2014-10-30 23:22:01 +08:00
|
|
|
*> \brief \b DLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.
|
|
|
|
*
|
|
|
|
* =========== DOCUMENTATION ===========
|
|
|
|
*
|
2018-05-19 05:17:13 +08:00
|
|
|
* Online html documentation available at
|
|
|
|
* http://www.netlib.org/lapack/explore-html/
|
2014-10-30 23:22:01 +08:00
|
|
|
*
|
|
|
|
*> \htmlonly
|
2018-05-19 05:17:13 +08:00
|
|
|
*> Download DLASCL + dependencies
|
|
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlascl.f">
|
|
|
|
*> [TGZ]</a>
|
|
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlascl.f">
|
|
|
|
*> [ZIP]</a>
|
|
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlascl.f">
|
2014-10-30 23:22:01 +08:00
|
|
|
*> [TXT]</a>
|
2018-05-19 05:17:13 +08:00
|
|
|
*> \endhtmlonly
|
2014-10-30 23:22:01 +08:00
|
|
|
*
|
|
|
|
* Definition:
|
|
|
|
* ===========
|
|
|
|
*
|
|
|
|
* SUBROUTINE DLASCL( TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO )
|
2018-05-19 05:17:13 +08:00
|
|
|
*
|
2014-10-30 23:22:01 +08:00
|
|
|
* .. Scalar Arguments ..
|
|
|
|
* CHARACTER TYPE
|
|
|
|
* INTEGER INFO, KL, KU, LDA, M, N
|
|
|
|
* DOUBLE PRECISION CFROM, CTO
|
|
|
|
* ..
|
|
|
|
* .. Array Arguments ..
|
|
|
|
* DOUBLE PRECISION A( LDA, * )
|
|
|
|
* ..
|
2018-05-19 05:17:13 +08:00
|
|
|
*
|
2014-10-30 23:22:01 +08:00
|
|
|
*
|
|
|
|
*> \par Purpose:
|
|
|
|
* =============
|
|
|
|
*>
|
|
|
|
*> \verbatim
|
|
|
|
*>
|
|
|
|
*> DLASCL multiplies the M by N real matrix A by the real scalar
|
|
|
|
*> CTO/CFROM. This is done without over/underflow as long as the final
|
|
|
|
*> result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that
|
|
|
|
*> A may be full, upper triangular, lower triangular, upper Hessenberg,
|
|
|
|
*> or banded.
|
|
|
|
*> \endverbatim
|
|
|
|
*
|
|
|
|
* Arguments:
|
|
|
|
* ==========
|
|
|
|
*
|
|
|
|
*> \param[in] TYPE
|
|
|
|
*> \verbatim
|
|
|
|
*> TYPE is CHARACTER*1
|
|
|
|
*> TYPE indices the storage type of the input matrix.
|
|
|
|
*> = 'G': A is a full matrix.
|
|
|
|
*> = 'L': A is a lower triangular matrix.
|
|
|
|
*> = 'U': A is an upper triangular matrix.
|
|
|
|
*> = 'H': A is an upper Hessenberg matrix.
|
|
|
|
*> = 'B': A is a symmetric band matrix with lower bandwidth KL
|
|
|
|
*> and upper bandwidth KU and with the only the lower
|
|
|
|
*> half stored.
|
|
|
|
*> = 'Q': A is a symmetric band matrix with lower bandwidth KL
|
|
|
|
*> and upper bandwidth KU and with the only the upper
|
|
|
|
*> half stored.
|
|
|
|
*> = 'Z': A is a band matrix with lower bandwidth KL and upper
|
|
|
|
*> bandwidth KU. See DGBTRF for storage details.
|
|
|
|
*> \endverbatim
|
|
|
|
*>
|
|
|
|
*> \param[in] KL
|
|
|
|
*> \verbatim
|
|
|
|
*> KL is INTEGER
|
|
|
|
*> The lower bandwidth of A. Referenced only if TYPE = 'B',
|
|
|
|
*> 'Q' or 'Z'.
|
|
|
|
*> \endverbatim
|
|
|
|
*>
|
|
|
|
*> \param[in] KU
|
|
|
|
*> \verbatim
|
|
|
|
*> KU is INTEGER
|
|
|
|
*> The upper bandwidth of A. Referenced only if TYPE = 'B',
|
|
|
|
*> 'Q' or 'Z'.
|
|
|
|
*> \endverbatim
|
|
|
|
*>
|
|
|
|
*> \param[in] CFROM
|
|
|
|
*> \verbatim
|
|
|
|
*> CFROM is DOUBLE PRECISION
|
|
|
|
*> \endverbatim
|
|
|
|
*>
|
|
|
|
*> \param[in] CTO
|
|
|
|
*> \verbatim
|
|
|
|
*> CTO is DOUBLE PRECISION
|
|
|
|
*>
|
|
|
|
*> The matrix A is multiplied by CTO/CFROM. A(I,J) is computed
|
|
|
|
*> without over/underflow if the final result CTO*A(I,J)/CFROM
|
|
|
|
*> can be represented without over/underflow. CFROM must be
|
|
|
|
*> nonzero.
|
|
|
|
*> \endverbatim
|
|
|
|
*>
|
|
|
|
*> \param[in] M
|
|
|
|
*> \verbatim
|
|
|
|
*> M is INTEGER
|
|
|
|
*> The number of rows of the matrix A. M >= 0.
|
|
|
|
*> \endverbatim
|
|
|
|
*>
|
|
|
|
*> \param[in] N
|
|
|
|
*> \verbatim
|
|
|
|
*> N is INTEGER
|
|
|
|
*> The number of columns of the matrix A. N >= 0.
|
|
|
|
*> \endverbatim
|
|
|
|
*>
|
|
|
|
*> \param[in,out] A
|
|
|
|
*> \verbatim
|
|
|
|
*> A is DOUBLE PRECISION array, dimension (LDA,N)
|
|
|
|
*> The matrix to be multiplied by CTO/CFROM. See TYPE for the
|
|
|
|
*> storage type.
|
|
|
|
*> \endverbatim
|
|
|
|
*>
|
|
|
|
*> \param[in] LDA
|
|
|
|
*> \verbatim
|
|
|
|
*> LDA is INTEGER
|
2018-05-19 05:17:13 +08:00
|
|
|
*> The leading dimension of the array A.
|
|
|
|
*> If TYPE = 'G', 'L', 'U', 'H', LDA >= max(1,M);
|
|
|
|
*> TYPE = 'B', LDA >= KL+1;
|
|
|
|
*> TYPE = 'Q', LDA >= KU+1;
|
|
|
|
*> TYPE = 'Z', LDA >= 2*KL+KU+1.
|
2014-10-30 23:22:01 +08:00
|
|
|
*> \endverbatim
|
|
|
|
*>
|
|
|
|
*> \param[out] INFO
|
|
|
|
*> \verbatim
|
|
|
|
*> INFO is INTEGER
|
|
|
|
*> 0 - successful exit
|
|
|
|
*> <0 - if INFO = -i, the i-th argument had an illegal value.
|
|
|
|
*> \endverbatim
|
|
|
|
*
|
|
|
|
* Authors:
|
|
|
|
* ========
|
|
|
|
*
|
2018-05-19 05:17:13 +08:00
|
|
|
*> \author Univ. of Tennessee
|
|
|
|
*> \author Univ. of California Berkeley
|
|
|
|
*> \author Univ. of Colorado Denver
|
|
|
|
*> \author NAG Ltd.
|
2014-10-30 23:22:01 +08:00
|
|
|
*
|
2018-05-19 05:17:13 +08:00
|
|
|
*> \date June 2016
|
2014-10-30 23:22:01 +08:00
|
|
|
*
|
2018-05-19 05:17:13 +08:00
|
|
|
*> \ingroup OTHERauxiliary
|
2014-10-30 23:22:01 +08:00
|
|
|
*
|
|
|
|
* =====================================================================
|
|
|
|
SUBROUTINE DLASCL( TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO )
|
|
|
|
*
|
2018-05-19 05:17:13 +08:00
|
|
|
* -- LAPACK auxiliary routine (version 3.7.0) --
|
2014-10-30 23:22:01 +08:00
|
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
2018-05-19 05:17:13 +08:00
|
|
|
* June 2016
|
2014-10-30 23:22:01 +08:00
|
|
|
*
|
|
|
|
* .. Scalar Arguments ..
|
|
|
|
CHARACTER TYPE
|
|
|
|
INTEGER INFO, KL, KU, LDA, M, N
|
|
|
|
DOUBLE PRECISION CFROM, CTO
|
|
|
|
* ..
|
|
|
|
* .. Array Arguments ..
|
|
|
|
DOUBLE PRECISION A( LDA, * )
|
|
|
|
* ..
|
|
|
|
*
|
|
|
|
* =====================================================================
|
|
|
|
*
|
|
|
|
* .. Parameters ..
|
|
|
|
DOUBLE PRECISION ZERO, ONE
|
|
|
|
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
|
|
|
|
* ..
|
|
|
|
* .. Local Scalars ..
|
|
|
|
LOGICAL DONE
|
|
|
|
INTEGER I, ITYPE, J, K1, K2, K3, K4
|
|
|
|
DOUBLE PRECISION BIGNUM, CFROM1, CFROMC, CTO1, CTOC, MUL, SMLNUM
|
|
|
|
* ..
|
|
|
|
* .. External Functions ..
|
|
|
|
LOGICAL LSAME, DISNAN
|
|
|
|
DOUBLE PRECISION DLAMCH
|
|
|
|
EXTERNAL LSAME, DLAMCH, DISNAN
|
|
|
|
* ..
|
|
|
|
* .. Intrinsic Functions ..
|
|
|
|
INTRINSIC ABS, MAX, MIN
|
|
|
|
* ..
|
|
|
|
* .. External Subroutines ..
|
|
|
|
EXTERNAL XERBLA
|
|
|
|
* ..
|
|
|
|
* .. Executable Statements ..
|
|
|
|
*
|
|
|
|
* Test the input arguments
|
|
|
|
*
|
|
|
|
INFO = 0
|
|
|
|
*
|
|
|
|
IF( LSAME( TYPE, 'G' ) ) THEN
|
|
|
|
ITYPE = 0
|
|
|
|
ELSE IF( LSAME( TYPE, 'L' ) ) THEN
|
|
|
|
ITYPE = 1
|
|
|
|
ELSE IF( LSAME( TYPE, 'U' ) ) THEN
|
|
|
|
ITYPE = 2
|
|
|
|
ELSE IF( LSAME( TYPE, 'H' ) ) THEN
|
|
|
|
ITYPE = 3
|
|
|
|
ELSE IF( LSAME( TYPE, 'B' ) ) THEN
|
|
|
|
ITYPE = 4
|
|
|
|
ELSE IF( LSAME( TYPE, 'Q' ) ) THEN
|
|
|
|
ITYPE = 5
|
|
|
|
ELSE IF( LSAME( TYPE, 'Z' ) ) THEN
|
|
|
|
ITYPE = 6
|
|
|
|
ELSE
|
|
|
|
ITYPE = -1
|
|
|
|
END IF
|
|
|
|
*
|
|
|
|
IF( ITYPE.EQ.-1 ) THEN
|
|
|
|
INFO = -1
|
|
|
|
ELSE IF( CFROM.EQ.ZERO .OR. DISNAN(CFROM) ) THEN
|
|
|
|
INFO = -4
|
|
|
|
ELSE IF( DISNAN(CTO) ) THEN
|
|
|
|
INFO = -5
|
|
|
|
ELSE IF( M.LT.0 ) THEN
|
|
|
|
INFO = -6
|
|
|
|
ELSE IF( N.LT.0 .OR. ( ITYPE.EQ.4 .AND. N.NE.M ) .OR.
|
|
|
|
$ ( ITYPE.EQ.5 .AND. N.NE.M ) ) THEN
|
|
|
|
INFO = -7
|
|
|
|
ELSE IF( ITYPE.LE.3 .AND. LDA.LT.MAX( 1, M ) ) THEN
|
|
|
|
INFO = -9
|
|
|
|
ELSE IF( ITYPE.GE.4 ) THEN
|
|
|
|
IF( KL.LT.0 .OR. KL.GT.MAX( M-1, 0 ) ) THEN
|
|
|
|
INFO = -2
|
|
|
|
ELSE IF( KU.LT.0 .OR. KU.GT.MAX( N-1, 0 ) .OR.
|
|
|
|
$ ( ( ITYPE.EQ.4 .OR. ITYPE.EQ.5 ) .AND. KL.NE.KU ) )
|
|
|
|
$ THEN
|
|
|
|
INFO = -3
|
|
|
|
ELSE IF( ( ITYPE.EQ.4 .AND. LDA.LT.KL+1 ) .OR.
|
|
|
|
$ ( ITYPE.EQ.5 .AND. LDA.LT.KU+1 ) .OR.
|
|
|
|
$ ( ITYPE.EQ.6 .AND. LDA.LT.2*KL+KU+1 ) ) THEN
|
|
|
|
INFO = -9
|
|
|
|
END IF
|
|
|
|
END IF
|
|
|
|
*
|
|
|
|
IF( INFO.NE.0 ) THEN
|
|
|
|
CALL XERBLA( 'DLASCL', -INFO )
|
|
|
|
RETURN
|
|
|
|
END IF
|
|
|
|
*
|
|
|
|
* Quick return if possible
|
|
|
|
*
|
|
|
|
IF( N.EQ.0 .OR. M.EQ.0 )
|
|
|
|
$ RETURN
|
|
|
|
*
|
|
|
|
* Get machine parameters
|
|
|
|
*
|
|
|
|
SMLNUM = DLAMCH( 'S' )
|
|
|
|
BIGNUM = ONE / SMLNUM
|
|
|
|
*
|
|
|
|
CFROMC = CFROM
|
|
|
|
CTOC = CTO
|
|
|
|
*
|
|
|
|
10 CONTINUE
|
|
|
|
CFROM1 = CFROMC*SMLNUM
|
|
|
|
IF( CFROM1.EQ.CFROMC ) THEN
|
|
|
|
! CFROMC is an inf. Multiply by a correctly signed zero for
|
|
|
|
! finite CTOC, or a NaN if CTOC is infinite.
|
|
|
|
MUL = CTOC / CFROMC
|
|
|
|
DONE = .TRUE.
|
|
|
|
CTO1 = CTOC
|
|
|
|
ELSE
|
|
|
|
CTO1 = CTOC / BIGNUM
|
|
|
|
IF( CTO1.EQ.CTOC ) THEN
|
|
|
|
! CTOC is either 0 or an inf. In both cases, CTOC itself
|
|
|
|
! serves as the correct multiplication factor.
|
|
|
|
MUL = CTOC
|
|
|
|
DONE = .TRUE.
|
|
|
|
CFROMC = ONE
|
|
|
|
ELSE IF( ABS( CFROM1 ).GT.ABS( CTOC ) .AND. CTOC.NE.ZERO ) THEN
|
|
|
|
MUL = SMLNUM
|
|
|
|
DONE = .FALSE.
|
|
|
|
CFROMC = CFROM1
|
|
|
|
ELSE IF( ABS( CTO1 ).GT.ABS( CFROMC ) ) THEN
|
|
|
|
MUL = BIGNUM
|
|
|
|
DONE = .FALSE.
|
|
|
|
CTOC = CTO1
|
|
|
|
ELSE
|
|
|
|
MUL = CTOC / CFROMC
|
|
|
|
DONE = .TRUE.
|
|
|
|
END IF
|
|
|
|
END IF
|
|
|
|
*
|
|
|
|
IF( ITYPE.EQ.0 ) THEN
|
|
|
|
*
|
|
|
|
* Full matrix
|
|
|
|
*
|
|
|
|
DO 30 J = 1, N
|
|
|
|
DO 20 I = 1, M
|
|
|
|
A( I, J ) = A( I, J )*MUL
|
|
|
|
20 CONTINUE
|
|
|
|
30 CONTINUE
|
|
|
|
*
|
|
|
|
ELSE IF( ITYPE.EQ.1 ) THEN
|
|
|
|
*
|
|
|
|
* Lower triangular matrix
|
|
|
|
*
|
|
|
|
DO 50 J = 1, N
|
|
|
|
DO 40 I = J, M
|
|
|
|
A( I, J ) = A( I, J )*MUL
|
|
|
|
40 CONTINUE
|
|
|
|
50 CONTINUE
|
|
|
|
*
|
|
|
|
ELSE IF( ITYPE.EQ.2 ) THEN
|
|
|
|
*
|
|
|
|
* Upper triangular matrix
|
|
|
|
*
|
|
|
|
DO 70 J = 1, N
|
|
|
|
DO 60 I = 1, MIN( J, M )
|
|
|
|
A( I, J ) = A( I, J )*MUL
|
|
|
|
60 CONTINUE
|
|
|
|
70 CONTINUE
|
|
|
|
*
|
|
|
|
ELSE IF( ITYPE.EQ.3 ) THEN
|
|
|
|
*
|
|
|
|
* Upper Hessenberg matrix
|
|
|
|
*
|
|
|
|
DO 90 J = 1, N
|
|
|
|
DO 80 I = 1, MIN( J+1, M )
|
|
|
|
A( I, J ) = A( I, J )*MUL
|
|
|
|
80 CONTINUE
|
|
|
|
90 CONTINUE
|
|
|
|
*
|
|
|
|
ELSE IF( ITYPE.EQ.4 ) THEN
|
|
|
|
*
|
|
|
|
* Lower half of a symmetric band matrix
|
|
|
|
*
|
|
|
|
K3 = KL + 1
|
|
|
|
K4 = N + 1
|
|
|
|
DO 110 J = 1, N
|
|
|
|
DO 100 I = 1, MIN( K3, K4-J )
|
|
|
|
A( I, J ) = A( I, J )*MUL
|
|
|
|
100 CONTINUE
|
|
|
|
110 CONTINUE
|
|
|
|
*
|
|
|
|
ELSE IF( ITYPE.EQ.5 ) THEN
|
|
|
|
*
|
|
|
|
* Upper half of a symmetric band matrix
|
|
|
|
*
|
|
|
|
K1 = KU + 2
|
|
|
|
K3 = KU + 1
|
|
|
|
DO 130 J = 1, N
|
|
|
|
DO 120 I = MAX( K1-J, 1 ), K3
|
|
|
|
A( I, J ) = A( I, J )*MUL
|
|
|
|
120 CONTINUE
|
|
|
|
130 CONTINUE
|
|
|
|
*
|
|
|
|
ELSE IF( ITYPE.EQ.6 ) THEN
|
|
|
|
*
|
|
|
|
* Band matrix
|
|
|
|
*
|
|
|
|
K1 = KL + KU + 2
|
|
|
|
K2 = KL + 1
|
|
|
|
K3 = 2*KL + KU + 1
|
|
|
|
K4 = KL + KU + 1 + M
|
|
|
|
DO 150 J = 1, N
|
|
|
|
DO 140 I = MAX( K1-J, K2 ), MIN( K3, K4-J )
|
|
|
|
A( I, J ) = A( I, J )*MUL
|
|
|
|
140 CONTINUE
|
|
|
|
150 CONTINUE
|
|
|
|
*
|
|
|
|
END IF
|
|
|
|
*
|
|
|
|
IF( .NOT.DONE )
|
|
|
|
$ GO TO 10
|
|
|
|
*
|
|
|
|
RETURN
|
|
|
|
*
|
|
|
|
* End of DLASCL
|
|
|
|
*
|
|
|
|
END
|