lammps/doc/Eqs/pair_gayberne.tex

15 lines
417 B
TeX
Raw Normal View History

\documentstyle[12pt]{article}
\begin{document}
$$ U ( \mathbf{A}_1, \mathbf{A}_2, \mathbf{r}_{12} ) = U_r (
\mathbf{A}_1, \mathbf{A}_2, \mathbf{r}_{12}, \gamma ) \cdot \eta_{12} (
\mathbf{A}_1, \mathbf{A}_2, \upsilon ) \cdot \chi_{12} ( \mathbf{A}_1,
\mathbf{A}_2, \mathbf{r}_{12}, \mu ) $$
$$ U_r = 4 \epsilon ( \varrho^{12} - \varrho^6) $$
$$ \varrho = \frac{\sigma}{ h_{12} + \gamma \sigma} $$
\end{document}