forked from lijiext/lammps
448 lines
16 KiB
C
448 lines
16 KiB
C
|
/***************************************************************************
|
||
|
nvc_memory.h
|
||
|
-------------------
|
||
|
W. Michael Brown
|
||
|
|
||
|
Routines for memory management on CUDA devices
|
||
|
|
||
|
__________________________________________________________________________
|
||
|
This file is part of the NVC Library
|
||
|
__________________________________________________________________________
|
||
|
|
||
|
begin : Thu Jun 25 2009
|
||
|
copyright : (C) 2009 by W. Michael Brown
|
||
|
email : wmbrown@sandia.gov
|
||
|
***************************************************************************/
|
||
|
|
||
|
/* -----------------------------------------------------------------------
|
||
|
Copyright (2009) Sandia Corporation. Under the terms of Contract
|
||
|
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
||
|
certain rights in this software. This software is distributed under
|
||
|
the GNU General Public License.
|
||
|
----------------------------------------------------------------------- */
|
||
|
|
||
|
#ifndef NVC_MEMORY_H
|
||
|
#define NVC_MEMORY_H
|
||
|
|
||
|
#include <iostream>
|
||
|
|
||
|
#define NVC_HostT NVC_Host<numtyp>
|
||
|
#define NVC_HostD NVC_Host<double>
|
||
|
#define NVC_HostS NVC_Host<float>
|
||
|
#define NVC_HostI NVC_Host<int>
|
||
|
|
||
|
#define NVC_VecT NVC_Vec<numtyp>
|
||
|
#define NVC_VecD NVC_Vec<double>
|
||
|
#define NVC_VecS NVC_Vec<float>
|
||
|
#define NVC_VecI NVC_Vec<int>
|
||
|
#define NVC_VecI2 NVC_Vec<int2>
|
||
|
#define NVC_VecU2 NVC_Vec<uint2>
|
||
|
|
||
|
#define NVC_MatT NVC_Mat<numtyp>
|
||
|
#define NVC_MatD NVC_Mat<double>
|
||
|
#define NVC_MatS NVC_Mat<float>
|
||
|
#define NVC_MatI NVC_Mat<int>
|
||
|
|
||
|
#define NVC_ConstMatT NVC_ConstMat<numtyp>
|
||
|
#define NVC_ConstMatD NVC_ConstMat<double>
|
||
|
#define NVC_ConstMatS NVC_ConstMat<float>
|
||
|
#define NVC_ConstMatI NVC_ConstMat<int>
|
||
|
#define NVC_ConstMatD2 NVC_ConstMat<double2>
|
||
|
|
||
|
namespace NVC {
|
||
|
|
||
|
// Get a channel for float array
|
||
|
template <class numtyp>
|
||
|
inline void cuda_gb_get_channel(cudaChannelFormatDesc &channel) {
|
||
|
channel = cudaCreateChannelDesc(32, 0, 0, 0, cudaChannelFormatKindFloat);
|
||
|
}
|
||
|
|
||
|
// Get a channel for float2 array
|
||
|
template <>
|
||
|
inline void cuda_gb_get_channel<float2>(cudaChannelFormatDesc &channel) {
|
||
|
channel = cudaCreateChannelDesc(32, 32, 0, 0, cudaChannelFormatKindFloat);
|
||
|
}
|
||
|
|
||
|
// Get a channel for double array
|
||
|
template <>
|
||
|
inline void cuda_gb_get_channel<double>(cudaChannelFormatDesc &channel) {
|
||
|
channel = cudaCreateChannelDesc(32, 32, 0, 0, cudaChannelFormatKindSigned);
|
||
|
}
|
||
|
|
||
|
// Get a channel for double array
|
||
|
template <>
|
||
|
inline void cuda_gb_get_channel<double2>(cudaChannelFormatDesc &channel) {
|
||
|
channel = cudaCreateChannelDesc(32, 32, 32, 32, cudaChannelFormatKindSigned);
|
||
|
}
|
||
|
|
||
|
// Get a channel for int array
|
||
|
template <>
|
||
|
inline void cuda_gb_get_channel<int>(cudaChannelFormatDesc &channel) {
|
||
|
channel = cudaCreateChannelDesc(32, 0, 0, 0, cudaChannelFormatKindSigned);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
/// Page-locked Row Vector on Host
|
||
|
template <class numtyp>
|
||
|
class NVC_Host {
|
||
|
public:
|
||
|
NVC_Host() { _cols=0; }
|
||
|
~NVC_Host() { if (_cols>0) CUDA_SAFE_CALL(cudaFreeHost(_array)); }
|
||
|
|
||
|
// Allocate page-locked memory with fast write/slow read on host
|
||
|
inline void safe_alloc_w(const size_t cols) {
|
||
|
_cols=cols;
|
||
|
_row_bytes=cols*sizeof(numtyp);
|
||
|
CUDA_SAFE_CALL(cudaHostAlloc((void **)&_array,_row_bytes,
|
||
|
cudaHostAllocWriteCombined));
|
||
|
_end=_array+cols;
|
||
|
}
|
||
|
|
||
|
// Allocate page-locked memory with fast read/write on host
|
||
|
inline void safe_alloc_rw(const size_t cols) {
|
||
|
_cols=cols;
|
||
|
_row_bytes=cols*sizeof(numtyp);
|
||
|
CUDA_SAFE_CALL(cudaMallocHost((void **)&_array,_row_bytes));
|
||
|
_end=_array+cols;
|
||
|
}
|
||
|
|
||
|
/// Free any memory associated with device
|
||
|
inline void clear()
|
||
|
{ if (_cols>0) { _cols=0; CUDA_SAFE_CALL(cudaFreeHost(_array)); } }
|
||
|
|
||
|
/// Set each element to zero
|
||
|
inline void zero() { memset(_array,0,row_bytes()); }
|
||
|
|
||
|
/// Set first n elements to zero
|
||
|
inline void zero(const int n) { memset(_array,0,n*sizeof(numtyp)); }
|
||
|
|
||
|
inline numtyp * begin() { return _array; }
|
||
|
inline const numtyp * begin() const { return _array; }
|
||
|
inline numtyp * end() { return _end; }
|
||
|
inline const numtyp * end() const { return _end; }
|
||
|
|
||
|
inline size_t numel() const { return _cols; }
|
||
|
inline size_t rows() const { return 1; }
|
||
|
inline size_t cols() const { return _cols; }
|
||
|
inline size_t row_size() const { return _cols; }
|
||
|
inline size_t row_bytes() const { return _row_bytes; }
|
||
|
|
||
|
inline numtyp & operator[](const int i) { return _array[i]; }
|
||
|
inline const numtyp & operator[](const int i) const { return _array[i]; }
|
||
|
|
||
|
/// Copy from device (numel is not bytes)
|
||
|
inline void copy_from_device(const numtyp *device_p, size_t numel) {
|
||
|
CUDA_SAFE_CALL(cudaMemcpy(_array,device_p,numel*sizeof(numtyp),
|
||
|
cudaMemcpyDeviceToHost));
|
||
|
}
|
||
|
|
||
|
/// Copy to device (numel is not bytes)
|
||
|
inline void copy_to_device(numtyp *device_p, size_t numel) {
|
||
|
CUDA_SAFE_CALL(cudaMemcpy(device_p,_array,numel*sizeof(numtyp),
|
||
|
cudaMemcpyHostToDevice));
|
||
|
}
|
||
|
|
||
|
/// Copy to 2D matrix on device (numel is not bytes)
|
||
|
inline void copy_to_2Ddevice(numtyp *device_p, const size_t dev_row_size,
|
||
|
const size_t rows, const size_t cols) {
|
||
|
CUDA_SAFE_CALL(cudaMemcpy2D(device_p,dev_row_size*sizeof(numtyp),
|
||
|
_array,cols*sizeof(numtyp),
|
||
|
cols*sizeof(numtyp),rows,
|
||
|
cudaMemcpyHostToDevice));
|
||
|
}
|
||
|
|
||
|
/// Asynchronous copy from device (numel is not bytes)
|
||
|
inline void copy_from_device(const numtyp *device_p, size_t numel,
|
||
|
cudaStream_t &stream) {
|
||
|
CUDA_SAFE_CALL(cudaMemcpyAsync(_array,device_p,numel*sizeof(numtyp),
|
||
|
cudaMemcpyDeviceToHost,stream));
|
||
|
}
|
||
|
|
||
|
/// Asynchronous copy to device (numel is not bytes)
|
||
|
inline void copy_to_device(numtyp *device_p, size_t numel,
|
||
|
cudaStream_t &stream) {
|
||
|
CUDA_SAFE_CALL(cudaMemcpyAsync(device_p,_array,numel*sizeof(numtyp),
|
||
|
cudaMemcpyHostToDevice,stream));
|
||
|
}
|
||
|
|
||
|
/// Asynchronous copy to 2D matrix on device (numel is not bytes)
|
||
|
inline void copy_to_2Ddevice(numtyp *device_p, const size_t dev_row_size,
|
||
|
const size_t rows, const size_t cols,
|
||
|
cudaStream_t &stream) {
|
||
|
CUDA_SAFE_CALL(cudaMemcpy2DAsync(device_p,dev_row_size*sizeof(numtyp),
|
||
|
_array,cols*sizeof(numtyp),
|
||
|
cols*sizeof(numtyp),rows,
|
||
|
cudaMemcpyHostToDevice,stream));
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
numtyp *_array, *_end;
|
||
|
size_t _row_bytes, _row_size, _rows, _cols;
|
||
|
};
|
||
|
|
||
|
/// Row vector on device
|
||
|
template <class numtyp>
|
||
|
class NVC_Vec {
|
||
|
public:
|
||
|
NVC_Vec() { _cols=0; }
|
||
|
~NVC_Vec() { if (_cols>0) CUDA_SAFE_CALL(cudaFree(_array)); }
|
||
|
|
||
|
// Row vector on device
|
||
|
inline void safe_alloc(const size_t cols) {
|
||
|
_cols=cols;
|
||
|
_row_bytes=cols*sizeof(numtyp);
|
||
|
CUDA_SAFE_CALL(cudaMalloc((void **)&_array,_row_bytes));
|
||
|
_end=_array+cols;
|
||
|
}
|
||
|
|
||
|
/// Free any memory associated with device
|
||
|
inline void clear()
|
||
|
{ if (_cols>0) { _cols=0; CUDA_SAFE_CALL(cudaFree(_array)); } }
|
||
|
|
||
|
/// Set each element to zero
|
||
|
inline void zero() { CUDA_SAFE_CALL(cudaMemset(_array,0,row_bytes())); }
|
||
|
|
||
|
inline numtyp * begin() { return _array; }
|
||
|
inline const numtyp * begin() const { return _array; }
|
||
|
inline numtyp * end() { return _end; }
|
||
|
inline const numtyp * end() const { return _end; }
|
||
|
|
||
|
inline size_t numel() const { return _cols; }
|
||
|
inline size_t rows() const { return 1; }
|
||
|
inline size_t cols() const { return _cols; }
|
||
|
inline size_t row_size() const { return _cols; }
|
||
|
inline size_t row_bytes() const { return _row_bytes; }
|
||
|
|
||
|
/// Copy from host
|
||
|
inline void copy_from_host(const numtyp *host_p)
|
||
|
{ CUDA_SAFE_CALL(cudaMemcpy(_array,host_p,row_bytes(),
|
||
|
cudaMemcpyHostToDevice)); }
|
||
|
|
||
|
/// Asynchronous copy from host
|
||
|
inline void copy_from_host(const numtyp *host_p, cudaStream_t &stream)
|
||
|
{ CUDA_SAFE_CALL(cudaMemcpyAsync(_array,host_p,row_bytes(),
|
||
|
cudaMemcpyHostToDevice, stream)); }
|
||
|
|
||
|
/// Copy to host
|
||
|
inline void copy_to_host(numtyp *host_p)
|
||
|
{ CUDA_SAFE_CALL(cudaMemcpy(host_p,_array,row_bytes(),
|
||
|
cudaMemcpyDeviceToHost)); }
|
||
|
|
||
|
/// Copy n elements to host
|
||
|
inline void copy_to_host(numtyp *host_p, const int n)
|
||
|
{ CUDA_SAFE_CALL(cudaMemcpy(host_p,_array,n*sizeof(numtyp),
|
||
|
cudaMemcpyDeviceToHost)); }
|
||
|
|
||
|
/// Cast and then copy to device
|
||
|
template <class numtyp2>
|
||
|
inline void cast_copy(const numtyp2 *buffer, NVC_HostT &host_write) {
|
||
|
for (int i=0; i<numel(); i++)
|
||
|
host_write[i]=static_cast<numtyp>(buffer[i]);
|
||
|
copy_from_host(host_write.begin());
|
||
|
}
|
||
|
|
||
|
/// Bind to texture
|
||
|
template <class texture>
|
||
|
inline void bind_texture(texture &texi, cudaChannelFormatDesc &channel) {
|
||
|
NVC::cuda_gb_get_channel<numtyp>(channel);
|
||
|
texi.addressMode[0] = cudaAddressModeClamp;
|
||
|
texi.addressMode[1] = cudaAddressModeClamp;
|
||
|
texi.filterMode = cudaFilterModePoint;
|
||
|
texi.normalized = false;
|
||
|
CUDA_SAFE_CALL(cudaBindTexture(NULL,&texi,_array,&channel));
|
||
|
}
|
||
|
|
||
|
/// Output the vector (debugging)
|
||
|
inline void print(std::ostream &out) { print (out, numel()); }
|
||
|
|
||
|
// Output first n elements of vector
|
||
|
inline void print(std::ostream &out, const int n) {
|
||
|
numtyp *t=new numtyp[n];
|
||
|
copy_to_host(t,n);
|
||
|
for (int i=0; i<n; i++)
|
||
|
out << t[i] << " ";
|
||
|
delete []t;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
numtyp *_array, *_end;
|
||
|
size_t _row_bytes, _row_size, _rows, _cols;
|
||
|
};
|
||
|
|
||
|
/// 2D Matrix on device (can have extra column storage to get correct alignment)
|
||
|
template <class numtyp>
|
||
|
class NVC_Mat {
|
||
|
public:
|
||
|
NVC_Mat() { _rows=0; }
|
||
|
~NVC_Mat() { if (_rows>0) CUDA_SAFE_CALL(cudaFree(_array)); }
|
||
|
|
||
|
// Row major matrix on device
|
||
|
// - Coalesced access using adjacent cols on same row
|
||
|
// - NVC_Mat(row,col) given by array[row*row_size()+col]
|
||
|
inline void safe_alloc(const size_t rows, const size_t cols) {
|
||
|
_rows=rows;
|
||
|
_cols=cols;
|
||
|
CUDA_SAFE_CALL(cudaMallocPitch((void **)&_array,&_pitch,
|
||
|
cols*sizeof(numtyp),rows));
|
||
|
_row_size=_pitch/sizeof(numtyp);
|
||
|
_end=_array+_row_size*cols;
|
||
|
}
|
||
|
|
||
|
/// Free any memory associated with device
|
||
|
inline void clear()
|
||
|
{ if (_rows>0) { _rows=0; CUDA_SAFE_CALL(cudaFree(_array)); } }
|
||
|
|
||
|
/// Set each element to zero
|
||
|
inline void zero() { CUDA_SAFE_CALL(cudaMemset(_array,0, _pitch*_rows)); }
|
||
|
|
||
|
inline numtyp * begin() { return _array; }
|
||
|
inline const numtyp * begin() const { return _array; }
|
||
|
inline numtyp * end() { return _end; }
|
||
|
inline const numtyp * end() const { return _end; }
|
||
|
|
||
|
|
||
|
inline size_t numel() const { return _cols*_rows; }
|
||
|
inline size_t rows() const { return _rows; }
|
||
|
inline size_t cols() const { return _cols; }
|
||
|
inline size_t row_size() const { return _row_size; }
|
||
|
inline size_t row_bytes() const { return _pitch; }
|
||
|
|
||
|
/// Copy from host (elements not bytes)
|
||
|
inline void copy_from_host(const numtyp *host_p, const size_t numel)
|
||
|
{ CUDA_SAFE_CALL(cudaMemcpy(_array,host_p,numel*sizeof(numtyp),
|
||
|
cudaMemcpyHostToDevice)); }
|
||
|
|
||
|
/// Asynchronous copy from host (elements not bytes)
|
||
|
inline void copy_from_host(const numtyp *host_p, const size_t numel,
|
||
|
cudaStream_t &stream)
|
||
|
{ CUDA_SAFE_CALL(cudaMemcpyAsync(_array,host_p,numel*sizeof(numtyp),
|
||
|
cudaMemcpyHostToDevice, stream)); }
|
||
|
|
||
|
/// Asynchronous Copy from Host
|
||
|
/** \note Used when the number of columns/rows allocated on host smaller than
|
||
|
* on device **/
|
||
|
inline void copy_2Dfrom_host(const numtyp *host_p, const size_t rows,
|
||
|
const size_t cols, cudaStream_t &stream) {
|
||
|
CUDA_SAFE_CALL(cudaMemcpy2DAsync(_array, _pitch, host_p,cols*sizeof(numtyp),
|
||
|
cols*sizeof(numtyp), rows,
|
||
|
cudaMemcpyHostToDevice,stream));
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
numtyp *_array, *_end;
|
||
|
size_t _pitch, _row_size, _rows, _cols;
|
||
|
};
|
||
|
|
||
|
/// Const 2D Matrix on device (requires texture binding)
|
||
|
template <class numtyp>
|
||
|
class NVC_ConstMat {
|
||
|
public:
|
||
|
NVC_ConstMat() { _rows=0; }
|
||
|
~NVC_ConstMat() { if (_rows>0) CUDA_SAFE_CALL(cudaFreeArray(_array)); }
|
||
|
|
||
|
/// Row major matrix on device
|
||
|
inline void safe_alloc(const size_t rows, const size_t cols) {
|
||
|
_rows=rows;
|
||
|
_cols=cols;
|
||
|
|
||
|
NVC::cuda_gb_get_channel<numtyp>(_channel);
|
||
|
CUDA_SAFE_CALL(cudaMallocArray(&_array, &_channel, cols, rows));
|
||
|
}
|
||
|
|
||
|
/// Bind to texture
|
||
|
template <class texture>
|
||
|
inline void bind_texture(texture &texi) {
|
||
|
texi.addressMode[0] = cudaAddressModeClamp;
|
||
|
texi.addressMode[1] = cudaAddressModeClamp;
|
||
|
texi.filterMode = cudaFilterModePoint;
|
||
|
texi.normalized = false;
|
||
|
CUDA_SAFE_CALL(cudaBindTextureToArray(&texi,_array,&_channel));
|
||
|
}
|
||
|
|
||
|
/// Free any memory associated with device
|
||
|
inline void clear()
|
||
|
{ if (_rows>0) { _rows=0; CUDA_SAFE_CALL(cudaFreeArray(_array)); } }
|
||
|
|
||
|
inline size_t numel() const { return _cols*_rows; }
|
||
|
inline size_t rows() const { return _rows; }
|
||
|
inline size_t cols() const { return _cols; }
|
||
|
inline size_t row_size() const { return _cols; }
|
||
|
inline size_t row_bytes() const { return _cols*sizeof(numtyp); }
|
||
|
|
||
|
/// Copy from Host
|
||
|
inline void copy_from_host(const numtyp *host_p) {
|
||
|
CUDA_SAFE_CALL(cudaMemcpyToArray(_array, 0, 0, host_p,
|
||
|
numel()*sizeof(numtyp),
|
||
|
cudaMemcpyHostToDevice));
|
||
|
}
|
||
|
|
||
|
/// Copy from Host
|
||
|
/** \note Used when the number of columns/rows allocated on host smaller than
|
||
|
* on device **/
|
||
|
inline void copy_2Dfrom_host(const numtyp *host_p, const size_t rows,
|
||
|
const size_t cols) {
|
||
|
CUDA_SAFE_CALL(cudaMemcpy2DToArray(_array, 0, 0, host_p,
|
||
|
cols*sizeof(numtyp), cols*sizeof(numtyp), rows,
|
||
|
cudaMemcpyHostToDevice));
|
||
|
}
|
||
|
|
||
|
/// Asynchronous Copy from Host
|
||
|
inline void copy_from_host(const numtyp *host_p, cudaStream_t &stream) {
|
||
|
CUDA_SAFE_CALL(cudaMemcpyToArrayAsync(_array, 0, 0, host_p,
|
||
|
numel()*sizeof(numtyp),
|
||
|
cudaMemcpyHostToDevice,stream));
|
||
|
}
|
||
|
|
||
|
/// Asynchronous Copy from Host
|
||
|
/** \note Used when the number of columns/rows allocated on host smaller than
|
||
|
* on device **/
|
||
|
inline void copy_2Dfrom_host(const numtyp *host_p, const size_t rows,
|
||
|
const size_t cols, cudaStream_t &stream) {
|
||
|
CUDA_SAFE_CALL(cudaMemcpy2DToArrayAsync(_array, 0, 0, host_p,
|
||
|
cols*sizeof(numtyp), cols*sizeof(numtyp), rows,
|
||
|
cudaMemcpyHostToDevice,stream));
|
||
|
}
|
||
|
|
||
|
/// Cast buffer to numtyp in host_write and copy to array
|
||
|
template <class numtyp2>
|
||
|
inline void cast_copy(const numtyp2 *buffer, NVC_HostT &host_write) {
|
||
|
int n=numel();
|
||
|
for (int i=0; i<n; i++) {
|
||
|
host_write[i]=static_cast<numtyp>(*buffer); buffer++;
|
||
|
}
|
||
|
copy_from_host(host_write.begin());
|
||
|
}
|
||
|
|
||
|
/// Cast buffer to numtyp in host_write and copy to array
|
||
|
/** \note Used when the number of columns/rows allocated on host smaller than
|
||
|
* on device **/
|
||
|
template <class numtyp2>
|
||
|
inline void cast_copy2D(const numtyp2 *buffer, NVC_HostT &host_write,
|
||
|
const size_t rows, const size_t cols) {
|
||
|
int n=rows*cols;
|
||
|
for (int i=0; i<n; i++) {
|
||
|
host_write[i]=static_cast<numtyp>(*buffer); buffer++;
|
||
|
}
|
||
|
copy_2Dfrom_host(host_write.begin(),rows,cols);
|
||
|
}
|
||
|
|
||
|
/// Cast buffer to numtyp in host_write and copy to array asynchronously
|
||
|
template <class numtyp2>
|
||
|
inline void cast_copy(const numtyp2 *buffer, NVC_HostT &host_write,
|
||
|
cudaStream_t &stream) {
|
||
|
int n=numel();
|
||
|
for (int i=0; i<n; i++) {
|
||
|
host_write[i]=static_cast<numtyp>(*buffer); buffer++;
|
||
|
}
|
||
|
copy_from_host(host_write.begin(),stream);
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
size_t _rows, _cols;
|
||
|
cudaArray *_array;
|
||
|
cudaChannelFormatDesc _channel;
|
||
|
};
|
||
|
|
||
|
#endif
|