lammps/src/rcb.cpp

929 lines
27 KiB
C++
Raw Normal View History

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "mpi.h"
#include "string.h"
#include "rcb.h"
#include "irregular.h"
#include "memory.h"
#include "error.h"
using namespace LAMMPS_NS;
#define MYHUGE 1.0e30
#define TINY 1.0e-6
// set this to bigger number after debugging
#define DELTA 10
// prototypes for non-class functions
void box_merge(void *, void *, int *, MPI_Datatype *);
void median_merge(void *, void *, int *, MPI_Datatype *);
// NOTE: if want to have reuse flag, need to sum Tree across procs
/* ---------------------------------------------------------------------- */
RCB::RCB(LAMMPS *lmp) : Pointers(lmp)
{
MPI_Comm_rank(world,&me);
MPI_Comm_size(world,&nprocs);
ndot = maxdot = 0;
dots = NULL;
nlist = maxlist = 0;
dotlist = dotmark = NULL;
maxbuf = 0;
buf = NULL;
maxrecv = maxsend = 0;
recvproc = recvindex = sendproc = sendindex = NULL;
tree = NULL;
irregular = NULL;
// create MPI data and function types for box and median AllReduce ops
MPI_Type_contiguous(6,MPI_DOUBLE,&box_type);
MPI_Type_commit(&box_type);
MPI_Type_contiguous(sizeof(Median),MPI_CHAR,&med_type);
MPI_Type_commit(&med_type);
MPI_Op_create(box_merge,1,&box_op);
MPI_Op_create(median_merge,1,&med_op);
reuse = 0;
}
/* ---------------------------------------------------------------------- */
RCB::~RCB()
{
memory->sfree(dots);
memory->destroy(dotlist);
memory->destroy(dotmark);
memory->sfree(buf);
memory->destroy(recvproc);
memory->destroy(recvindex);
memory->destroy(sendproc);
memory->destroy(sendindex);
memory->sfree(tree);
delete irregular;
MPI_Type_free(&med_type);
MPI_Type_free(&box_type);
MPI_Op_free(&box_op);
MPI_Op_free(&med_op);
}
/* ----------------------------------------------------------------------
perform RCB balancing of N particles at coords X in bounding box LO/HI
if wt = NULL, ignore per-particle weights
if wt defined, per-particle weights > 0.0
dimension = 2 or 3
as documented in rcb.h:
sets noriginal,nfinal,nkeep,recvproc,recvindex,lo,hi
all proc particles will be inside or on surface of 3-d box
defined by final lo/hi
// NOTE: worry about re-use of data structs for fix balance?
------------------------------------------------------------------------- */
void RCB::compute(int dimension, int n, double **x, double *wt,
double *bboxlo, double *bboxhi)
{
int i,j,k;
int keep,outgoing,incoming,incoming2;
int dim,markactive;
int indexlo,indexhi;
int first_iteration,breakflag;
double wttot,wtlo,wthi,wtsum,wtok,wtupto,wtmax;
double targetlo,targethi;
double valuemin,valuemax,valuehalf;
double tolerance;
MPI_Comm comm,comm_half;
MPI_Request request,request2;
MPI_Status status;
Median med,medme;
// create list of my Dots
ndot = nkeep = noriginal = n;
if (ndot > maxdot) {
maxdot = ndot;
memory->sfree(dots);
dots = (Dot *) memory->smalloc(ndot*sizeof(Dot),"RCB:dots");
}
for (i = 0; i < ndot; i++) {
dots[i].x[0] = x[i][0];
dots[i].x[1] = x[i][1];
dots[i].x[2] = x[i][2];
dots[i].proc = me;
dots[i].index = i;
}
if (wt)
for (i = 0; i < ndot; i++) dots[i].wt = wt[i];
else
for (i = 0; i < ndot; i++) dots[i].wt = 1.0;
// initial bounding box = simulation box
// includes periodic or shrink-wrapped boundaries
lo = bbox.lo;
hi = bbox.hi;
lo[0] = bboxlo[0];
lo[1] = bboxlo[1];
lo[2] = bboxlo[2];
hi[0] = bboxhi[0];
hi[1] = bboxhi[1];
hi[2] = bboxhi[2];
cut = 0.0;
cutdim = -1;
// initialize counters
counters[0] = 0;
counters[1] = 0;
counters[2] = 0;
counters[3] = ndot;
counters[4] = maxdot;
counters[5] = 0;
counters[6] = 0;
// create communicator for use in recursion
MPI_Comm_dup(world,&comm);
// recurse until partition is a single proc = me
// proclower,procupper = lower,upper procs in partition
// procmid = 1st proc in upper half of partition
int procpartner,procpartner2;
int readnumber;
int procmid;
int proclower = 0;
int procupper = nprocs - 1;
while (proclower != procupper) {
// if odd # of procs, lower partition gets extra one
procmid = proclower + (procupper - proclower) / 2 + 1;
// determine communication partner(s)
// readnumber = # of proc partners to read from
if (me < procmid)
procpartner = me + (procmid - proclower);
else
procpartner = me - (procmid - proclower);
int readnumber = 1;
if (procpartner > procupper) {
readnumber = 0;
procpartner--;
}
if (me == procupper && procpartner != procmid - 1) {
readnumber = 2;
procpartner2 = procpartner + 1;
}
// wttot = summed weight of entire partition
// search tolerance = largest single weight (plus epsilon)
// targetlo = desired weight in lower half of partition
// targethi = desired weight in upper half of partition
wtmax = wtsum = 0.0;
if (wt) {
for (i = 0; i < ndot; i++) {
wtsum += dots[i].wt;
if (dots[i].wt > wtmax) wtmax = dots[i].wt;
}
} else {
for (i = 0; i < ndot; i++) wtsum += dots[i].wt;
wtmax = 1.0;
}
MPI_Allreduce(&wtsum,&wttot,1,MPI_DOUBLE,MPI_SUM,comm);
if (wt) MPI_Allreduce(&wtmax,&tolerance,1,MPI_DOUBLE,MPI_MAX,comm);
else tolerance = 1.0;
tolerance *= 1.0 + TINY;
targetlo = wttot * (procmid - proclower) / (procupper + 1 - proclower);
targethi = wttot - targetlo;
// dim = dimension to bisect on
// do not allow choice of z dimension for 2d system
dim = 0;
if (hi[1]-lo[1] > hi[0]-lo[0]) dim = 1;
if (dimension == 3) {
if (dim == 0 && hi[2]-lo[2] > hi[0]-lo[0]) dim = 2;
if (dim == 1 && hi[2]-lo[2] > hi[1]-lo[1]) dim = 2;
}
// create active list and mark array for dots
// initialize active list to all dots
if (ndot > maxlist) {
memory->destroy(dotlist);
memory->destroy(dotmark);
maxlist = maxdot;
memory->create(dotlist,maxlist,"RCB:dotlist");
memory->create(dotmark,maxlist,"RCB:dotmark");
}
nlist = ndot;
for (i = 0; i < nlist; i++) dotlist[i] = i;
// median iteration
// zoom in on bisector until correct # of dots in each half of partition
// as each iteration of median-loop begins, require:
// all non-active dots are marked with 0/1 in dotmark
// valuemin <= every active dot <= valuemax
// wtlo, wthi = total wt of non-active dots
// when leave median-loop, require only:
// valuehalf = correct cut position
// all dots <= valuehalf are marked with 0 in dotmark
// all dots >= valuehalf are marked with 1 in dotmark
// markactive = which side of cut is active = 0/1
// indexlo,indexhi = indices of dot closest to median
wtlo = wthi = 0.0;
valuemin = lo[dim];
valuemax = hi[dim];
first_iteration = 1;
while (1) {
// choose bisector value
// use old value on 1st iteration if old cut dimension is the same
// on 2nd option: could push valuehalf towards geometric center
// with "1.0-factor" to force overshoot
if (first_iteration && reuse && dim == tree[procmid].dim) {
counters[5]++;
valuehalf = tree[procmid].cut;
if (valuehalf < valuemin || valuehalf > valuemax)
valuehalf = 0.5 * (valuemin + valuemax);
} else if (wt)
valuehalf = valuemin + (targetlo - wtlo) /
(wttot - wtlo - wthi) * (valuemax - valuemin);
else
valuehalf = 0.5 * (valuemin + valuemax);
first_iteration = 0;
// initialize local median data structure
medme.totallo = medme.totalhi = 0.0;
medme.valuelo = -MYHUGE;
medme.valuehi = MYHUGE;
medme.wtlo = medme.wthi = 0.0;
medme.countlo = medme.counthi = 0;
medme.proclo = medme.prochi = me;
// mark all active dots on one side or other of bisector
// also set all fields in median data struct
// save indices of closest dots on either side
for (j = 0; j < nlist; j++) {
i = dotlist[j];
if (dots[i].x[dim] <= valuehalf) { // in lower part
medme.totallo += dots[i].wt;
dotmark[i] = 0;
if (dots[i].x[dim] > medme.valuelo) { // my closest dot
medme.valuelo = dots[i].x[dim];
medme.wtlo = dots[i].wt;
medme.countlo = 1;
indexlo = i;
} else if (dots[i].x[dim] == medme.valuelo) { // tied for closest
medme.wtlo += dots[i].wt;
medme.countlo++;
}
}
else { // in upper part
medme.totalhi += dots[i].wt;
dotmark[i] = 1;
if (dots[i].x[dim] < medme.valuehi) { // my closest dot
medme.valuehi = dots[i].x[dim];
medme.wthi = dots[i].wt;
medme.counthi = 1;
indexhi = i;
} else if (dots[i].x[dim] == medme.valuehi) { // tied for closest
medme.wthi += dots[i].wt;
medme.counthi++;
}
}
}
// combine median data struct across current subset of procs
counters[0]++;
MPI_Allreduce(&medme,&med,1,med_type,med_op,comm);
// test median guess for convergence
// move additional dots that are next to cut across it
if (wtlo + med.totallo < targetlo) { // lower half TOO SMALL
wtlo += med.totallo;
valuehalf = med.valuehi;
if (med.counthi == 1) { // only one dot to move
if (wtlo + med.wthi < targetlo) { // move it, keep iterating
if (me == med.prochi) dotmark[indexhi] = 0;
}
else { // only move if beneficial
if (wtlo + med.wthi - targetlo < targetlo - wtlo)
if (me == med.prochi) dotmark[indexhi] = 0;
break; // all done
}
}
else { // multiple dots to move
breakflag = 0;
wtok = 0.0;
if (medme.valuehi == med.valuehi) wtok = medme.wthi;
if (wtlo + med.wthi >= targetlo) { // all done
MPI_Scan(&wtok,&wtupto,1,MPI_DOUBLE,MPI_SUM,comm);
wtmax = targetlo - wtlo;
if (wtupto > wtmax) wtok = wtok - (wtupto - wtmax);
breakflag = 1;
} // wtok = most I can move
for (j = 0, wtsum = 0.0; j < nlist && wtsum < wtok; j++) {
i = dotlist[j];
if (dots[i].x[dim] == med.valuehi) { // only move if better
if (wtsum + dots[i].wt - wtok < wtok - wtsum)
dotmark[i] = 0;
wtsum += dots[i].wt;
}
}
if (breakflag) break; // done if moved enough
}
wtlo += med.wthi;
if (targetlo-wtlo <= tolerance) break; // close enough
valuemin = med.valuehi; // iterate again
markactive = 1;
}
else if (wthi + med.totalhi < targethi) { // upper half TOO SMALL
wthi += med.totalhi;
valuehalf = med.valuelo;
if (med.countlo == 1) { // only one dot to move
if (wthi + med.wtlo < targethi) { // move it, keep iterating
if (me == med.proclo) dotmark[indexlo] = 1;
}
else { // only move if beneficial
if (wthi + med.wtlo - targethi < targethi - wthi)
if (me == med.proclo) dotmark[indexlo] = 1;
break; // all done
}
}
else { // multiple dots to move
breakflag = 0;
wtok = 0.0;
if (medme.valuelo == med.valuelo) wtok = medme.wtlo;
if (wthi + med.wtlo >= targethi) { // all done
MPI_Scan(&wtok,&wtupto,1,MPI_DOUBLE,MPI_SUM,comm);
wtmax = targethi - wthi;
if (wtupto > wtmax) wtok = wtok - (wtupto - wtmax);
breakflag = 1;
} // wtok = most I can move
for (j = 0, wtsum = 0.0; j < nlist && wtsum < wtok; j++) {
i = dotlist[j];
if (dots[i].x[dim] == med.valuelo) { // only move if better
if (wtsum + dots[i].wt - wtok < wtok - wtsum)
dotmark[i] = 1;
wtsum += dots[i].wt;
}
}
if (breakflag) break; // done if moved enough
}
wthi += med.wtlo;
if (targethi-wthi <= tolerance) break; // close enough
valuemax = med.valuelo; // iterate again
markactive = 0;
}
else // Goldilocks result: both partitions just right
break;
// shrink the active list
k = 0;
for (j = 0; j < nlist; j++) {
i = dotlist[j];
if (dotmark[i] == markactive) dotlist[k++] = i;
}
nlist = k;
}
// found median
// store cut info only if I am procmid
if (me == procmid) {
cut = valuehalf;
cutdim = dim;
}
// use cut to shrink my RCB bounding box
if (me < procmid) hi[dim] = valuehalf;
else lo[dim] = valuehalf;
// outgoing = number of dots to ship to partner
// nkeep = number of dots that have never migrated
markactive = (me < procpartner);
for (i = 0, keep = 0, outgoing = 0; i < ndot; i++)
if (dotmark[i] == markactive) outgoing++;
else if (i < nkeep) keep++;
nkeep = keep;
// alert partner how many dots I'll send, read how many I'll recv
MPI_Send(&outgoing,1,MPI_INT,procpartner,0,world);
incoming = 0;
if (readnumber) {
MPI_Recv(&incoming,1,MPI_INT,procpartner,0,world,&status);
if (readnumber == 2) {
MPI_Recv(&incoming2,1,MPI_INT,procpartner2,0,world,&status);
incoming += incoming2;
}
}
// check if need to alloc more space
int ndotnew = ndot - outgoing + incoming;
if (ndotnew > maxdot) {
while (maxdot < ndotnew) maxdot += DELTA;
dots = (Dot *) memory->srealloc(dots,maxdot*sizeof(Dot),"RCB::dots");
counters[6]++;
}
counters[1] += outgoing;
counters[2] += incoming;
if (ndotnew > counters[3]) counters[3] = ndotnew;
if (maxdot > counters[4]) counters[4] = maxdot;
// malloc comm send buffer
if (outgoing > maxbuf) {
memory->sfree(buf);
maxbuf = outgoing;
buf = (Dot *) memory->smalloc(maxbuf*sizeof(Dot),"RCB:buf");
}
// fill buffer with dots that are marked for sending
// pack down the unmarked ones
keep = outgoing = 0;
for (i = 0; i < ndot; i++) {
if (dotmark[i] == markactive)
memcpy(&buf[outgoing++],&dots[i],sizeof(Dot));
else
memcpy(&dots[keep++],&dots[i],sizeof(Dot));
}
// post receives for dots
if (readnumber > 0) {
MPI_Irecv(&dots[keep],incoming*sizeof(Dot),MPI_CHAR,
procpartner,1,world,&request);
if (readnumber == 2) {
keep += incoming - incoming2;
MPI_Irecv(&dots[keep],incoming2*sizeof(Dot),MPI_CHAR,
procpartner2,1,world,&request2);
}
}
// handshake before sending dots to insure recvs have been posted
if (readnumber > 0) {
MPI_Send(NULL,0,MPI_INT,procpartner,0,world);
if (readnumber == 2) MPI_Send(NULL,0,MPI_INT,procpartner2,0,world);
}
MPI_Recv(NULL,0,MPI_INT,procpartner,0,world,&status);
// send dots to partner
MPI_Rsend(buf,outgoing*sizeof(Dot),MPI_CHAR,procpartner,1,world);
// wait until all dots are received
if (readnumber > 0) {
MPI_Wait(&request,&status);
if (readnumber == 2) MPI_Wait(&request2,&status);
}
ndot = ndotnew;
// cut partition in half, create new communicators of 1/2 size
int split;
if (me < procmid) {
procupper = procmid - 1;
split = 0;
} else {
proclower = procmid;
split = 1;
}
MPI_Comm_split(comm,split,me,&comm_half);
MPI_Comm_free(&comm);
comm = comm_half;
}
// clean up
MPI_Comm_free(&comm);
// set public variables with results of rebalance
nfinal = ndot;
if (nfinal > maxrecv) {
memory->destroy(recvproc);
memory->destroy(recvindex);
maxrecv = nfinal;
memory->create(recvproc,maxrecv,"RCB:recvproc");
memory->create(recvindex,maxrecv,"RCB:recvindex");
}
for (i = 0; i < nfinal; i++) {
recvproc[i] = dots[i].proc;
recvindex[i] = dots[i].index;
}
}
/* ----------------------------------------------------------------------
custom MPI reduce operation
merge of each component of an RCB bounding box
------------------------------------------------------------------------- */
void box_merge(void *in, void *inout, int *len, MPI_Datatype *dptr)
{
RCB::BBox *box1 = (RCB::BBox *) in;
RCB::BBox *box2 = (RCB::BBox *) inout;
for (int i = 0; i < 3; i++) {
if (box1->lo[i] < box2->lo[i]) box2->lo[i] = box1->lo[i];
if (box1->hi[i] > box2->hi[i]) box2->hi[i] = box1->hi[i];
}
}
/* ----------------------------------------------------------------------
custom MPI reduce operation
merge median data structure
on input:
in,inout->totallo, totalhi = weight in both partitions on this proc
valuelo, valuehi = pos of nearest dot(s) to cut on this proc
wtlo, wthi = total wt of dot(s) at that pos on this proc
countlo, counthi = # of dot(s) nearest to cut on this proc
proclo, prochi = not used
on exit:
inout-> totallo, totalhi = total # of active dots in both partitions
valuelo, valuehi = pos of nearest dot(s) to cut
wtlo, wthi = total wt of dot(s) at that position
countlo, counthi = total # of dot(s) nearest to cut
proclo, prochi = one unique proc who owns a nearest dot
all procs must get same proclo,prochi
------------------------------------------------------------------------- */
void median_merge(void *in, void *inout, int *len, MPI_Datatype *dptr)
{
RCB::Median *med1 = (RCB::Median *) in;
RCB::Median *med2 = (RCB::Median *) inout;
med2->totallo += med1->totallo;
if (med1->valuelo > med2->valuelo) {
med2->valuelo = med1->valuelo;
med2->wtlo = med1->wtlo;
med2->countlo = med1->countlo;
med2->proclo = med1->proclo;
}
else if (med1->valuelo == med2->valuelo) {
med2->wtlo += med1->wtlo;
med2->countlo += med1->countlo;
if (med1->proclo < med2->proclo) med2->proclo = med1->proclo;
}
med2->totalhi += med1->totalhi;
if (med1->valuehi < med2->valuehi) {
med2->valuehi = med1->valuehi;
med2->wthi = med1->wthi;
med2->counthi = med1->counthi;
med2->prochi = med1->prochi;
}
else if (med1->valuehi == med2->valuehi) {
med2->wthi += med1->wthi;
med2->counthi += med1->counthi;
if (med1->prochi < med2->prochi) med2->prochi = med1->prochi;
}
}
/* ----------------------------------------------------------------------
invert the RCB rebalance result to convert receive info into send info
sortflag = flag for sorting order of received messages by proc ID
------------------------------------------------------------------------- */
void RCB::invert(int sortflag)
{
Invert *sbuf,*rbuf;
// only create Irregular if not previously created
// allows Irregular to persist for multiple RCB calls by fix balance
if (!irregular) irregular = new Irregular(lmp);
// nsend = # of dots to request from other procs
int nsend = nfinal-nkeep;
int *proclist;
memory->create(proclist,nsend,"RCB:proclist");
Invert *sinvert =
(Invert *) memory->smalloc(nsend*sizeof(Invert),"RCB:sinvert");
int m = 0;
for (int i = nkeep; i < nfinal; i++) {
proclist[m] = recvproc[i];
sinvert[m].rindex = recvindex[i];
sinvert[m].sproc = me;
sinvert[m].sindex = i;
m++;
}
// perform inversion via irregular comm
// nrecv = # of my dots to send to other procs
int nrecv = irregular->create_data(nsend,proclist,sortflag);
Invert *rinvert =
(Invert *) memory->smalloc(nrecv*sizeof(Invert),"RCB:rinvert");
irregular->exchange_data((char *) sinvert,sizeof(Invert),(char *) rinvert);
irregular->destroy_data();
// set public variables from requests to send my dots
if (noriginal > maxsend) {
memory->destroy(sendproc);
memory->destroy(sendindex);
maxsend = noriginal;
memory->create(sendproc,maxsend,"RCB:sendproc");
memory->create(sendindex,maxsend,"RCB:sendindex");
}
for (int i = 0; i < nkeep; i++) {
sendproc[recvindex[i]] = me;
sendindex[recvindex[i]] = i;
}
for (int i = 0; i < nrecv; i++) {
m = rinvert[i].rindex;
sendproc[m] = rinvert[i].sproc;
sendindex[m] = rinvert[i].sindex;
}
// clean-up
memory->destroy(proclist);
memory->destroy(sinvert);
memory->destroy(rinvert);
}
/* ----------------------------------------------------------------------
memory use of Irregular
------------------------------------------------------------------------- */
bigint RCB::memory_usage()
{
bigint bytes = 0;
if (irregular) bytes += irregular->memory_usage();
return bytes;
}
// -----------------------------------------------------------------------
// DEBUG methods
// -----------------------------------------------------------------------
/*
// consistency checks on RCB results
void RCB::check()
{
int i,iflag,total1,total2;
double weight,wtmax,wtmin,wtone,tolerance;
// check that total # of dots remained the same
MPI_Allreduce(&ndotorig,&total1,1,MPI_INT,MPI_SUM,world);
MPI_Allreduce(&ndot,&total2,1,MPI_INT,MPI_SUM,world);
if (total1 != total2) {
if (me == 0)
printf("ERROR: Points before RCB = %d, Points after RCB = %d\n",
total1,total2);
}
// check that result is load-balanced within log2(P)*max-wt
weight = wtone = 0.0;
for (i = 0; i < ndot; i++) {
weight += dots[i].wt;
if (dots[i].wt > wtone) wtone = dots[i].wt;
}
MPI_Allreduce(&weight,&wtmin,1,MPI_DOUBLE,MPI_MIN,world);
MPI_Allreduce(&weight,&wtmax,1,MPI_DOUBLE,MPI_MAX,world);
MPI_Allreduce(&wtone,&tolerance,1,MPI_DOUBLE,MPI_MAX,world);
// i = smallest power-of-2 >= nprocs
// tolerance = largest-single-weight*log2(nprocs)
for (i = 0; (nprocs >> i) != 0; i++);
tolerance = tolerance * i * (1.0 + TINY);
if (wtmax - wtmin > tolerance) {
if (me == 0)
printf("ERROR: Load-imbalance > tolerance of %g\n",tolerance);
MPI_Barrier(world);
if (weight == wtmin) printf(" Proc %d has weight = %g\n",me,weight);
if (weight == wtmax) printf(" Proc %d has weight = %g\n",me,weight);
}
MPI_Barrier(world);
// check that final set of points is inside RCB box of each proc
iflag = 0;
for (i = 0; i < ndot; i++) {
if (dots[i].x[0] < lo[0] || dots[i].x[0] > hi[0] ||
dots[i].x[1] < lo[1] || dots[i].x[1] > hi[1] ||
dots[i].x[2] < lo[2] || dots[i].x[2] > hi[2])
iflag++;
}
if (iflag > 0)
printf("ERROR: %d points are out-of-box on proc %d\n",iflag,me);
}
// stats for RCB decomposition
void RCB::stats(int flag)
{
int i,iflag,sum,min,max;
double ave,rsum,rmin,rmax;
double weight,wttot,wtmin,wtmax;
if (me == 0) printf("RCB Statistics:\n");
// distribution info
for (i = 0, weight = 0.0; i < ndot; i++) weight += dots[i].wt;
MPI_Allreduce(&weight,&wttot,1,MPI_DOUBLE,MPI_SUM,world);
MPI_Allreduce(&weight,&wtmin,1,MPI_DOUBLE,MPI_MIN,world);
MPI_Allreduce(&weight,&wtmax,1,MPI_DOUBLE,MPI_MAX,world);
if (me == 0) {
printf(" Total weight of dots = %g\n",wttot);
printf(" Weight on each proc: ave = %g, max = %g, min = %g\n",
wttot/nprocs,wtmax,wtmin);
}
if (flag) {
MPI_Barrier(world);
printf(" Proc %d has weight = %g\n",me,weight);
}
for (i = 0, weight = 0.0; i < ndot; i++)
if (dots[i].wt > weight) weight = dots[i].wt;
MPI_Allreduce(&weight,&wtmax,1,MPI_DOUBLE,MPI_MAX,world);
if (me == 0) printf(" Maximum weight of single dot = %g\n",wtmax);
if (flag) {
MPI_Barrier(world);
printf(" Proc %d max weight = %g\n",me,weight);
}
// counter info
MPI_Allreduce(&counters[0],&sum,1,MPI_INT,MPI_SUM,world);
MPI_Allreduce(&counters[0],&min,1,MPI_INT,MPI_MIN,world);
MPI_Allreduce(&counters[0],&max,1,MPI_INT,MPI_MAX,world);
ave = ((double) sum)/nprocs;
if (me == 0)
printf(" Median iter: ave = %g, min = %d, max = %d\n",ave,min,max);
if (flag) {
MPI_Barrier(world);
printf(" Proc %d median count = %d\n",me,counters[0]);
}
MPI_Allreduce(&counters[1],&sum,1,MPI_INT,MPI_SUM,world);
MPI_Allreduce(&counters[1],&min,1,MPI_INT,MPI_MIN,world);
MPI_Allreduce(&counters[1],&max,1,MPI_INT,MPI_MAX,world);
ave = ((double) sum)/nprocs;
if (me == 0)
printf(" Send count: ave = %g, min = %d, max = %d\n",ave,min,max);
if (flag) {
MPI_Barrier(world);
printf(" Proc %d send count = %d\n",me,counters[1]);
}
MPI_Allreduce(&counters[2],&sum,1,MPI_INT,MPI_SUM,world);
MPI_Allreduce(&counters[2],&min,1,MPI_INT,MPI_MIN,world);
MPI_Allreduce(&counters[2],&max,1,MPI_INT,MPI_MAX,world);
ave = ((double) sum)/nprocs;
if (me == 0)
printf(" Recv count: ave = %g, min = %d, max = %d\n",ave,min,max);
if (flag) {
MPI_Barrier(world);
printf(" Proc %d recv count = %d\n",me,counters[2]);
}
MPI_Allreduce(&counters[3],&sum,1,MPI_INT,MPI_SUM,world);
MPI_Allreduce(&counters[3],&min,1,MPI_INT,MPI_MIN,world);
MPI_Allreduce(&counters[3],&max,1,MPI_INT,MPI_MAX,world);
ave = ((double) sum)/nprocs;
if (me == 0)
printf(" Max dots: ave = %g, min = %d, max = %d\n",ave,min,max);
if (flag) {
MPI_Barrier(world);
printf(" Proc %d max dots = %d\n",me,counters[3]);
}
MPI_Allreduce(&counters[4],&sum,1,MPI_INT,MPI_SUM,world);
MPI_Allreduce(&counters[4],&min,1,MPI_INT,MPI_MIN,world);
MPI_Allreduce(&counters[4],&max,1,MPI_INT,MPI_MAX,world);
ave = ((double) sum)/nprocs;
if (me == 0)
printf(" Max memory: ave = %g, min = %d, max = %d\n",ave,min,max);
if (flag) {
MPI_Barrier(world);
printf(" Proc %d max memory = %d\n",me,counters[4]);
}
if (reuse) {
MPI_Allreduce(&counters[5],&sum,1,MPI_INT,MPI_SUM,world);
MPI_Allreduce(&counters[5],&min,1,MPI_INT,MPI_MIN,world);
MPI_Allreduce(&counters[5],&max,1,MPI_INT,MPI_MAX,world);
ave = ((double) sum)/nprocs;
if (me == 0)
printf(" # of Reuse: ave = %g, min = %d, max = %d\n",ave,min,max);
if (flag) {
MPI_Barrier(world);
printf(" Proc %d # of Reuse = %d\n",me,counters[5]);
}
}
MPI_Allreduce(&counters[6],&sum,1,MPI_INT,MPI_SUM,world);
MPI_Allreduce(&counters[6],&min,1,MPI_INT,MPI_MIN,world);
MPI_Allreduce(&counters[6],&max,1,MPI_INT,MPI_MAX,world);
ave = ((double) sum)/nprocs;
if (me == 0)
printf(" # of OverAlloc: ave = %g, min = %d, max = %d\n",ave,min,max);
if (flag) {
MPI_Barrier(world);
printf(" Proc %d # of OverAlloc = %d\n",me,counters[6]);
}
// RCB boxes for each proc
if (flag) {
if (me == 0) printf(" RCB sub-domain boxes:\n");
for (i = 0; i < 3; i++) {
MPI_Barrier(world);
if (me == 0) printf(" Dimension %d\n",i+1);
MPI_Barrier(world);
printf(" Proc = %d: Box = %g %g\n",me,lo[i],hi[i]);
}
}
}
*/