using the modified velocities. Likewise, these fixes should not
normally be used on atoms that also have their temperature controlled
by another fix - e.g. by <aclass="reference internal"href="fix_nh.html"><spanclass="doc">fix nvt</span></a> or <aclass="reference internal"href="fix_langevin.html"><spanclass="doc">fix langevin</span></a> commands.</p>
</div>
<p>See <aclass="reference internal"href="Section_howto.html#howto-16"><spanclass="std std-ref">this howto section</span></a> of the manual for
a discussion of different ways to compute temperature and perform
thermostatting.</p>
<p>These fixes compute a temperature each timestep. To do this, the fix
creates its own compute of style “temp”, as if this command had been
<p>See the <aclass="reference internal"href="compute_temp.html"><spanclass="doc">compute temp</span></a> command for details. Note
that the ID of the new compute is the fix-ID + underscore + “temp”,
and the group for the new compute is the same as the fix group.</p>
<p>Note that this is NOT the compute used by thermodynamic output (see
the <aclass="reference internal"href="thermo_style.html"><spanclass="doc">thermo_style</span></a> command) with ID = <em>thermo_temp</em>.
This means you can change the attributes of this fix’s temperature
(e.g. its degrees-of-freedom) via the
<aclass="reference internal"href="compute_modify.html"><spanclass="doc">compute_modify</span></a> command or print this temperature
during thermodynamic output via the <aclass="reference internal"href="thermo_style.html"><spanclass="doc">thermo_style custom</span></a> command using the appropriate compute-ID.
It also means that changing attributes of <em>thermo_temp</em> will have no
effect on this fix.</p>
<p>Like other fixes that perform thermostatting, these fixes can be used
with <aclass="reference internal"href="compute.html"><spanclass="doc">compute commands</span></a> that calculate a temperature
after removing a “bias” from the atom velocities. E.g. removing the
center-of-mass velocity from a group of atoms or only calculating
temperature on the x-component of velocity or only calculating
temperature for atoms in a geometric region. This is not done by
default, but only if the <aclass="reference internal"href="fix_modify.html"><spanclass="doc">fix_modify</span></a> command is used
to assign a temperature compute to this fix that includes such a bias
term. See the doc pages for individual <aclass="reference internal"href="compute.html"><spanclass="doc">compute commands</span></a> to determine which ones include a bias. In
this case, the thermostat works in the following manner: the current
temperature is calculated taking the bias into account, bias is
removed from each atom, thermostatting is performed on the remaining
thermal degrees of freedom, and the bias is added back in.</p>
<h2>Restart, fix_modify, output, run start/stop, minimize info</h2>
<p>No information about these fixes are written to <aclass="reference internal"href="restart.html"><spanclass="doc">binary restart files</span></a>.</p>
<p>The <aclass="reference internal"href="fix_modify.html"><spanclass="doc">fix_modify</span></a><em>temp</em> option is supported by these
fixes. You can use it to assign a temperature <aclass="reference internal"href="compute.html"><spanclass="doc">compute</span></a>
you have defined to these fixes which will be used in its thermostatting
procedure, as described above. For consistency, the group used by
these fixes and by the compute should be the same.</p>
<p>These fixes can ramp its target temperature over multiple runs, using
the <em>start</em> and <em>stop</em> keywords of the <aclass="reference internal"href="run.html"><spanclass="doc">run</span></a> command. See the
<aclass="reference internal"href="run.html"><spanclass="doc">run</span></a> command for details of how to do this.</p>
<p>These fixes are not invoked during <aclass="reference internal"href="minimize.html"><spanclass="doc">energy minimization</span></a>.</p>
<p>These fixes compute a global scalar which can be accessed by various
<aclass="reference internal"href="Section_howto.html#howto-15"><spanclass="std std-ref">output commands</span></a>. The scalar is the
cummulative energy change due to the fix. The scalar value
calculated by this fix is “extensive”.</p>
</div>
<divclass="section"id="restrictions">
<h2>Restrictions</h2>
<p>These fixes are not compatible with <aclass="reference internal"href="fix_shake.html"><spanclass="doc">fix shake</span></a>.</p>
<p>The fix can be used with dynamic groups as defined by the
<aclass="reference internal"href="group.html"><spanclass="doc">group</span></a> command. Likewise it can be used with groups to
which atoms are added or deleted over time, e.g. a deposition
simulation. However, the conservation properties of the thermostat
and barostat are defined for systems with a static set of atoms. You
may observe odd behavior if the atoms in a group vary dramatically
over time or the atom count becomes very small.</p>
Built with <ahref="http://sphinx-doc.org/">Sphinx</a> using a <ahref="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <ahref="https://readthedocs.org">Read the Docs</a>.