lammps/lib/atc/ElectronHeatFlux.h

179 lines
6.8 KiB
C
Raw Normal View History

#ifndef ELECTRON_HEAT_FLUX_H
#define ELECTRON_HEAT_FLUX_H
#include <map>
#include <string>
#include "ATC_TypeDefs.h"
#include "ElectronFlux.h"
#include "ElectronHeatCapacity.h"
namespace ATC {
/**
* @class ElectronHeatFlux
* @brief Base class for the electron heat flux
*/
class ElectronHeatFlux
{
public:
ElectronHeatFlux(/*const*/ ElectronHeatCapacity * electronHeatCapacity = NULL);
virtual ~ElectronHeatFlux() {};
/** computes heat flux */
virtual void electron_heat_flux(const FIELD_MATS &fields,
const GRAD_FIELD_MATS &gradFields,
DENS_MAT_VEC &flux)
{
FIELD_MATS::const_iterator etField = fields.find(ELECTRON_TEMPERATURE);
const DENS_MAT & Te = etField->second;
zeroWorkspace_.reset(Te.nRows(),Te.nCols());
flux[0] = zeroWorkspace_;
flux[1] = zeroWorkspace_;
flux[2] = zeroWorkspace_;
};
void electron_heat_convection(const FIELD_MATS &fields,
DENS_MAT_VEC & flux)
{
FIELD_MATS::const_iterator etField = fields.find(ELECTRON_TEMPERATURE);
FIELD_MATS::const_iterator evField = fields.find(ELECTRON_VELOCITY);
const DENS_MAT & Te = etField->second;
const DENS_MAT & v = evField->second;
electronHeatCapacity_->electron_heat_capacity(fields,cpTeWorkspace_);
cpTeWorkspace_ *= Te;
const CLON_VEC vx(v,CLONE_COL,0);
const CLON_VEC vy(v,CLONE_COL,1);
const CLON_VEC vz(v,CLONE_COL,2);
flux[0] = vx;
flux[1] = vy;
flux[2] = vz;
// scale by thermal energy
flux[0] *= cpTeWorkspace_;
flux[1] *= cpTeWorkspace_;
flux[2] *= cpTeWorkspace_;
};
protected:
ElectronHeatCapacity * electronHeatCapacity_;
DENS_MAT zeroWorkspace_;
DENS_MAT cpTeWorkspace_; // hopefully avoid resizing
};
//-----------------------------------------------------------------------
/**
* @class ElectronHeatFluxLinear
* @brief Class for an electron heat flux proportional to the temperature gradient with constant conductivity
*/
class ElectronHeatFluxLinear : public ElectronHeatFlux
{
public:
ElectronHeatFluxLinear(std::fstream &matfile,std::map<std::string,double> & parameters,
/*const*/ ElectronHeatCapacity * electronHeatCapacity = NULL);
virtual ~ElectronHeatFluxLinear() {};
virtual void electron_heat_flux(const FIELD_MATS &fields,
const GRAD_FIELD_MATS &gradFields,
DENS_MAT_VEC &flux)
{
GRAD_FIELD_MATS::const_iterator dEtField = gradFields.find(ELECTRON_TEMPERATURE);
// flux = -ke dTe/dx
const DENS_MAT_VEC & dT = dEtField->second;
flux[0] = -conductivity_ * dT[0];
flux[1] = -conductivity_ * dT[1];
flux[2] = -conductivity_ * dT[2];
};
protected:
double conductivity_;
};
//-----------------------------------------------------------------------
/**
* @class ElectronHeatFluxPowerLaw
* @brief Class for an electron heat flux proportional to the temperature gradient but with a conductivity proportional to the ratio of the electron and phonon temperatures
*/
class ElectronHeatFluxPowerLaw : public ElectronHeatFlux
{
public:
ElectronHeatFluxPowerLaw(std::fstream &matfile,std::map<std::string,double> &parameters,
/*const*/ ElectronHeatCapacity * electronHeatCapacity = NULL);
virtual ~ElectronHeatFluxPowerLaw() {};
virtual void electron_heat_flux(const FIELD_MATS &fields,
const GRAD_FIELD_MATS &gradFields,
DENS_MAT_VEC &flux)
{
FIELD_MATS::const_iterator etField = fields.find(ELECTRON_TEMPERATURE);
FIELD_MATS::const_iterator tField = fields.find(TEMPERATURE);
GRAD_FIELD_MATS::const_iterator dEtField = gradFields.find(ELECTRON_TEMPERATURE);
const DENS_MAT_VEC & dT = dEtField->second;
const DENS_MAT & T = tField->second;
const DENS_MAT & Te = etField->second;
// flux = -ke * ( Te / T ) dT;
flux[0] = dT[0];
flux[1] = dT[1];
flux[2] = dT[2];
electronConductivity_ = (-conductivity_* Te) / T;
flux[0] *= electronConductivity_;
flux[1] *= electronConductivity_;
flux[2] *= electronConductivity_;
};
protected:
double conductivity_;
DENS_MAT electronConductivity_; // hopefully avoid resizing
};
//-----------------------------------------------------------------------
/**
* @class ElectronHeatFluxThermopower
* @brief Class for an electron heat flux proportional to the temperature gradient but with a condu
ctivity proportional to the ratio of the electron and phonon temperatures with the thermopower from teh electric current included
*/
class ElectronHeatFluxThermopower : public ElectronHeatFlux
{
public:
ElectronHeatFluxThermopower(std::fstream &matfile,
std::map<std::string,double> & parameters,
/*const*/ ElectronFlux * electronFlux = NULL,
/*const*/ ElectronHeatCapacity * electronHeatCapacity = NULL);
virtual ~ElectronHeatFluxThermopower() {};
virtual void electron_heat_flux(const FIELD_MATS &fields,
const GRAD_FIELD_MATS &gradFields,
DENS_MAT_VEC &flux)
{
FIELD_MATS::const_iterator etField = fields.find(ELECTRON_TEMPERATURE);
FIELD_MATS::const_iterator tField = fields.find(TEMPERATURE);
GRAD_FIELD_MATS::const_iterator dEtField = gradFields.find(ELECTRON_TEMPERATURE);
const DENS_MAT_VEC & dT = dEtField->second;
const DENS_MAT & T = tField->second;
const DENS_MAT & Te = etField->second;
// flux = -ke * ( Te / T ) dT + pi J_e;
flux[0] = dT[0];
flux[1] = dT[1];
flux[2] = dT[2];
elecCondWorkspace_ = (-conductivity_* Te) / T;
flux[0] *= elecCondWorkspace_;
flux[1] *= elecCondWorkspace_;
flux[2] *= elecCondWorkspace_;
electronFlux_->electron_flux(fields, gradFields, tmp_);
tmp_[0] *= Te;
tmp_[1] *= Te;
tmp_[2] *= Te;
flux[0] += seebeckCoef_*tmp_[0];
flux[1] += seebeckCoef_*tmp_[1];
flux[2] += seebeckCoef_*tmp_[2];
};
protected:
double conductivity_,seebeckCoef_;
ElectronFlux * electronFlux_;
DENS_MAT elecCondWorkspace_; // hopefully avoid resizing
DENS_MAT_VEC tmp_;
};
}
#endif