forked from lijiext/lammps
853 lines
24 KiB
FortranFixed
853 lines
24 KiB
FortranFixed
|
DOUBLE PRECISION FUNCTION DLAMCH( CMACH )
|
||
|
*
|
||
|
* -- LAPACK auxiliary routine (version 3.2) --
|
||
|
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
|
||
|
* November 2006
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER CMACH
|
||
|
* ..
|
||
|
*
|
||
|
* Purpose
|
||
|
* =======
|
||
|
*
|
||
|
* DLAMCH determines double precision machine parameters.
|
||
|
*
|
||
|
* Arguments
|
||
|
* =========
|
||
|
*
|
||
|
* CMACH (input) CHARACTER*1
|
||
|
* Specifies the value to be returned by DLAMCH:
|
||
|
* = 'E' or 'e', DLAMCH := eps
|
||
|
* = 'S' or 's , DLAMCH := sfmin
|
||
|
* = 'B' or 'b', DLAMCH := base
|
||
|
* = 'P' or 'p', DLAMCH := eps*base
|
||
|
* = 'N' or 'n', DLAMCH := t
|
||
|
* = 'R' or 'r', DLAMCH := rnd
|
||
|
* = 'M' or 'm', DLAMCH := emin
|
||
|
* = 'U' or 'u', DLAMCH := rmin
|
||
|
* = 'L' or 'l', DLAMCH := emax
|
||
|
* = 'O' or 'o', DLAMCH := rmax
|
||
|
*
|
||
|
* where
|
||
|
*
|
||
|
* eps = relative machine precision
|
||
|
* sfmin = safe minimum, such that 1/sfmin does not overflow
|
||
|
* base = base of the machine
|
||
|
* prec = eps*base
|
||
|
* t = number of (base) digits in the mantissa
|
||
|
* rnd = 1.0 when rounding occurs in addition, 0.0 otherwise
|
||
|
* emin = minimum exponent before (gradual) underflow
|
||
|
* rmin = underflow threshold - base**(emin-1)
|
||
|
* emax = largest exponent before overflow
|
||
|
* rmax = overflow threshold - (base**emax)*(1-eps)
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ONE, ZERO
|
||
|
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL FIRST, LRND
|
||
|
INTEGER BETA, IMAX, IMIN, IT
|
||
|
DOUBLE PRECISION BASE, EMAX, EMIN, EPS, PREC, RMACH, RMAX, RMIN,
|
||
|
$ RND, SFMIN, SMALL, T
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
EXTERNAL LSAME
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL DLAMC2
|
||
|
* ..
|
||
|
* .. Save statement ..
|
||
|
SAVE FIRST, EPS, SFMIN, BASE, T, RND, EMIN, RMIN,
|
||
|
$ EMAX, RMAX, PREC
|
||
|
* ..
|
||
|
* .. Data statements ..
|
||
|
DATA FIRST / .TRUE. /
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
IF( FIRST ) THEN
|
||
|
CALL DLAMC2( BETA, IT, LRND, EPS, IMIN, RMIN, IMAX, RMAX )
|
||
|
BASE = BETA
|
||
|
T = IT
|
||
|
IF( LRND ) THEN
|
||
|
RND = ONE
|
||
|
EPS = ( BASE**( 1-IT ) ) / 2
|
||
|
ELSE
|
||
|
RND = ZERO
|
||
|
EPS = BASE**( 1-IT )
|
||
|
END IF
|
||
|
PREC = EPS*BASE
|
||
|
EMIN = IMIN
|
||
|
EMAX = IMAX
|
||
|
SFMIN = RMIN
|
||
|
SMALL = ONE / RMAX
|
||
|
IF( SMALL.GE.SFMIN ) THEN
|
||
|
*
|
||
|
* Use SMALL plus a bit, to avoid the possibility of rounding
|
||
|
* causing overflow when computing 1/sfmin.
|
||
|
*
|
||
|
SFMIN = SMALL*( ONE+EPS )
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
IF( LSAME( CMACH, 'E' ) ) THEN
|
||
|
RMACH = EPS
|
||
|
ELSE IF( LSAME( CMACH, 'S' ) ) THEN
|
||
|
RMACH = SFMIN
|
||
|
ELSE IF( LSAME( CMACH, 'B' ) ) THEN
|
||
|
RMACH = BASE
|
||
|
ELSE IF( LSAME( CMACH, 'P' ) ) THEN
|
||
|
RMACH = PREC
|
||
|
ELSE IF( LSAME( CMACH, 'N' ) ) THEN
|
||
|
RMACH = T
|
||
|
ELSE IF( LSAME( CMACH, 'R' ) ) THEN
|
||
|
RMACH = RND
|
||
|
ELSE IF( LSAME( CMACH, 'M' ) ) THEN
|
||
|
RMACH = EMIN
|
||
|
ELSE IF( LSAME( CMACH, 'U' ) ) THEN
|
||
|
RMACH = RMIN
|
||
|
ELSE IF( LSAME( CMACH, 'L' ) ) THEN
|
||
|
RMACH = EMAX
|
||
|
ELSE IF( LSAME( CMACH, 'O' ) ) THEN
|
||
|
RMACH = RMAX
|
||
|
END IF
|
||
|
*
|
||
|
DLAMCH = RMACH
|
||
|
FIRST = .FALSE.
|
||
|
RETURN
|
||
|
*
|
||
|
* End of DLAMCH
|
||
|
*
|
||
|
END
|
||
|
*
|
||
|
************************************************************************
|
||
|
*
|
||
|
SUBROUTINE DLAMC1( BETA, T, RND, IEEE1 )
|
||
|
*
|
||
|
* -- LAPACK auxiliary routine (version 3.2) --
|
||
|
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
|
||
|
* November 2006
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
LOGICAL IEEE1, RND
|
||
|
INTEGER BETA, T
|
||
|
* ..
|
||
|
*
|
||
|
* Purpose
|
||
|
* =======
|
||
|
*
|
||
|
* DLAMC1 determines the machine parameters given by BETA, T, RND, and
|
||
|
* IEEE1.
|
||
|
*
|
||
|
* Arguments
|
||
|
* =========
|
||
|
*
|
||
|
* BETA (output) INTEGER
|
||
|
* The base of the machine.
|
||
|
*
|
||
|
* T (output) INTEGER
|
||
|
* The number of ( BETA ) digits in the mantissa.
|
||
|
*
|
||
|
* RND (output) LOGICAL
|
||
|
* Specifies whether proper rounding ( RND = .TRUE. ) or
|
||
|
* chopping ( RND = .FALSE. ) occurs in addition. This may not
|
||
|
* be a reliable guide to the way in which the machine performs
|
||
|
* its arithmetic.
|
||
|
*
|
||
|
* IEEE1 (output) LOGICAL
|
||
|
* Specifies whether rounding appears to be done in the IEEE
|
||
|
* 'round to nearest' style.
|
||
|
*
|
||
|
* Further Details
|
||
|
* ===============
|
||
|
*
|
||
|
* The routine is based on the routine ENVRON by Malcolm and
|
||
|
* incorporates suggestions by Gentleman and Marovich. See
|
||
|
*
|
||
|
* Malcolm M. A. (1972) Algorithms to reveal properties of
|
||
|
* floating-point arithmetic. Comms. of the ACM, 15, 949-951.
|
||
|
*
|
||
|
* Gentleman W. M. and Marovich S. B. (1974) More on algorithms
|
||
|
* that reveal properties of floating point arithmetic units.
|
||
|
* Comms. of the ACM, 17, 276-277.
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL FIRST, LIEEE1, LRND
|
||
|
INTEGER LBETA, LT
|
||
|
DOUBLE PRECISION A, B, C, F, ONE, QTR, SAVEC, T1, T2
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
DOUBLE PRECISION DLAMC3
|
||
|
EXTERNAL DLAMC3
|
||
|
* ..
|
||
|
* .. Save statement ..
|
||
|
SAVE FIRST, LIEEE1, LBETA, LRND, LT
|
||
|
* ..
|
||
|
* .. Data statements ..
|
||
|
DATA FIRST / .TRUE. /
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
IF( FIRST ) THEN
|
||
|
ONE = 1
|
||
|
*
|
||
|
* LBETA, LIEEE1, LT and LRND are the local values of BETA,
|
||
|
* IEEE1, T and RND.
|
||
|
*
|
||
|
* Throughout this routine we use the function DLAMC3 to ensure
|
||
|
* that relevant values are stored and not held in registers, or
|
||
|
* are not affected by optimizers.
|
||
|
*
|
||
|
* Compute a = 2.0**m with the smallest positive integer m such
|
||
|
* that
|
||
|
*
|
||
|
* fl( a + 1.0 ) = a.
|
||
|
*
|
||
|
A = 1
|
||
|
C = 1
|
||
|
*
|
||
|
*+ WHILE( C.EQ.ONE )LOOP
|
||
|
10 CONTINUE
|
||
|
IF( C.EQ.ONE ) THEN
|
||
|
A = 2*A
|
||
|
C = DLAMC3( A, ONE )
|
||
|
C = DLAMC3( C, -A )
|
||
|
GO TO 10
|
||
|
END IF
|
||
|
*+ END WHILE
|
||
|
*
|
||
|
* Now compute b = 2.0**m with the smallest positive integer m
|
||
|
* such that
|
||
|
*
|
||
|
* fl( a + b ) .gt. a.
|
||
|
*
|
||
|
B = 1
|
||
|
C = DLAMC3( A, B )
|
||
|
*
|
||
|
*+ WHILE( C.EQ.A )LOOP
|
||
|
20 CONTINUE
|
||
|
IF( C.EQ.A ) THEN
|
||
|
B = 2*B
|
||
|
C = DLAMC3( A, B )
|
||
|
GO TO 20
|
||
|
END IF
|
||
|
*+ END WHILE
|
||
|
*
|
||
|
* Now compute the base. a and c are neighbouring floating point
|
||
|
* numbers in the interval ( beta**t, beta**( t + 1 ) ) and so
|
||
|
* their difference is beta. Adding 0.25 to c is to ensure that it
|
||
|
* is truncated to beta and not ( beta - 1 ).
|
||
|
*
|
||
|
QTR = ONE / 4
|
||
|
SAVEC = C
|
||
|
C = DLAMC3( C, -A )
|
||
|
LBETA = C + QTR
|
||
|
*
|
||
|
* Now determine whether rounding or chopping occurs, by adding a
|
||
|
* bit less than beta/2 and a bit more than beta/2 to a.
|
||
|
*
|
||
|
B = LBETA
|
||
|
F = DLAMC3( B / 2, -B / 100 )
|
||
|
C = DLAMC3( F, A )
|
||
|
IF( C.EQ.A ) THEN
|
||
|
LRND = .TRUE.
|
||
|
ELSE
|
||
|
LRND = .FALSE.
|
||
|
END IF
|
||
|
F = DLAMC3( B / 2, B / 100 )
|
||
|
C = DLAMC3( F, A )
|
||
|
IF( ( LRND ) .AND. ( C.EQ.A ) )
|
||
|
$ LRND = .FALSE.
|
||
|
*
|
||
|
* Try and decide whether rounding is done in the IEEE 'round to
|
||
|
* nearest' style. B/2 is half a unit in the last place of the two
|
||
|
* numbers A and SAVEC. Furthermore, A is even, i.e. has last bit
|
||
|
* zero, and SAVEC is odd. Thus adding B/2 to A should not change
|
||
|
* A, but adding B/2 to SAVEC should change SAVEC.
|
||
|
*
|
||
|
T1 = DLAMC3( B / 2, A )
|
||
|
T2 = DLAMC3( B / 2, SAVEC )
|
||
|
LIEEE1 = ( T1.EQ.A ) .AND. ( T2.GT.SAVEC ) .AND. LRND
|
||
|
*
|
||
|
* Now find the mantissa, t. It should be the integer part of
|
||
|
* log to the base beta of a, however it is safer to determine t
|
||
|
* by powering. So we find t as the smallest positive integer for
|
||
|
* which
|
||
|
*
|
||
|
* fl( beta**t + 1.0 ) = 1.0.
|
||
|
*
|
||
|
LT = 0
|
||
|
A = 1
|
||
|
C = 1
|
||
|
*
|
||
|
*+ WHILE( C.EQ.ONE )LOOP
|
||
|
30 CONTINUE
|
||
|
IF( C.EQ.ONE ) THEN
|
||
|
LT = LT + 1
|
||
|
A = A*LBETA
|
||
|
C = DLAMC3( A, ONE )
|
||
|
C = DLAMC3( C, -A )
|
||
|
GO TO 30
|
||
|
END IF
|
||
|
*+ END WHILE
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
BETA = LBETA
|
||
|
T = LT
|
||
|
RND = LRND
|
||
|
IEEE1 = LIEEE1
|
||
|
FIRST = .FALSE.
|
||
|
RETURN
|
||
|
*
|
||
|
* End of DLAMC1
|
||
|
*
|
||
|
END
|
||
|
*
|
||
|
************************************************************************
|
||
|
*
|
||
|
SUBROUTINE DLAMC2( BETA, T, RND, EPS, EMIN, RMIN, EMAX, RMAX )
|
||
|
*
|
||
|
* -- LAPACK auxiliary routine (version 3.2) --
|
||
|
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
|
||
|
* November 2006
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
LOGICAL RND
|
||
|
INTEGER BETA, EMAX, EMIN, T
|
||
|
DOUBLE PRECISION EPS, RMAX, RMIN
|
||
|
* ..
|
||
|
*
|
||
|
* Purpose
|
||
|
* =======
|
||
|
*
|
||
|
* DLAMC2 determines the machine parameters specified in its argument
|
||
|
* list.
|
||
|
*
|
||
|
* Arguments
|
||
|
* =========
|
||
|
*
|
||
|
* BETA (output) INTEGER
|
||
|
* The base of the machine.
|
||
|
*
|
||
|
* T (output) INTEGER
|
||
|
* The number of ( BETA ) digits in the mantissa.
|
||
|
*
|
||
|
* RND (output) LOGICAL
|
||
|
* Specifies whether proper rounding ( RND = .TRUE. ) or
|
||
|
* chopping ( RND = .FALSE. ) occurs in addition. This may not
|
||
|
* be a reliable guide to the way in which the machine performs
|
||
|
* its arithmetic.
|
||
|
*
|
||
|
* EPS (output) DOUBLE PRECISION
|
||
|
* The smallest positive number such that
|
||
|
*
|
||
|
* fl( 1.0 - EPS ) .LT. 1.0,
|
||
|
*
|
||
|
* where fl denotes the computed value.
|
||
|
*
|
||
|
* EMIN (output) INTEGER
|
||
|
* The minimum exponent before (gradual) underflow occurs.
|
||
|
*
|
||
|
* RMIN (output) DOUBLE PRECISION
|
||
|
* The smallest normalized number for the machine, given by
|
||
|
* BASE**( EMIN - 1 ), where BASE is the floating point value
|
||
|
* of BETA.
|
||
|
*
|
||
|
* EMAX (output) INTEGER
|
||
|
* The maximum exponent before overflow occurs.
|
||
|
*
|
||
|
* RMAX (output) DOUBLE PRECISION
|
||
|
* The largest positive number for the machine, given by
|
||
|
* BASE**EMAX * ( 1 - EPS ), where BASE is the floating point
|
||
|
* value of BETA.
|
||
|
*
|
||
|
* Further Details
|
||
|
* ===============
|
||
|
*
|
||
|
* The computation of EPS is based on a routine PARANOIA by
|
||
|
* W. Kahan of the University of California at Berkeley.
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL FIRST, IEEE, IWARN, LIEEE1, LRND
|
||
|
INTEGER GNMIN, GPMIN, I, LBETA, LEMAX, LEMIN, LT,
|
||
|
$ NGNMIN, NGPMIN
|
||
|
DOUBLE PRECISION A, B, C, HALF, LEPS, LRMAX, LRMIN, ONE, RBASE,
|
||
|
$ SIXTH, SMALL, THIRD, TWO, ZERO
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
DOUBLE PRECISION DLAMC3
|
||
|
EXTERNAL DLAMC3
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL DLAMC1, DLAMC4, DLAMC5
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, MAX, MIN
|
||
|
* ..
|
||
|
* .. Save statement ..
|
||
|
SAVE FIRST, IWARN, LBETA, LEMAX, LEMIN, LEPS, LRMAX,
|
||
|
$ LRMIN, LT
|
||
|
* ..
|
||
|
* .. Data statements ..
|
||
|
DATA FIRST / .TRUE. / , IWARN / .FALSE. /
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
IF( FIRST ) THEN
|
||
|
ZERO = 0
|
||
|
ONE = 1
|
||
|
TWO = 2
|
||
|
*
|
||
|
* LBETA, LT, LRND, LEPS, LEMIN and LRMIN are the local values of
|
||
|
* BETA, T, RND, EPS, EMIN and RMIN.
|
||
|
*
|
||
|
* Throughout this routine we use the function DLAMC3 to ensure
|
||
|
* that relevant values are stored and not held in registers, or
|
||
|
* are not affected by optimizers.
|
||
|
*
|
||
|
* DLAMC1 returns the parameters LBETA, LT, LRND and LIEEE1.
|
||
|
*
|
||
|
CALL DLAMC1( LBETA, LT, LRND, LIEEE1 )
|
||
|
*
|
||
|
* Start to find EPS.
|
||
|
*
|
||
|
B = LBETA
|
||
|
A = B**( -LT )
|
||
|
LEPS = A
|
||
|
*
|
||
|
* Try some tricks to see whether or not this is the correct EPS.
|
||
|
*
|
||
|
B = TWO / 3
|
||
|
HALF = ONE / 2
|
||
|
SIXTH = DLAMC3( B, -HALF )
|
||
|
THIRD = DLAMC3( SIXTH, SIXTH )
|
||
|
B = DLAMC3( THIRD, -HALF )
|
||
|
B = DLAMC3( B, SIXTH )
|
||
|
B = ABS( B )
|
||
|
IF( B.LT.LEPS )
|
||
|
$ B = LEPS
|
||
|
*
|
||
|
LEPS = 1
|
||
|
*
|
||
|
*+ WHILE( ( LEPS.GT.B ).AND.( B.GT.ZERO ) )LOOP
|
||
|
10 CONTINUE
|
||
|
IF( ( LEPS.GT.B ) .AND. ( B.GT.ZERO ) ) THEN
|
||
|
LEPS = B
|
||
|
C = DLAMC3( HALF*LEPS, ( TWO**5 )*( LEPS**2 ) )
|
||
|
C = DLAMC3( HALF, -C )
|
||
|
B = DLAMC3( HALF, C )
|
||
|
C = DLAMC3( HALF, -B )
|
||
|
B = DLAMC3( HALF, C )
|
||
|
GO TO 10
|
||
|
END IF
|
||
|
*+ END WHILE
|
||
|
*
|
||
|
IF( A.LT.LEPS )
|
||
|
$ LEPS = A
|
||
|
*
|
||
|
* Computation of EPS complete.
|
||
|
*
|
||
|
* Now find EMIN. Let A = + or - 1, and + or - (1 + BASE**(-3)).
|
||
|
* Keep dividing A by BETA until (gradual) underflow occurs. This
|
||
|
* is detected when we cannot recover the previous A.
|
||
|
*
|
||
|
RBASE = ONE / LBETA
|
||
|
SMALL = ONE
|
||
|
DO 20 I = 1, 3
|
||
|
SMALL = DLAMC3( SMALL*RBASE, ZERO )
|
||
|
20 CONTINUE
|
||
|
A = DLAMC3( ONE, SMALL )
|
||
|
CALL DLAMC4( NGPMIN, ONE, LBETA )
|
||
|
CALL DLAMC4( NGNMIN, -ONE, LBETA )
|
||
|
CALL DLAMC4( GPMIN, A, LBETA )
|
||
|
CALL DLAMC4( GNMIN, -A, LBETA )
|
||
|
IEEE = .FALSE.
|
||
|
*
|
||
|
IF( ( NGPMIN.EQ.NGNMIN ) .AND. ( GPMIN.EQ.GNMIN ) ) THEN
|
||
|
IF( NGPMIN.EQ.GPMIN ) THEN
|
||
|
LEMIN = NGPMIN
|
||
|
* ( Non twos-complement machines, no gradual underflow;
|
||
|
* e.g., VAX )
|
||
|
ELSE IF( ( GPMIN-NGPMIN ).EQ.3 ) THEN
|
||
|
LEMIN = NGPMIN - 1 + LT
|
||
|
IEEE = .TRUE.
|
||
|
* ( Non twos-complement machines, with gradual underflow;
|
||
|
* e.g., IEEE standard followers )
|
||
|
ELSE
|
||
|
LEMIN = MIN( NGPMIN, GPMIN )
|
||
|
* ( A guess; no known machine )
|
||
|
IWARN = .TRUE.
|
||
|
END IF
|
||
|
*
|
||
|
ELSE IF( ( NGPMIN.EQ.GPMIN ) .AND. ( NGNMIN.EQ.GNMIN ) ) THEN
|
||
|
IF( ABS( NGPMIN-NGNMIN ).EQ.1 ) THEN
|
||
|
LEMIN = MAX( NGPMIN, NGNMIN )
|
||
|
* ( Twos-complement machines, no gradual underflow;
|
||
|
* e.g., CYBER 205 )
|
||
|
ELSE
|
||
|
LEMIN = MIN( NGPMIN, NGNMIN )
|
||
|
* ( A guess; no known machine )
|
||
|
IWARN = .TRUE.
|
||
|
END IF
|
||
|
*
|
||
|
ELSE IF( ( ABS( NGPMIN-NGNMIN ).EQ.1 ) .AND.
|
||
|
$ ( GPMIN.EQ.GNMIN ) ) THEN
|
||
|
IF( ( GPMIN-MIN( NGPMIN, NGNMIN ) ).EQ.3 ) THEN
|
||
|
LEMIN = MAX( NGPMIN, NGNMIN ) - 1 + LT
|
||
|
* ( Twos-complement machines with gradual underflow;
|
||
|
* no known machine )
|
||
|
ELSE
|
||
|
LEMIN = MIN( NGPMIN, NGNMIN )
|
||
|
* ( A guess; no known machine )
|
||
|
IWARN = .TRUE.
|
||
|
END IF
|
||
|
*
|
||
|
ELSE
|
||
|
LEMIN = MIN( NGPMIN, NGNMIN, GPMIN, GNMIN )
|
||
|
* ( A guess; no known machine )
|
||
|
IWARN = .TRUE.
|
||
|
END IF
|
||
|
FIRST = .FALSE.
|
||
|
***
|
||
|
* Comment out this if block if EMIN is ok
|
||
|
IF( IWARN ) THEN
|
||
|
FIRST = .TRUE.
|
||
|
WRITE( 6, FMT = 9999 )LEMIN
|
||
|
END IF
|
||
|
***
|
||
|
*
|
||
|
* Assume IEEE arithmetic if we found denormalised numbers above,
|
||
|
* or if arithmetic seems to round in the IEEE style, determined
|
||
|
* in routine DLAMC1. A true IEEE machine should have both things
|
||
|
* true; however, faulty machines may have one or the other.
|
||
|
*
|
||
|
IEEE = IEEE .OR. LIEEE1
|
||
|
*
|
||
|
* Compute RMIN by successive division by BETA. We could compute
|
||
|
* RMIN as BASE**( EMIN - 1 ), but some machines underflow during
|
||
|
* this computation.
|
||
|
*
|
||
|
LRMIN = 1
|
||
|
DO 30 I = 1, 1 - LEMIN
|
||
|
LRMIN = DLAMC3( LRMIN*RBASE, ZERO )
|
||
|
30 CONTINUE
|
||
|
*
|
||
|
* Finally, call DLAMC5 to compute EMAX and RMAX.
|
||
|
*
|
||
|
CALL DLAMC5( LBETA, LT, LEMIN, IEEE, LEMAX, LRMAX )
|
||
|
END IF
|
||
|
*
|
||
|
BETA = LBETA
|
||
|
T = LT
|
||
|
RND = LRND
|
||
|
EPS = LEPS
|
||
|
EMIN = LEMIN
|
||
|
RMIN = LRMIN
|
||
|
EMAX = LEMAX
|
||
|
RMAX = LRMAX
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
9999 FORMAT( / / ' WARNING. The value EMIN may be incorrect:-',
|
||
|
$ ' EMIN = ', I8, /
|
||
|
$ ' If, after inspection, the value EMIN looks',
|
||
|
$ ' acceptable please comment out ',
|
||
|
$ / ' the IF block as marked within the code of routine',
|
||
|
$ ' DLAMC2,', / ' otherwise supply EMIN explicitly.', / )
|
||
|
*
|
||
|
* End of DLAMC2
|
||
|
*
|
||
|
END
|
||
|
*
|
||
|
************************************************************************
|
||
|
*
|
||
|
DOUBLE PRECISION FUNCTION DLAMC3( A, B )
|
||
|
*
|
||
|
* -- LAPACK auxiliary routine (version 3.2) --
|
||
|
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
|
||
|
* November 2006
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
DOUBLE PRECISION A, B
|
||
|
* ..
|
||
|
*
|
||
|
* Purpose
|
||
|
* =======
|
||
|
*
|
||
|
* DLAMC3 is intended to force A and B to be stored prior to doing
|
||
|
* the addition of A and B , for use in situations where optimizers
|
||
|
* might hold one of these in a register.
|
||
|
*
|
||
|
* Arguments
|
||
|
* =========
|
||
|
*
|
||
|
* A (input) DOUBLE PRECISION
|
||
|
* B (input) DOUBLE PRECISION
|
||
|
* The values A and B.
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
DLAMC3 = A + B
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of DLAMC3
|
||
|
*
|
||
|
END
|
||
|
*
|
||
|
************************************************************************
|
||
|
*
|
||
|
SUBROUTINE DLAMC4( EMIN, START, BASE )
|
||
|
*
|
||
|
* -- LAPACK auxiliary routine (version 3.2) --
|
||
|
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
|
||
|
* November 2006
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER BASE, EMIN
|
||
|
DOUBLE PRECISION START
|
||
|
* ..
|
||
|
*
|
||
|
* Purpose
|
||
|
* =======
|
||
|
*
|
||
|
* DLAMC4 is a service routine for DLAMC2.
|
||
|
*
|
||
|
* Arguments
|
||
|
* =========
|
||
|
*
|
||
|
* EMIN (output) INTEGER
|
||
|
* The minimum exponent before (gradual) underflow, computed by
|
||
|
* setting A = START and dividing by BASE until the previous A
|
||
|
* can not be recovered.
|
||
|
*
|
||
|
* START (input) DOUBLE PRECISION
|
||
|
* The starting point for determining EMIN.
|
||
|
*
|
||
|
* BASE (input) INTEGER
|
||
|
* The base of the machine.
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER I
|
||
|
DOUBLE PRECISION A, B1, B2, C1, C2, D1, D2, ONE, RBASE, ZERO
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
DOUBLE PRECISION DLAMC3
|
||
|
EXTERNAL DLAMC3
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
A = START
|
||
|
ONE = 1
|
||
|
RBASE = ONE / BASE
|
||
|
ZERO = 0
|
||
|
EMIN = 1
|
||
|
B1 = DLAMC3( A*RBASE, ZERO )
|
||
|
C1 = A
|
||
|
C2 = A
|
||
|
D1 = A
|
||
|
D2 = A
|
||
|
*+ WHILE( ( C1.EQ.A ).AND.( C2.EQ.A ).AND.
|
||
|
* $ ( D1.EQ.A ).AND.( D2.EQ.A ) )LOOP
|
||
|
10 CONTINUE
|
||
|
IF( ( C1.EQ.A ) .AND. ( C2.EQ.A ) .AND. ( D1.EQ.A ) .AND.
|
||
|
$ ( D2.EQ.A ) ) THEN
|
||
|
EMIN = EMIN - 1
|
||
|
A = B1
|
||
|
B1 = DLAMC3( A / BASE, ZERO )
|
||
|
C1 = DLAMC3( B1*BASE, ZERO )
|
||
|
D1 = ZERO
|
||
|
DO 20 I = 1, BASE
|
||
|
D1 = D1 + B1
|
||
|
20 CONTINUE
|
||
|
B2 = DLAMC3( A*RBASE, ZERO )
|
||
|
C2 = DLAMC3( B2 / RBASE, ZERO )
|
||
|
D2 = ZERO
|
||
|
DO 30 I = 1, BASE
|
||
|
D2 = D2 + B2
|
||
|
30 CONTINUE
|
||
|
GO TO 10
|
||
|
END IF
|
||
|
*+ END WHILE
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of DLAMC4
|
||
|
*
|
||
|
END
|
||
|
*
|
||
|
************************************************************************
|
||
|
*
|
||
|
SUBROUTINE DLAMC5( BETA, P, EMIN, IEEE, EMAX, RMAX )
|
||
|
*
|
||
|
* -- LAPACK auxiliary routine (version 3.2) --
|
||
|
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
|
||
|
* November 2006
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
LOGICAL IEEE
|
||
|
INTEGER BETA, EMAX, EMIN, P
|
||
|
DOUBLE PRECISION RMAX
|
||
|
* ..
|
||
|
*
|
||
|
* Purpose
|
||
|
* =======
|
||
|
*
|
||
|
* DLAMC5 attempts to compute RMAX, the largest machine floating-point
|
||
|
* number, without overflow. It assumes that EMAX + abs(EMIN) sum
|
||
|
* approximately to a power of 2. It will fail on machines where this
|
||
|
* assumption does not hold, for example, the Cyber 205 (EMIN = -28625,
|
||
|
* EMAX = 28718). It will also fail if the value supplied for EMIN is
|
||
|
* too large (i.e. too close to zero), probably with overflow.
|
||
|
*
|
||
|
* Arguments
|
||
|
* =========
|
||
|
*
|
||
|
* BETA (input) INTEGER
|
||
|
* The base of floating-point arithmetic.
|
||
|
*
|
||
|
* P (input) INTEGER
|
||
|
* The number of base BETA digits in the mantissa of a
|
||
|
* floating-point value.
|
||
|
*
|
||
|
* EMIN (input) INTEGER
|
||
|
* The minimum exponent before (gradual) underflow.
|
||
|
*
|
||
|
* IEEE (input) LOGICAL
|
||
|
* A logical flag specifying whether or not the arithmetic
|
||
|
* system is thought to comply with the IEEE standard.
|
||
|
*
|
||
|
* EMAX (output) INTEGER
|
||
|
* The largest exponent before overflow
|
||
|
*
|
||
|
* RMAX (output) DOUBLE PRECISION
|
||
|
* The largest machine floating-point number.
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER EXBITS, EXPSUM, I, LEXP, NBITS, TRY, UEXP
|
||
|
DOUBLE PRECISION OLDY, RECBAS, Y, Z
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
DOUBLE PRECISION DLAMC3
|
||
|
EXTERNAL DLAMC3
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC MOD
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* First compute LEXP and UEXP, two powers of 2 that bound
|
||
|
* abs(EMIN). We then assume that EMAX + abs(EMIN) will sum
|
||
|
* approximately to the bound that is closest to abs(EMIN).
|
||
|
* (EMAX is the exponent of the required number RMAX).
|
||
|
*
|
||
|
LEXP = 1
|
||
|
EXBITS = 1
|
||
|
10 CONTINUE
|
||
|
TRY = LEXP*2
|
||
|
IF( TRY.LE.( -EMIN ) ) THEN
|
||
|
LEXP = TRY
|
||
|
EXBITS = EXBITS + 1
|
||
|
GO TO 10
|
||
|
END IF
|
||
|
IF( LEXP.EQ.-EMIN ) THEN
|
||
|
UEXP = LEXP
|
||
|
ELSE
|
||
|
UEXP = TRY
|
||
|
EXBITS = EXBITS + 1
|
||
|
END IF
|
||
|
*
|
||
|
* Now -LEXP is less than or equal to EMIN, and -UEXP is greater
|
||
|
* than or equal to EMIN. EXBITS is the number of bits needed to
|
||
|
* store the exponent.
|
||
|
*
|
||
|
IF( ( UEXP+EMIN ).GT.( -LEXP-EMIN ) ) THEN
|
||
|
EXPSUM = 2*LEXP
|
||
|
ELSE
|
||
|
EXPSUM = 2*UEXP
|
||
|
END IF
|
||
|
*
|
||
|
* EXPSUM is the exponent range, approximately equal to
|
||
|
* EMAX - EMIN + 1 .
|
||
|
*
|
||
|
EMAX = EXPSUM + EMIN - 1
|
||
|
NBITS = 1 + EXBITS + P
|
||
|
*
|
||
|
* NBITS is the total number of bits needed to store a
|
||
|
* floating-point number.
|
||
|
*
|
||
|
IF( ( MOD( NBITS, 2 ).EQ.1 ) .AND. ( BETA.EQ.2 ) ) THEN
|
||
|
*
|
||
|
* Either there are an odd number of bits used to store a
|
||
|
* floating-point number, which is unlikely, or some bits are
|
||
|
* not used in the representation of numbers, which is possible,
|
||
|
* (e.g. Cray machines) or the mantissa has an implicit bit,
|
||
|
* (e.g. IEEE machines, Dec Vax machines), which is perhaps the
|
||
|
* most likely. We have to assume the last alternative.
|
||
|
* If this is true, then we need to reduce EMAX by one because
|
||
|
* there must be some way of representing zero in an implicit-bit
|
||
|
* system. On machines like Cray, we are reducing EMAX by one
|
||
|
* unnecessarily.
|
||
|
*
|
||
|
EMAX = EMAX - 1
|
||
|
END IF
|
||
|
*
|
||
|
IF( IEEE ) THEN
|
||
|
*
|
||
|
* Assume we are on an IEEE machine which reserves one exponent
|
||
|
* for infinity and NaN.
|
||
|
*
|
||
|
EMAX = EMAX - 1
|
||
|
END IF
|
||
|
*
|
||
|
* Now create RMAX, the largest machine number, which should
|
||
|
* be equal to (1.0 - BETA**(-P)) * BETA**EMAX .
|
||
|
*
|
||
|
* First compute 1.0 - BETA**(-P), being careful that the
|
||
|
* result is less than 1.0 .
|
||
|
*
|
||
|
RECBAS = ONE / BETA
|
||
|
Z = BETA - ONE
|
||
|
Y = ZERO
|
||
|
DO 20 I = 1, P
|
||
|
Z = Z*RECBAS
|
||
|
IF( Y.LT.ONE )
|
||
|
$ OLDY = Y
|
||
|
Y = DLAMC3( Y, Z )
|
||
|
20 CONTINUE
|
||
|
IF( Y.GE.ONE )
|
||
|
$ Y = OLDY
|
||
|
*
|
||
|
* Now multiply by BETA**EMAX to get RMAX.
|
||
|
*
|
||
|
DO 30 I = 1, EMAX
|
||
|
Y = DLAMC3( Y*BETA, ZERO )
|
||
|
30 CONTINUE
|
||
|
*
|
||
|
RMAX = Y
|
||
|
RETURN
|
||
|
*
|
||
|
* End of DLAMC5
|
||
|
*
|
||
|
END
|