lammps/lib/cuda/fix_nh_cuda_kernel.cu

206 lines
5.1 KiB
Plaintext
Raw Normal View History

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
Original Version:
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
See the README file in the top-level LAMMPS directory.
-----------------------------------------------------------------------
USER-CUDA Package and associated modifications:
https://sourceforge.net/projects/lammpscuda/
Christian Trott, christian.trott@tu-ilmenau.de
Lars Winterfeld, lars.winterfeld@tu-ilmenau.de
Theoretical Physics II, University of Technology Ilmenau, Germany
See the README file in the USER-CUDA directory.
This software is distributed under the GNU General Public License.
------------------------------------------------------------------------- */
static inline __device__ void check_distance(X_FLOAT &xtmp, X_FLOAT &ytmp, X_FLOAT &ztmp, int &i, int groupbit)
{
if(_dist_check) {
X_FLOAT d = X_F(0.0);
if(i < _nlocal) {
X_FLOAT tmp = xtmp - _xhold[i];
d = tmp * tmp;
tmp = ytmp - _xhold[i + _maxhold];
d += tmp * tmp;
tmp = ztmp - _xhold[i + 2 * _maxhold];
d += tmp * tmp;
d = ((_mask[i] & groupbit)) ? d : X_F(0.0);
}
if(not __all(d <= _triggerneighsq))
_reneigh_flag[0] = 1;
}
}
__global__ void FixNHCuda_nh_v_press_Kernel(int groupbit, F_FLOAT3 factor, int p_triclinic, F_FLOAT3 factor2)
{
int i = (blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x;
if(i < _nlocal && _mask[i] & groupbit) {
V_FLOAT* my_v = _v + i;
V_FLOAT vx = my_v[0];
V_FLOAT vy = my_v[_nmax];
V_FLOAT vz = my_v[2 * _nmax];
vx *= factor.x;
vy *= factor.y;
vz *= factor.z;
if(p_triclinic) {
vx += vy * factor2.z + vz * factor2.y;
vy += vz * factor2.x;
}
vx *= factor.x;
vy *= factor.y;
vz *= factor.z;
my_v[0] = vx;
my_v[_nmax] = vy;
my_v[2 * _nmax] = vz;
}
}
__global__ void FixNHCuda_nh_v_temp_Kernel(int groupbit, F_FLOAT factor_eta)
{
int i = (blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x;
if(i < _nlocal && _mask[i] & groupbit) {
V_FLOAT* my_v = _v + i;
my_v[0] *= factor_eta;
my_v[_nmax] *= factor_eta;
my_v[2 * _nmax] *= factor_eta;
}
}
__global__ void FixNHCuda_nh_v_press_and_nve_v_NoBias_Kernel(int groupbit, F_FLOAT3 factor, int p_triclinic, F_FLOAT3 factor2)
{
int i = (blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x;
if(i < _nlocal && _mask[i] & groupbit) {
F_FLOAT* my_f = _f + i;
V_FLOAT* my_v = _v + i;
V_FLOAT dtfm = _dtf;
if(_rmass_flag) dtfm *= V_F(1.0) / _rmass[i];
else dtfm *= V_F(1.0) / _mass[_type[i]];
V_FLOAT vx = my_v[0];
V_FLOAT vy = my_v[_nmax];
V_FLOAT vz = my_v[2 * _nmax];
vx *= factor.x;
vy *= factor.y;
vz *= factor.z;
if(p_triclinic) {
vx += vy * factor2.z + vz * factor2.y;
vy += vz * factor2.x;
}
vx *= factor.x;
vy *= factor.y;
vz *= factor.z;
my_v[0] = vx + dtfm * my_f[0];
my_v[_nmax] = vy + dtfm * my_f[_nmax];
my_v[2 * _nmax] = vz + dtfm * my_f[_nmax * 2];
}
}
__global__ void FixNHCuda_nve_v_Kernel(int groupbit)
{
int i = (blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x;
if(i < _nlocal && _mask[i] & groupbit) {
F_FLOAT* my_f = _f + i;
V_FLOAT* my_v = _v + i;
V_FLOAT dtfm = _dtf;
if(_rmass_flag) dtfm *= V_F(1.0) / _rmass[i];
else dtfm *= V_F(1.0) / _mass[_type[i]];
*my_v = (*my_v + dtfm * (*my_f));
my_f += _nmax;
my_v += _nmax;
*my_v = (*my_v + dtfm * (*my_f));
my_f += _nmax;
my_v += _nmax;
*my_v = (*my_v + dtfm * (*my_f));
}
}
__global__ void FixNHCuda_nve_x_Kernel(int groupbit)
{
X_FLOAT xtmp, ytmp, ztmp;
int i = (blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x;
if(i < _nlocal && _mask[i] & groupbit) {
V_FLOAT* my_v = _v + i;
X_FLOAT* my_x = _x + i;
xtmp = *my_x += _dtv * *my_v;
my_v += _nmax;
my_x += _nmax;
ytmp = *my_x += _dtv * *my_v;
my_v += _nmax;
my_x += _nmax;
ztmp = *my_x += _dtv * *my_v;
}
check_distance(xtmp, ytmp, ztmp, i, groupbit);
}
__global__ void FixNHCuda_nve_v_and_nh_v_press_NoBias_Kernel(int groupbit, F_FLOAT3 factor, int p_triclinic, F_FLOAT3 factor2)
{
int i = (blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x;
if(i < _nlocal && _mask[i] & groupbit) {
F_FLOAT* my_f = _f + i;
V_FLOAT* my_v = _v + i;
V_FLOAT dtfm = _dtf;
if(_rmass_flag) dtfm *= V_F(1.0) / _rmass[i];
else dtfm *= V_F(1.0) / _mass[_type[i]];
V_FLOAT vx = my_v[0] + dtfm * my_f[0];
V_FLOAT vy = my_v[_nmax] + dtfm * my_f[_nmax];
V_FLOAT vz = my_v[2 * _nmax] + dtfm * my_f[2 * _nmax];
vx *= factor.x;
vy *= factor.y;
vz *= factor.z;
if(p_triclinic) {
vx += vy * factor2.z + vz * factor2.y;
vy += vz * factor2.x;
}
vx *= factor.x;
vy *= factor.y;
vz *= factor.z;
my_v[0] = vx;
my_v[_nmax] = vy;
my_v[2 * _nmax] = vz;
}
}