2014-10-30 23:22:01 +08:00
*> \brief \b DLAEDA used by sstedc. Computes the Z vector determining the rank-one modification of the diagonal matrix. Used when the original matrix is dense.
*
* =========== DOCUMENTATION ===========
*
2018-05-19 05:17:13 +08:00
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
2014-10-30 23:22:01 +08:00
*
*> \htmlonly
2018-05-19 05:17:13 +08:00
*> Download DLAEDA + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaeda.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaeda.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaeda.f">
2014-10-30 23:22:01 +08:00
*> [TXT]</a>
2018-05-19 05:17:13 +08:00
*> \endhtmlonly
2014-10-30 23:22:01 +08:00
*
* Definition:
* ===========
*
* SUBROUTINE DLAEDA( N, TLVLS, CURLVL, CURPBM, PRMPTR, PERM, GIVPTR,
* GIVCOL, GIVNUM, Q, QPTR, Z, ZTEMP, INFO )
2018-05-19 05:17:13 +08:00
*
2014-10-30 23:22:01 +08:00
* .. Scalar Arguments ..
* INTEGER CURLVL, CURPBM, INFO, N, TLVLS
* ..
* .. Array Arguments ..
* INTEGER GIVCOL( 2, * ), GIVPTR( * ), PERM( * ),
* $ PRMPTR( * ), QPTR( * )
* DOUBLE PRECISION GIVNUM( 2, * ), Q( * ), Z( * ), ZTEMP( * )
* ..
2018-05-19 05:17:13 +08:00
*
2014-10-30 23:22:01 +08:00
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DLAEDA computes the Z vector corresponding to the merge step in the
*> CURLVLth step of the merge process with TLVLS steps for the CURPBMth
*> problem.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The dimension of the symmetric tridiagonal matrix. N >= 0.
*> \endverbatim
*>
*> \param[in] TLVLS
*> \verbatim
*> TLVLS is INTEGER
*> The total number of merging levels in the overall divide and
*> conquer tree.
*> \endverbatim
*>
*> \param[in] CURLVL
*> \verbatim
*> CURLVL is INTEGER
*> The current level in the overall merge routine,
*> 0 <= curlvl <= tlvls.
*> \endverbatim
*>
*> \param[in] CURPBM
*> \verbatim
*> CURPBM is INTEGER
*> The current problem in the current level in the overall
*> merge routine (counting from upper left to lower right).
*> \endverbatim
*>
*> \param[in] PRMPTR
*> \verbatim
*> PRMPTR is INTEGER array, dimension (N lg N)
*> Contains a list of pointers which indicate where in PERM a
*> level's permutation is stored. PRMPTR(i+1) - PRMPTR(i)
*> indicates the size of the permutation and incidentally the
*> size of the full, non-deflated problem.
*> \endverbatim
*>
*> \param[in] PERM
*> \verbatim
*> PERM is INTEGER array, dimension (N lg N)
*> Contains the permutations (from deflation and sorting) to be
*> applied to each eigenblock.
*> \endverbatim
*>
*> \param[in] GIVPTR
*> \verbatim
*> GIVPTR is INTEGER array, dimension (N lg N)
*> Contains a list of pointers which indicate where in GIVCOL a
*> level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i)
*> indicates the number of Givens rotations.
*> \endverbatim
*>
*> \param[in] GIVCOL
*> \verbatim
*> GIVCOL is INTEGER array, dimension (2, N lg N)
*> Each pair of numbers indicates a pair of columns to take place
*> in a Givens rotation.
*> \endverbatim
*>
*> \param[in] GIVNUM
*> \verbatim
*> GIVNUM is DOUBLE PRECISION array, dimension (2, N lg N)
*> Each number indicates the S value to be used in the
*> corresponding Givens rotation.
*> \endverbatim
*>
*> \param[in] Q
*> \verbatim
*> Q is DOUBLE PRECISION array, dimension (N**2)
*> Contains the square eigenblocks from previous levels, the
*> starting positions for blocks are given by QPTR.
*> \endverbatim
*>
*> \param[in] QPTR
*> \verbatim
*> QPTR is INTEGER array, dimension (N+2)
*> Contains a list of pointers which indicate where in Q an
*> eigenblock is stored. SQRT( QPTR(i+1) - QPTR(i) ) indicates
*> the size of the block.
*> \endverbatim
*>
*> \param[out] Z
*> \verbatim
*> Z is DOUBLE PRECISION array, dimension (N)
*> On output this vector contains the updating vector (the last
*> row of the first sub-eigenvector matrix and the first row of
*> the second sub-eigenvector matrix).
*> \endverbatim
*>
*> \param[out] ZTEMP
*> \verbatim
*> ZTEMP is DOUBLE PRECISION array, dimension (N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit.
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> \endverbatim
*
* Authors:
* ========
*
2018-05-19 05:17:13 +08:00
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
2014-10-30 23:22:01 +08:00
*
2018-05-19 05:17:13 +08:00
*> \date December 2016
2014-10-30 23:22:01 +08:00
*
*> \ingroup auxOTHERcomputational
*
*> \par Contributors:
* ==================
*>
*> Jeff Rutter, Computer Science Division, University of California
*> at Berkeley, USA
*
* =====================================================================
SUBROUTINE DLAEDA ( N , TLVLS , CURLVL , CURPBM , PRMPTR , PERM , GIVPTR ,
$ GIVCOL , GIVNUM , Q , QPTR , Z , ZTEMP , INFO )
*
2018-05-19 05:17:13 +08:00
* -- LAPACK computational routine (version 3.7.0) --
2014-10-30 23:22:01 +08:00
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
2018-05-19 05:17:13 +08:00
* December 2016
2014-10-30 23:22:01 +08:00
*
* .. Scalar Arguments ..
INTEGER CURLVL , CURPBM , INFO , N , TLVLS
* ..
* .. Array Arguments ..
INTEGER GIVCOL ( 2 , * ) , GIVPTR ( * ) , PERM ( * ) ,
$ PRMPTR ( * ) , QPTR ( * )
DOUBLE PRECISION GIVNUM ( 2 , * ) , Q ( * ) , Z ( * ) , ZTEMP ( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO , HALF , ONE
PARAMETER ( ZERO = 0.0D0 , HALF = 0.5D0 , ONE = 1.0D0 )
* ..
* .. Local Scalars ..
INTEGER BSIZ1 , BSIZ2 , CURR , I , K , MID , PSIZ1 , PSIZ2 ,
$ PTR , ZPTR1
* ..
* .. External Subroutines ..
EXTERNAL DCOPY , DGEMV , DROT , XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE , INT , SQRT
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
*
IF ( N . LT . 0 ) THEN
INFO = - 1
END IF
IF ( INFO . NE . 0 ) THEN
CALL XERBLA ( 'DLAEDA' , - INFO )
RETURN
END IF
*
* Quick return if possible
*
IF ( N . EQ . 0 )
$ RETURN
*
* Determine location of first number in second half.
*
MID = N / 2 + 1
*
* Gather last/first rows of appropriate eigenblocks into center of Z
*
PTR = 1
*
* Determine location of lowest level subproblem in the full storage
* scheme
*
CURR = PTR + CURPBM * 2 ** CURLVL + 2 ** ( CURLVL - 1 ) - 1
*
* Determine size of these matrices. We add HALF to the value of
* the SQRT in case the machine underestimates one of these square
* roots.
*
BSIZ1 = INT ( HALF + SQRT ( DBLE ( QPTR ( CURR + 1 ) - QPTR ( CURR ) ) ) )
BSIZ2 = INT ( HALF + SQRT ( DBLE ( QPTR ( CURR + 2 ) - QPTR ( CURR + 1 ) ) ) )
DO 10 K = 1 , MID - BSIZ1 - 1
Z ( K ) = ZERO
10 CONTINUE
CALL DCOPY ( BSIZ1 , Q ( QPTR ( CURR ) + BSIZ1 - 1 ) , BSIZ1 ,
$ Z ( MID - BSIZ1 ) , 1 )
CALL DCOPY ( BSIZ2 , Q ( QPTR ( CURR + 1 ) ) , BSIZ2 , Z ( MID ) , 1 )
DO 20 K = MID + BSIZ2 , N
Z ( K ) = ZERO
20 CONTINUE
*
* Loop through remaining levels 1 -> CURLVL applying the Givens
* rotations and permutation and then multiplying the center matrices
* against the current Z.
*
PTR = 2 ** TLVLS + 1
DO 70 K = 1 , CURLVL - 1
CURR = PTR + CURPBM * 2 ** ( CURLVL - K ) + 2 ** ( CURLVL - K - 1 ) - 1
PSIZ1 = PRMPTR ( CURR + 1 ) - PRMPTR ( CURR )
PSIZ2 = PRMPTR ( CURR + 2 ) - PRMPTR ( CURR + 1 )
ZPTR1 = MID - PSIZ1
*
* Apply Givens at CURR and CURR+1
*
DO 30 I = GIVPTR ( CURR ) , GIVPTR ( CURR + 1 ) - 1
CALL DROT ( 1 , Z ( ZPTR1 + GIVCOL ( 1 , I ) - 1 ) , 1 ,
$ Z ( ZPTR1 + GIVCOL ( 2 , I ) - 1 ) , 1 , GIVNUM ( 1 , I ) ,
$ GIVNUM ( 2 , I ) )
30 CONTINUE
DO 40 I = GIVPTR ( CURR + 1 ) , GIVPTR ( CURR + 2 ) - 1
CALL DROT ( 1 , Z ( MID - 1 + GIVCOL ( 1 , I ) ) , 1 ,
$ Z ( MID - 1 + GIVCOL ( 2 , I ) ) , 1 , GIVNUM ( 1 , I ) ,
$ GIVNUM ( 2 , I ) )
40 CONTINUE
PSIZ1 = PRMPTR ( CURR + 1 ) - PRMPTR ( CURR )
PSIZ2 = PRMPTR ( CURR + 2 ) - PRMPTR ( CURR + 1 )
DO 50 I = 0 , PSIZ1 - 1
ZTEMP ( I + 1 ) = Z ( ZPTR1 + PERM ( PRMPTR ( CURR ) + I ) - 1 )
50 CONTINUE
DO 60 I = 0 , PSIZ2 - 1
ZTEMP ( PSIZ1 + I + 1 ) = Z ( MID + PERM ( PRMPTR ( CURR + 1 ) + I ) - 1 )
60 CONTINUE
*
* Multiply Blocks at CURR and CURR+1
*
* Determine size of these matrices. We add HALF to the value of
* the SQRT in case the machine underestimates one of these
* square roots.
*
BSIZ1 = INT ( HALF + SQRT ( DBLE ( QPTR ( CURR + 1 ) - QPTR ( CURR ) ) ) )
BSIZ2 = INT ( HALF + SQRT ( DBLE ( QPTR ( CURR + 2 ) - QPTR ( CURR +
$ 1 ) ) ) )
IF ( BSIZ1 . GT . 0 ) THEN
CALL DGEMV ( 'T' , BSIZ1 , BSIZ1 , ONE , Q ( QPTR ( CURR ) ) ,
$ BSIZ1 , ZTEMP ( 1 ) , 1 , ZERO , Z ( ZPTR1 ) , 1 )
END IF
CALL DCOPY ( PSIZ1 - BSIZ1 , ZTEMP ( BSIZ1 + 1 ) , 1 , Z ( ZPTR1 + BSIZ1 ) ,
$ 1 )
IF ( BSIZ2 . GT . 0 ) THEN
CALL DGEMV ( 'T' , BSIZ2 , BSIZ2 , ONE , Q ( QPTR ( CURR + 1 ) ) ,
$ BSIZ2 , ZTEMP ( PSIZ1 + 1 ) , 1 , ZERO , Z ( MID ) , 1 )
END IF
CALL DCOPY ( PSIZ2 - BSIZ2 , ZTEMP ( PSIZ1 + BSIZ2 + 1 ) , 1 ,
$ Z ( MID + BSIZ2 ) , 1 )
*
PTR = PTR + 2 ** ( TLVLS - K )
70 CONTINUE
*
RETURN
*
* End of DLAEDA
*
END