multishift QR method
* for nonsymmetric eigenvalue problems (DEPRECATED)
* = 9: maximum size of the subproblems at the bottom of the
* computation tree in the divide-and-conquer algorithm
* (used by xGELSD and xGESDD)
* =10: ieee NaN arithmetic can be trusted not to trap
* =11: infinity arithmetic can be trusted not to trap
* 12 <= ISPEC <= 16:
* xHSEQR or one of its subroutines,
* see IPARMQ for detailed explanation
*
* NAME (input) CHARACTER*(*)
* The name of the calling subroutine, in either upper case or
* lower case.
*
* OPTS (input) CHARACTER*(*)
* The character options to the subroutine NAME, concatenated
* into a single character string. For example, UPLO = 'U',
* TRANS = 'T', and DIAG = 'N' for a triangular routine would
* be specified as OPTS = 'UTN'.
*
* N1 (input) INTEGER
* N2 (input) INTEGER
* N3 (input) INTEGER
* N4 (input) INTEGER
* Problem dimensions for the subroutine NAME; these may not all
* be required.
*
* Further Details
* ===============
*
* The following conventions have been used when calling ILAENV from the
* LAPACK routines:
* 1) OPTS is a concatenation of all of the character options to
* subroutine NAME, in the same order that they appear in the
* argument list for NAME, even if they are not used in determining
* the value of the parameter specified by ISPEC.
* 2) The problem dimensions N1, N2, N3, N4 are specified in the order
* that they appear in the argument list for NAME. N1 is used
* first, N2 second, and so on, and unused problem dimensions are
* passed a value of -1.
* 3) The parameter value returned by ILAENV is checked for validity in
* the calling subroutine. For example, ILAENV is used to retrieve
* the optimal blocksize for STRTRI as follows:
*
* NB = ILAENV( 1, 'STRTRI', UPLO // DIAG, N, -1, -1, -1 )
* IF( NB.LE.1 ) NB = MAX( 1, N )
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER I, IC, IZ, NB, NBMIN, NX
LOGICAL CNAME, SNAME
CHARACTER C1*1, C2*2, C4*2, C3*3, SUBNAM*6
* ..
* .. Intrinsic Functions ..
INTRINSIC CHAR, ICHAR, INT, MIN, REAL
* ..
* .. External Functions ..
INTEGER IEEECK, IPARMQ
EXTERNAL IEEECK, IPARMQ
* ..
* .. Executable Statements ..
*
GO TO ( 10, 10, 10, 80, 90, 100, 110, 120,
$ 130, 140, 150, 160, 160, 160, 160, 160 )ISPEC
*
* Invalid value for ISPEC
*
ILAENV = -1
RETURN
*
10 CONTINUE
*
* Convert NAME to upper case if the first character is lower case.
*
ILAENV = 1
SUBNAM = NAME
IC = ICHAR( SUBNAM( 1: 1 ) )
IZ = ICHAR( 'Z' )
IF( IZ.EQ.90 .OR. IZ.EQ.122 ) THEN
*
* ASCII character set
*
IF( IC.GE.97 .AND. IC.LE.122 ) THEN
SUBNAM( 1: 1 ) = CHAR( IC-32 )
DO 20 I = 2, 6
IC = ICHAR( SUBNAM( I: I ) )
IF( IC.GE.97 .AND. IC.LE.122 )
$ SUBNAM( I: I ) = CHAR( IC-32 )
20 CONTINUE
END IF
*
ELSE IF( IZ.EQ.233 .OR. IZ.EQ.169 ) THEN
*
* EBCDIC character set
*
IF( ( IC.GE.129 .AND. IC.LE.137 ) .OR.
$ ( IC.GE.145 .AND. IC.LE.153 ) .OR.
$ ( IC.GE.162 .AND. IC.LE.169 ) ) THEN
SUBNAM( 1: 1 ) = CHAR( IC+64 )
DO 30 I = 2, 6
IC = ICHAR( SUBNAM( I: I ) )
IF( ( IC.GE.129 .AND. IC.LE.137 ) .OR.
$ ( IC.GE.145 .AND. IC.LE.153 ) .OR.
$ ( IC.GE.162 .AND. IC.LE.169 ) )SUBNAM( I:
$ I ) = CHAR( IC+64 )
30 CONTINUE
END IF
*
ELSE IF( IZ.EQ.218 .OR. IZ.EQ.250 ) THEN
*
* Prime machines: ASCII+128
*
IF( IC.GE.225 .AND. IC.LE.250 ) THEN
SUBNAM( 1: 1 ) = CHAR( IC-32 )
DO 40 I = 2, 6
IC = ICHAR( SUBNAM( I: I ) )
IF( IC.GE.225 .AND. IC.LE.250 )
$ SUBNAM( I: I ) = CHAR( IC-32 )
40 CONTINUE
END IF
END IF
*
C1 = SUBNAM( 1: 1 )
SNAME = C1.EQ.'S' .OR. C1.EQ.'D'
CNAME = C1.EQ.'C' .OR. C1.EQ.'Z'
IF( .NOT.( CNAME .OR. SNAME ) )
$ RETURN
C2 = SUBNAM( 2: 3 )
C3 = SUBNAM( 4: 6 )
C4 = C3( 2: 3 )
*
GO TO ( 50, 60, 70 )ISPEC
*
50 CONTINUE
*
* ISPEC = 1: block size
*
* In these examples, separate code is provided for setting NB for
* real and complex. We assume that NB will take the same value in
* single or double precision.
*
NB = 1
*
IF( C2.EQ.'GE' ) THEN
IF( C3.EQ.'TRF' ) THEN
IF( SNAME ) THEN
NB = 64
ELSE
NB = 64
END IF
ELSE IF( C3.EQ.'QRF' .OR. C3.EQ.'RQF' .OR. C3.EQ.'LQF' .OR.
$ C3.EQ.'QLF' ) THEN
IF( SNAME ) THEN
NB = 32
ELSE
NB = 32
END IF
ELSE IF( C3.EQ.'HRD' ) THEN
IF( SNAME ) THEN
NB = 32
ELSE
NB = 32
END IF
ELSE IF( C3.EQ.'BRD' ) THEN
IF( SNAME ) THEN
NB = 32
ELSE
NB = 32
END IF
ELSE IF( C3.EQ.'TRI' ) THEN
IF( SNAME ) THEN
NB = 64
ELSE
NB = 64
END IF
END IF
ELSE IF( C2.EQ.'PO' ) THEN
IF( C3.EQ.'TRF' ) THEN
IF( SNAME ) THEN
NB = 64
ELSE
NB = 64
END IF
END IF
ELSE IF( C2.EQ.'SY' ) THEN
IF( C3.EQ.'TRF' ) THEN
IF( SNAME ) THEN
NB = 64
ELSE
NB = 64
END IF
ELSE IF( SNAME .AND. C3.EQ.'TRD' ) THEN
NB = 32
ELSE IF( SNAME .AND. C3.EQ.'GST' ) THEN
NB = 64
END IF
ELSE IF( CNAME .AND. C2.EQ.'HE' ) THEN
IF( C3.EQ.'TRF' ) THEN
NB = 64
ELSE IF( C3.EQ.'TRD' ) THEN
NB = 32
ELSE IF( C3.EQ.'GST' ) THEN
NB = 64
END IF
ELSE IF( SNAME .AND. C2.EQ.'OR' ) THEN
IF( C3( 1: 1 ).EQ.'G' ) THEN
IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ.
$ 'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' )
$ THEN
NB = 32
END IF
ELSE IF( C3( 1: 1 ).EQ.'M' ) THEN
IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ.
$ 'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' )
$ THEN
NB = 32
END IF
END IF
ELSE IF( CNAME .AND. C2.EQ.'UN' ) THEN
IF( C3( 1: 1 ).EQ.'G' ) THEN
IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ.
$ 'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' )
$ THEN
NB = 32
END IF
ELSE IF( C3( 1: 1 ).EQ.'M' ) THEN
IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ.
$ 'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' )
$ THEN
NB = 32
END IF
END IF
ELSE IF( C2.EQ.'GB' ) THEN
IF( C3.EQ.'TRF' ) THEN
IF( SNAME ) THEN
IF( N4.LE.64 ) THEN
NB = 1
ELSE
NB = 32
END IF
ELSE
IF( N4.LE.64 ) THEN
NB = 1
ELSE
NB = 32
END IF
END IF
END IF
ELSE IF( C2.EQ.'PB' ) THEN
IF( C3.EQ.'TRF' ) THEN
IF( SNAME ) THEN
IF( N2.LE.64 ) THEN
NB = 1
ELSE
NB = 32
END IF
ELSE
IF( N2.LE.64 ) THEN
NB = 1
ELSE
NB = 32
END IF
END IF
END IF
ELSE IF( C2.EQ.'TR' ) THEN
IF( C3.EQ.'TRI' ) THEN
IF( SNAME ) THEN
NB = 64
ELSE
NB = 64
END IF
END IF
ELSE IF( C2.EQ.'LA' ) THEN
IF( C3.EQ.'UUM' ) THEN
IF( SNAME ) THEN
NB = 64
ELSE
NB = 64
END IF
END IF
ELSE IF( SNAME .AND. C2.EQ.'ST' ) THEN
IF( C3.EQ.'EBZ' ) THEN
NB = 1
END IF
END IF
ILAENV = NB
RETURN
*
60 CONTINUE
*
* ISPEC = 2: minimum block size
*
NBMIN = 2
IF( C2.EQ.'GE' ) THEN
IF( C3.EQ.'QRF' .OR. C3.EQ.'RQF' .OR. C3.EQ.'LQF' .OR. C3.EQ.
$ 'QLF' ) THEN
IF( SNAME ) THEN
NBMIN = 2
ELSE
NBMIN = 2
END IF
ELSE IF( C3.EQ.'HRD' ) THEN
IF( SNAME ) THEN
NBMIN = 2
ELSE
NBMIN = 2
END IF
ELSE IF( C3.EQ.'BRD' ) THEN
IF( SNAME ) THEN
NBMIN = 2
ELSE
NBMIN = 2
END IF
ELSE IF( C3.EQ.'TRI' ) THEN
IF( SNAME ) THEN
NBMIN = 2
ELSE
NBMIN = 2
END IF
END IF
ELSE IF( C2.EQ.'SY' ) THEN
IF( C3.EQ.'TRF' ) THEN
IF( SNAME ) THEN
NBMIN = 8
ELSE
NBMIN = 8
END IF
ELSE IF( SNAME .AND. C3.EQ.'TRD' ) THEN
NBMIN = 2
END IF
ELSE IF( CNAME .AND. C2.EQ.'HE' ) THEN
IF( C3.EQ.'TRD' ) THEN
NBMIN = 2
END IF
ELSE IF( SNAME .AND. C2.EQ.'OR' ) THEN
IF( C3( 1: 1 ).EQ.'G' ) THEN
IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ.
$ 'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' )
$ THEN
NBMIN = 2
END IF
ELSE IF( C3( 1: 1 ).EQ.'M' ) THEN
IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ.
$ 'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' )
$ THEN
NBMIN = 2
END IF
END IF
ELSE IF( CNAME .AND. C2.EQ.'UN' ) THEN
IF( C3( 1: 1 ).EQ.'G' ) THEN
IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ.
$ 'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' )
$ THEN
NBMIN = 2
END IF
ELSE IF( C3( 1: 1 ).EQ.'M' ) THEN
IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ.
$ 'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' )
$ THEN
NBMIN = 2
END IF
END IF
END IF
ILAENV = NBMIN
RETURN
*
70 CONTINUE
*
* ISPEC = 3: crossover point
*
NX = 0
IF( C2.EQ.'GE' ) THEN
IF( C3.EQ.'QRF' .OR. C3.EQ.'RQF' .OR. C3.EQ.'LQF' .OR. C3.EQ.
$ 'QLF' ) THEN
IF( SNAME ) THEN
NX = 128
ELSE
NX = 128
END IF
ELSE IF( C3.EQ.'HRD' ) THEN
IF( SNAME ) THEN
NX = 128
ELSE
NX = 128
END IF
ELSE IF( C3.EQ.'BRD' ) THEN
IF( SNAME ) THEN
NX = 128
ELSE
NX = 128
END IF
END IF
ELSE IF( C2.EQ.'SY' ) THEN
IF( SNAME .AND. C3.EQ.'TRD' ) THEN
NX = 32
END IF
ELSE IF( CNAME .AND. C2.EQ.'HE' ) THEN
IF( C3.EQ.'TRD' ) THEN
NX = 32
END IF
ELSE IF( SNAME .AND. C2.EQ.'OR' ) THEN
IF( C3( 1: 1 ).EQ.'G' ) THEN
IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ.
$ 'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' )
$ THEN
NX = 128
END IF
END IF
ELSE IF( CNAME .AND. C2.EQ.'UN' ) THEN
IF( C3( 1: 1 ).EQ.'G' ) THEN
IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ.
$ 'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' )
$ THEN
NX = 128
END IF
END IF
END IF
ILAENV = NX
RETURN
*
80 CONTINUE
*
* ISPEC = 4: number of shifts (used by xHSEQR)
*
ILAENV = 6
RETURN
*
90 CONTINUE
*
* ISPEC = 5: minimum column dimension (not used)
*
ILAENV = 2
RETURN
*
100 CONTINUE
*
* ISPEC = 6: crossover point for SVD (used by xGELSS and xGESVD)
*
ILAENV = INT( REAL( MIN( N1, N2 ) )*1.6E0 )
RETURN
*
110 CONTINUE
*
* ISPEC = 7: number of processors (not used)
*
ILAENV = 1
RETURN
*
120 CONTINUE
*
* ISPEC = 8: crossover point for multishift (used by xHSEQR)
*
ILAENV = 50
RETURN
*
130 CONTINUE
*
* ISPEC = 9: maximum size of the subproblems at the bottom of the
* computation tree in the divide-and-conquer algorithm
* (used by xGELSD and xGESDD)
*
ILAENV = 25
RETURN
*
140 CONTINUE
*
* ISPEC = 10: ieee NaN arithmetic can be trusted not to trap
*
* ILAENV = 0
ILAENV = 1
IF( ILAENV.EQ.1 ) THEN
ILAENV = IEEECK( 1, 0.0, 1.0 )
END IF
RETURN
*
150 CONTINUE
*
* ISPEC = 11: infinity arithmetic can be trusted not to trap
*
* ILAENV = 0
ILAENV = 1
IF( ILAENV.EQ.1 ) THEN
ILAENV = IEEECK( 0, 0.0, 1.0 )
END IF
RETURN
*
160 CONTINUE
*
* 12 <= ISPEC <= 16: xHSEQR or one of its subroutines.
*
ILAENV = IPARMQ( ISPEC, NAME, OPTS, N1, N2, N3, N4 )
RETURN
*
* End of ILAENV
*
END

254
lib/linalg/iparmq.f Normal file
View File

@ -0,0 +1,254 @@
INTEGER FUNCTION IPARMQ( ISPEC, NAME, OPTS, N, ILO, IHI, LWORK )
*
* -- LAPACK auxiliary routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2006
*
* .. Scalar Arguments ..
INTEGER IHI, ILO, ISPEC, LWORK, N
CHARACTER NAME*( * ), OPTS*( * )
*
* Purpose
* =======
*
* This program sets problem and machine dependent parameters
* useful for xHSEQR and its subroutines. It is called whenever
* ILAENV is called with 12 <= ISPEC <= 16
*
* Arguments
* =========
*
* ISPEC (input) integer scalar
* ISPEC specifies which tunable parameter IPARMQ should
* return.
*
* ISPEC=12: (INMIN) Matrices of order nmin or less
* are sent directly to xLAHQR, the implicit
* double shift QR algorithm. NMIN must be
* at least 11.
*
* ISPEC=13: (INWIN) Size of the deflation window.
* This is best set greater than or equal to
* the number of simultaneous shifts NS.
* Larger matrices benefit from larger deflation
* windows.
*
* ISPEC=14: (INIBL) Determines when to stop nibbling and
* invest in an (expensive) multi-shift QR sweep.
* If the aggressive early deflation subroutine
* finds LD converged eigenvalues from an order
* NW deflation window and LD.GT.(NW*NIBBLE)/100,
* then the next QR sweep is skipped and early
* deflation is applied immediately to the
* remaining active diagonal block. Setting
* IPARMQ(ISPEC=14) = 0 causes TTQRE to skip a
* multi-shift QR sweep whenever early deflation
* finds a converged eigenvalue. Setting
* IPARMQ(ISPEC=14) greater than or equal to 100
* prevents TTQRE from skipping a multi-shift
* QR sweep.
*
* ISPEC=15: (NSHFTS) The number of simultaneous shifts in
* a multi-shift QR iteration.
*
* ISPEC=16: (IACC22) IPARMQ is set to 0, 1 or 2 with the
* following meanings.
* 0: During the multi-shift QR sweep,
* xLAQR5 does not accumulate reflections and
* does not use matrix-matrix multiply to
* update the far-from-diagonal matrix
* entries.
* 1: During the multi-shift QR sweep,
* xLAQR5 and/or xLAQRaccumulates reflections and uses
* matrix-matrix multiply to update the
* far-from-diagonal matrix entries.
* 2: During the multi-shift QR sweep.
* xLAQR5 accumulates reflections and takes
* advantage of 2-by-2 block structure during
* matrix-matrix multiplies.
* (If xTRMM is slower than xGEMM, then
* IPARMQ(ISPEC=16)=1 may be more efficient than
* IPARMQ(ISPEC=16)=2 despite the greater level of
* arithmetic work implied by the latter choice.)
*
* NAME (input) character string
* Name of the calling subroutine
*
* OPTS (input) character string
* This is a concatenation of the string arguments to
* TTQRE.
*
* N (input) integer scalar
* N is the order of the Hessenberg matrix H.
*
* ILO (input) INTEGER
* IHI (input) INTEGER
* It is assumed that H is already upper triangular
* in rows and columns 1:ILO-1 and IHI+1:N.
*
* LWORK (input) integer scalar
* The amount of workspace available.
*
* Further Details
* ===============
*
* Little is known about how best to choose these parameters.
* It is possible to use different values of the parameters
* for each of CHSEQR, DHSEQR, SHSEQR and ZHSEQR.
*
* It is probably best to choose different parameters for
* different matrices and different parameters at different
* times during the iteration, but this has not been
* implemented --- yet.
*
*
* The best choices of most of the parameters depend
* in an ill-understood way on the relative execution
* rate of xLAQR3 and xLAQR5 and on the nature of each
* particular eigenvalue problem. Experiment may be the
* only practical way to determine which choices are most
* effective.
*
* Following is a list of default values supplied by IPARMQ.
* These defaults may be adjusted in order to attain better
* performance in any particular computational environment.
*
* IPARMQ(ISPEC=12) The xLAHQR vs xLAQR0 crossover point.
* Default: 75. (Must be at least 11.)
*
* IPARMQ(ISPEC=13) Recommended deflation window size.
* This depends on ILO, IHI and NS, the
* number of simultaneous shifts returned
* by IPARMQ(ISPEC=15). The default for
* (IHI-ILO+1).LE.500 is NS. The default
* for (IHI-ILO+1).GT.500 is 3*NS/2.
*
* IPARMQ(ISPEC=14) Nibble crossover point. Default: 14.
*
* IPARMQ(ISPEC=15) Number of simultaneous shifts, NS.
* a multi-shift QR iteration.
*
* If IHI-ILO+1 is ...
*
* greater than ...but less ... the
* or equal to ... than default is
*
* 0 30 NS = 2+
* 30 60 NS = 4+
* 60 150 NS = 10
* 150 590 NS = **
* 590 3000 NS = 64
* 3000 6000 NS = 128
* 6000 infinity NS = 256
*
* (+) By default matrices of this order are
* passed to the implicit double shift routine
* xLAHQR. See IPARMQ(ISPEC=12) above. These
* values of NS are used only in case of a rare
* xLAHQR failure.
*
* (**) The asterisks (**) indicate an ad-hoc
* function increasing from 10 to 64.
*
* IPARMQ(ISPEC=16) Select structured matrix multiply.
* (See ISPEC=16 above for details.)
* Default: 3.
*
* ================================================================
* .. Parameters ..
INTEGER INMIN, INWIN, INIBL, ISHFTS, IACC22
PARAMETER ( INMIN = 12, INWIN = 13, INIBL = 14,
$ ISHFTS = 15, IACC22 = 16 )
INTEGER NMIN, K22MIN, KACMIN, NIBBLE, KNWSWP
PARAMETER ( NMIN = 75, K22MIN = 14, KACMIN = 14,
$ NIBBLE = 14, KNWSWP = 500 )
REAL TWO
PARAMETER ( TWO = 2.0 )
* ..
* .. Local Scalars ..
INTEGER NH, NS
* ..
* .. Intrinsic Functions ..
INTRINSIC LOG, MAX, MOD, NINT, REAL
* ..
* .. Executable Statements ..
IF( ( ISPEC.EQ.ISHFTS ) .OR. ( ISPEC.EQ.INWIN ) .OR.
$ ( ISPEC.EQ.IACC22 ) ) THEN
*
* ==== Set the number simultaneous shifts ====
*
NH = IHI - ILO + 1
NS = 2
IF( NH.GE.30 )
$ NS = 4
IF( NH.GE.60 )
$ NS = 10
IF( NH.GE.150 )
$ NS = MAX( 10, NH / NINT( LOG( REAL( NH ) ) / LOG( TWO ) ) )
IF( NH.GE.590 )
$ NS = 64
IF( NH.GE.3000 )
$ NS = 128
IF( NH.GE.6000 )
$ NS = 256
NS = MAX( 2, NS-MOD( NS, 2 ) )
END IF
*
IF( ISPEC.EQ.INMIN ) THEN
*
*
* ===== Matrices of order smaller than NMIN get sent
* . to xLAHQR, the classic double shift algorithm.
* . This must be at least 11. ====
*
IPARMQ = NMIN
*
ELSE IF( ISPEC.EQ.INIBL ) THEN
*
* ==== INIBL: skip a multi-shift qr iteration and
* . whenever aggressive early deflation finds
* . at least (NIBBLE*(window size)/100) deflations. ====
*
IPARMQ = NIBBLE
*
ELSE IF( ISPEC.EQ.ISHFTS ) THEN
*
* ==== NSHFTS: The number of simultaneous shifts =====
*
IPARMQ = NS
*
ELSE IF( ISPEC.EQ.INWIN ) THEN
*
* ==== NW: deflation window size. ====
*
IF( NH.LE.KNWSWP ) THEN
IPARMQ = NS
ELSE
IPARMQ = 3*NS / 2
END IF
*
ELSE IF( ISPEC.EQ.IACC22 ) THEN
*
* ==== IACC22: Whether to accumulate reflections
* . before updating the far-from-diagonal elements
* . and whether to use 2-by-2 block structure while
* . doing it. A small amount of work could be saved
* . by making this choice dependent also upon the
* . NH=IHI-ILO+1.
*
IPARMQ = 0
IF( NS.GE.KACMIN )
$ IPARMQ = 1
IF( NS.GE.K22MIN )
$ IPARMQ = 2
*
ELSE
* ===== invalid value of ispec =====
IPARMQ = -1
*
END IF
*
* ==== End of IPARMQ ====
*
END

86
lib/linalg/lsame.f Normal file
View File

@ -0,0 +1,86 @@
LOGICAL FUNCTION LSAME( CA, CB )
*
* -- LAPACK auxiliary routine (version 3.2) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
CHARACTER CA, CB
* ..
*
* Purpose
* =======
*
* LSAME returns .TRUE. if CA is the same letter as CB regardless of
* case.
*
* Arguments
* =========
*
* CA (input) CHARACTER*1
* CB (input) CHARACTER*1
* CA and CB specify the single characters to be compared.
*
* =====================================================================
*
* .. Intrinsic Functions ..
INTRINSIC ICHAR
* ..
* .. Local Scalars ..
INTEGER INTA, INTB, ZCODE
* ..
* .. Executable Statements ..
*
* Test if the characters are equal
*
LSAME = CA.EQ.CB
IF( LSAME )
$ RETURN
*
* Now test for equivalence if both characters are alphabetic.
*
ZCODE = ICHAR( 'Z' )
*
* Use 'Z' rather than 'A' so that ASCII can be detected on Prime
* machines, on which ICHAR returns a value with bit 8 set.
* ICHAR('A') on Prime machines returns 193 which is the same as
* ICHAR('A') on an EBCDIC machine.
*
INTA = ICHAR( CA )
INTB = ICHAR( CB )
*
IF( ZCODE.EQ.90 .OR. ZCODE.EQ.122 ) THEN
*
* ASCII is assumed - ZCODE is the ASCII code of either lower or
* upper case 'Z'.
*
IF( INTA.GE.97 .AND. INTA.LE.122 ) INTA = INTA - 32
IF( INTB.GE.97 .AND. INTB.LE.122 ) INTB = INTB - 32
*
ELSE IF( ZCODE.EQ.233 .OR. ZCODE.EQ.169 ) THEN
*
* EBCDIC is assumed - ZCODE is the EBCDIC code of either lower or
* upper case 'Z'.
*
IF( INTA.GE.129 .AND. INTA.LE.137 .OR.
$ INTA.GE.145 .AND. INTA.LE.153 .OR.
$ INTA.GE.162 .AND. INTA.LE.169 ) INTA = INTA + 64
IF( INTB.GE.129 .AND. INTB.LE.137 .OR.
$ INTB.GE.145 .AND. INTB.LE.153 .OR.
$ INTB.GE.162 .AND. INTB.LE.169 ) INTB = INTB + 64
*
ELSE IF( ZCODE.EQ.218 .OR. ZCODE.EQ.250 ) THEN
*
* ASCII is assumed, on Prime machines - ZCODE is the ASCII code
* plus 128 of either lower or upper case 'Z'.
*
IF( INTA.GE.225 .AND. INTA.LE.250 ) INTA = INTA - 32
IF( INTB.GE.225 .AND. INTB.LE.250 ) INTB = INTB - 32
END IF
LSAME = INTA.EQ.INTB
*
* RETURN
*
* End of LSAME
*
END

48
lib/linalg/xerbla.f Normal file
View File

@ -0,0 +1,48 @@
SUBROUTINE XERBLA( SRNAME, INFO )
*
* -- LAPACK auxiliary routine (preliminary version) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
CHARACTER*(*) SRNAME
INTEGER INFO
* ..
*
* Purpose
* =======
*
* XERBLA is an error handler for the LAPACK routines.
* It is called by an LAPACK routine if an input parameter has an
* invalid value. A message is printed and execution stops.
*
* Installers may consider modifying the STOP statement in order to
* call system-specific exception-handling facilities.
*
* Arguments
* =========
*
* SRNAME (input) CHARACTER*(*)
* The name of the routine which called XERBLA.
*
* INFO (input) INTEGER
* The position of the invalid parameter in the parameter list
* of the calling routine.
*
* =====================================================================
*
* .. Intrinsic Functions ..
INTRINSIC LEN_TRIM
* ..
* .. Executable Statements ..
*
WRITE( *, FMT = 9999 )SRNAME( 1:LEN_TRIM( SRNAME ) ), INFO
*
STOP
*
9999 FORMAT( ' ** On entry to ', A, ' parameter number ', I2, ' had ',
$ 'an illegal value' )
*
* End of XERBLA
*
END