2013-07-27 00:34:16 +08:00
|
|
|
\documentclass[12pt]{article}
|
|
|
|
|
|
|
|
\begin{document}
|
|
|
|
|
|
|
|
\begin{eqnarray*}
|
|
|
|
E & = & \frac{1}{2} \sum_i \sum_{j \neq i} V_{ij} \\
|
|
|
|
V_{ij} & = & f_C(r_{ij}) \left[ f_R(r_{ij}) + b_{ij} f_A(r_{ij}) \right] \\
|
|
|
|
f_C(r) & = & \left\{ \begin{array} {r@{\quad:\quad}l}
|
|
|
|
1 & r < R - D \\
|
2013-10-02 22:55:48 +08:00
|
|
|
\frac{1}{2} - \frac{9}{16} \sin \left( \frac{\pi}{2} \frac{r-R}{D} \right) - \frac{1}{16} \sin \left( \frac{3\pi}{2} \frac{r-R}{D} \right) &
|
2013-07-27 00:34:16 +08:00
|
|
|
R-D < r < R + D \\
|
|
|
|
0 & r > R + D
|
|
|
|
\end{array} \right. \\
|
|
|
|
f_R(r) & = & A \exp (-\lambda_1 r) \\
|
|
|
|
f_A(r) & = & -B \exp (-\lambda_2 r) \\
|
|
|
|
b_{ij} & = & \left( 1 + {\zeta_{ij}}^\eta \right)^{-\frac{1}{2n}} \\
|
|
|
|
\zeta_{ij} & = & \sum_{k \neq i,j} f_C(r_{ik}) g(\theta_{ijk})
|
|
|
|
\exp \left[ \alpha (r_{ij} - r_{ik})^\beta \right] \\
|
|
|
|
g(\theta) & = & c_1 + g_o(\theta) g_a(\theta) \\
|
|
|
|
g_o(\theta) & = & \frac{c_2 (h - \cos \theta)^2}{c_3 + (h - \cos \theta)^2} \\
|
|
|
|
g_a(\theta) & = & 1 + c_4 \exp \left[ -c_5 (h - \cos \theta)^2 \right] \\
|
|
|
|
\end{eqnarray*}
|
|
|
|
|
|
|
|
\end{document}
|