lammps/lib/gpu/lal_yukawa_colloid.cpp

316 lines
10 KiB
C++
Raw Normal View History

/***************************************************************************
yukawa_colloid.cpp
-------------------
Trung Dac Nguyen (ORNL)
Class for acceleration of the yukawa/colloid pair style.
__________________________________________________________________________
This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
__________________________________________________________________________
begin :
email : nguyentd@ornl.gov
***************************************************************************/
#ifdef USE_OPENCL
#include "yukawa_colloid_cl.h"
#elif defined(USE_CUDART)
const char *yukawa_colloid=0;
#else
#include "yukawa_colloid_cubin.h"
#endif
#include "lal_yukawa_colloid.h"
#include <cassert>
using namespace LAMMPS_AL;
#define YukawaColloidT YukawaColloid<numtyp, acctyp>
extern Device<PRECISION,ACC_PRECISION> device;
template <class numtyp, class acctyp>
YukawaColloidT::YukawaColloid() : BaseAtomic<numtyp,acctyp>(),
_max_rad_size(0), _allocated(false) {
}
template <class numtyp, class acctyp>
YukawaColloidT::~YukawaColloid() {
clear();
}
template <class numtyp, class acctyp>
int YukawaColloidT::bytes_per_atom(const int max_nbors) const {
return this->bytes_per_atom_atomic(max_nbors);
}
template <class numtyp, class acctyp>
int YukawaColloidT::init(const int ntypes,
double **host_cutsq, double **host_a,
double **host_offset, double *host_special_lj, const int nlocal,
const int nall, const int max_nbors,
const int maxspecial, const double cell_size,
const double gpu_split, FILE *_screen, const double kappa) {
int success;
success=this->init_atomic(nlocal,nall,max_nbors,maxspecial,cell_size,gpu_split,
_screen,yukawa_colloid,"k_yukawa_colloid");
if (success!=0)
return success;
// allocate rad
bool cpuview=false;
if (this->ucl_device->device_type()==UCL_CPU)
cpuview=true;
int ef_nall=nall;
if (ef_nall==0)
ef_nall=2000;
_max_rad_size=static_cast<int>(static_cast<double>(ef_nall)*1.10);
host_rad.alloc(_max_rad_size,*(this->ucl_device));
if (cpuview)
dev_rad.view(host_rad);
else
dev_rad.alloc(_max_rad_size,*(this->ucl_device),UCL_WRITE_ONLY);
rad_tex.get_texture(*(this->pair_program),"rad_tex");
rad_tex.bind_float(dev_rad,1);
// If atom type constants fit in shared memory use fast kernel
int lj_types=ntypes;
shared_types=false;
int max_shared_types=this->device->max_shared_types();
if (lj_types<=max_shared_types && this->_block_size>=max_shared_types) {
lj_types=max_shared_types;
shared_types=true;
}
_lj_types=lj_types;
_kappa = kappa;
// Allocate a host write buffer for data initialization
UCL_H_Vec<numtyp> host_write(lj_types*lj_types*32,*(this->ucl_device),
UCL_WRITE_OPTIMIZED);
for (int i=0; i<lj_types*lj_types*32; i++)
host_write[i]=(numtyp)0.0;
coeff.alloc(lj_types*lj_types,*(this->ucl_device),UCL_READ_ONLY);
this->atom->type_pack4(ntypes,lj_types,coeff,host_write,host_a,
host_offset,host_cutsq);
UCL_H_Vec<double> dview;
sp_lj.alloc(4,*(this->ucl_device),UCL_READ_ONLY);
dview.view(host_special_lj,4,*(this->ucl_device));
ucl_copy(sp_lj,dview,false);
_allocated=true;
this->_max_bytes=coeff.row_bytes()+sp_lj.row_bytes();
return 0;
}
template <class numtyp, class acctyp>
void YukawaColloidT::clear() {
if (!_allocated)
return;
_allocated=false;
coeff.clear();
sp_lj.clear();
host_rad.clear();
dev_rad.clear();
this->clear_atomic();
}
template <class numtyp, class acctyp>
double YukawaColloidT::host_memory_usage() const {
return this->host_memory_usage_atomic()+sizeof(YukawaColloid<numtyp,acctyp>);
}
// ---------------------------------------------------------------------------
// Copy nbor list from host if necessary and then compute atom energies/forces
// ---------------------------------------------------------------------------
template <class numtyp, class acctyp>
void YukawaColloidT::compute(const int f_ago, const int inum_full,
const int nall, double **host_x, int *host_type, int *ilist,
int *numj, int **firstneigh, const bool eflag, const bool vflag,
const bool eatom, const bool vatom, int &host_start,
const double cpu_time, bool &success, double *rad) {
this->acc_timers();
// ------------------- Resize rad array --------------------------
if (nall>_max_rad_size) {
dev_rad.clear();
host_rad.clear();
_max_rad_size=static_cast<int>(static_cast<double>(nall)*1.10);
host_rad.alloc(_max_rad_size,*(this->ucl_device));
if (this->ucl_device->device_type()==UCL_CPU) {
if (sizeof(numtyp)==sizeof(double)) {
host_rad.view((numtyp*)rad,nall,*(this->ucl_device));
dev_rad.view(host_rad);
}
} else {
dev_rad.alloc(_max_rad_size,*(this->ucl_device));
}
rad_tex.bind_float(dev_rad,1);
}
// ----------------------------------------------------------------
if (inum_full==0) {
host_start=0;
// Make sure textures are correct if realloc by a different hybrid style
this->resize_atom(0,nall,success);
this->zero_timers();
return;
}
int ago=this->hd_balancer.ago_first(f_ago);
int inum=this->hd_balancer.balance(ago,inum_full,cpu_time);
this->ans->inum(inum);
host_start=inum;
// -----------------------------------------------------------------
if (ago==0) {
this->reset_nbors(nall, inum, ilist, numj, firstneigh, success);
if (!success)
return;
}
this->atom->cast_x_data(host_x,host_type);
this->cast_rad_data(rad);
this->hd_balancer.start_timer();
this->atom->add_x_data(host_x,host_type);
this->add_rad_data();
this->loop(eflag,vflag);
this->ans->copy_answers(eflag,vflag,eatom,vatom,ilist);
this->device->add_ans_object(this->ans);
this->hd_balancer.stop_timer();
}
// ---------------------------------------------------------------------------
// Reneighbor on GPU and then compute per-atom densities
// ---------------------------------------------------------------------------
template <class numtyp, class acctyp>
int** YukawaColloidT::compute(const int ago, const int inum_full, const int nall,
double **host_x, int *host_type, double *sublo,
double *subhi, int *tag, int **nspecial,
int **special, const bool eflag, const bool vflag,
const bool eatom, const bool vatom, int &host_start,
int **ilist, int **jnum, const double cpu_time, bool &success,
double *rad) {
this->acc_timers();
// ------------------- Resize rad array ----------------------------
if (nall>_max_rad_size) {
dev_rad.clear();
host_rad.clear();
_max_rad_size=static_cast<int>(static_cast<double>(nall)*1.10);
host_rad.alloc(_max_rad_size,*(this->ucl_device));
if (this->ucl_device->device_type()==UCL_CPU) {
if (sizeof(numtyp)==sizeof(double)) {
host_rad.view((numtyp*)rad,nall,*(this->ucl_device));
dev_rad.view(host_rad);
}
} else {
dev_rad.alloc(_max_rad_size,*(this->ucl_device));
}
rad_tex.bind_float(dev_rad,1);
}
// -----------------------------------------------------------------
if (inum_full==0) {
host_start=0;
// Make sure textures are correct if realloc by a different hybrid style
this->resize_atom(0,nall,success);
this->zero_timers();
return NULL;
}
// load balance, returning the atom count on the device (inum)
this->hd_balancer.balance(cpu_time);
int inum=this->hd_balancer.get_gpu_count(ago,inum_full);
this->ans->inum(inum);
host_start=inum;
// Build neighbor list on GPU if necessary
if (ago==0) {
this->build_nbor_list(inum, inum_full-inum, nall, host_x, host_type,
sublo, subhi, tag, nspecial, special, success);
if (!success)
return NULL;
this->cast_rad_data(rad);
this->hd_balancer.start_timer();
} else {
this->atom->cast_x_data(host_x,host_type);
this->cast_rad_data(rad);
this->hd_balancer.start_timer();
this->atom->add_x_data(host_x,host_type);
}
this->add_rad_data();
*ilist=this->nbor->host_ilist.begin();
*jnum=this->nbor->host_acc.begin();
this->loop(eflag,vflag);
this->ans->copy_answers(eflag,vflag,eatom,vatom);
this->device->add_ans_object(this->ans);
this->hd_balancer.stop_timer();
return this->nbor->host_jlist.begin()-host_start;
}
// ---------------------------------------------------------------------------
// Calculate per-atom energies and forces
// ---------------------------------------------------------------------------
template <class numtyp, class acctyp>
void YukawaColloidT::loop(const bool _eflag, const bool _vflag) {
// Compute the block size and grid size to keep all cores busy
const int BX=this->block_size();
int eflag, vflag;
if (_eflag)
eflag=1;
else
eflag=0;
if (_vflag)
vflag=1;
else
vflag=0;
int GX=static_cast<int>(ceil(static_cast<double>(this->ans->inum())/
(BX/this->_threads_per_atom)));
int ainum=this->ans->inum();
int nbor_pitch=this->nbor->nbor_pitch();
this->time_pair.start();
if (shared_types) {
this->k_pair_fast.set_size(GX,BX);
this->k_pair_fast.run(&this->atom->x, &dev_rad, &coeff, &sp_lj,
&this->nbor->dev_nbor, &this->_nbor_data->begin(),
&this->ans->force, &this->ans->engv, &eflag, &vflag,
&ainum, &nbor_pitch, &this->_threads_per_atom, &_kappa);
} else {
this->k_pair.set_size(GX,BX);
this->k_pair.run(&this->atom->x, &dev_rad, &coeff, &_lj_types, &sp_lj,
&this->nbor->dev_nbor, &this->_nbor_data->begin(),
&this->ans->force, &this->ans->engv, &eflag, &vflag,
&ainum, &nbor_pitch, &this->_threads_per_atom, &_kappa);
}
this->time_pair.stop();
}
template class YukawaColloid<PRECISION,ACC_PRECISION>;