lammps/lib/gpu/lj_gpu_memory.cu

148 lines
4.9 KiB
Plaintext
Raw Normal View History

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing authors: Mike Brown (SNL), wmbrown@sandia.gov
Peng Wang (Nvidia), penwang@nvidia.com
Paul Crozier (SNL), pscrozi@sandia.gov
------------------------------------------------------------------------- */
#include "lj_gpu_memory.h"
#define LJ_GPU_MemoryT LJ_GPU_Memory<numtyp, acctyp>
template <class numtyp, class acctyp>
int LJ_GPU_MemoryT::bytes_per_atom(const int max_nbors) const {
return atom.bytes_per_atom()+nbor.bytes_per_atom(max_nbors);
}
template <class numtyp, class acctyp>
bool LJ_GPU_MemoryT::init(const int ij_size, const int ntypes,
double **host_cutsq, double **host_sigma,
double **host_epsilon, double **host_lj1,
double **host_lj2, double **host_lj3,
double **host_lj4, double **host_offset,
double *host_special_lj, const int max_nbors,
const int me, const int nlocal, const int nall) {
if (allocated)
clear();
if (me>=gpu.num_devices())
return false;
gpu.set(me);
if (gpu.revision()<1.0)
return false;
// Initialize timers for the selected GPU
time_pair.init();
// Initialize atom and nbor data
max_local=static_cast<int>(static_cast<double>(nlocal)*1.10);
if (max_local==0)
max_local=1000;
if (nall<=nlocal)
max_atoms=max_local*2;
else
max_atoms=static_cast<int>(static_cast<double>(nall)*1.10);
if (!atom.init(max_atoms))
return false;
if (!nbor.init(ij_size,max_local,max_nbors))
return false;
// Get a stream for computing pair potentials
CUDA_SAFE_CALL(cudaStreamCreate(&pair_stream));
// Use the write buffer from atom for data initialization
NVC_HostT &host_write=atom.host_write;
assert(host_write.numel()>4 && host_write.numel()>ntypes*ntypes*2);
// Copy data for bonded interactions
special_lj.safe_alloc(4);
special_lj.cast_copy(host_special_lj,host_write);
// Copy sigma, epsilon, and cutsq onto GPU
sigma.safe_alloc(ntypes,ntypes,sigma_get_texture<numtyp>());
sigma.cast_copy(host_sigma[0],host_write);
epsilon.safe_alloc(ntypes,ntypes,epsilon_get_texture<numtyp>());
epsilon.cast_copy(host_epsilon[0],host_write);
cutsq.safe_alloc(ntypes,ntypes,cutsq_get_texture<numtyp>());
cutsq.cast_copy(host_cutsq[0],host_write);
// If atom type constants fit in shared memory use fast kernel
int lj_types=ntypes;
shared_types=false;
if (lj_types<=MAX_SHARED_TYPES) {
lj_types=MAX_SHARED_TYPES;
shared_types=true;
}
offset.safe_alloc(lj_types,lj_types,offset_get_texture<numtyp>());
offset.cast_copy2D(host_offset[0],host_write,ntypes,ntypes);
double *t1=host_lj1[0];
double *t2=host_lj2[0];
for (int i=0; i<ntypes*ntypes; i++) {
host_write[i*2]=t1[i];
host_write[i*2+1]=t2[i];
}
lj1.safe_alloc(lj_types,lj_types,lj1_get_texture<numtyp>());
lj1.copy_2Dfrom_host(reinterpret_cast<typename nvc_vec_traits<numtyp>::vec2 *> (host_write.begin()),
ntypes,ntypes);
t1=host_lj3[0];
t2=host_lj4[0];
for (int i=0; i<ntypes*ntypes; i++) {
host_write[i*2]=t1[i];
host_write[i*2+1]=t2[i];
}
lj3.safe_alloc(lj_types,lj_types,lj3_get_texture<numtyp>());
lj3.copy_2Dfrom_host(reinterpret_cast<typename nvc_vec_traits<numtyp>::vec2 *> (host_write.begin()),
ntypes,ntypes);
dev_error.safe_alloc(1);
dev_error.zero();
allocated=true;
return true;
}
template <class numtyp, class acctyp>
void LJ_GPU_MemoryT::clear() {
if (!allocated)
return;
allocated=false;
// Check for any pair style specific errors here
int err_flag;
dev_error.copy_to_host(&err_flag);
atom.clear();
nbor.clear();
CUDA_SAFE_CALL(cudaStreamDestroy(pair_stream));
dev_error.clear();
sigma.clear();
epsilon.clear();
special_lj.clear();
cutsq.clear();
offset.clear();
lj1.clear();
lj3.clear();
}
template <class numtyp, class acctyp>
double LJ_GPU_MemoryT::host_memory_usage() const {
return atom.host_memory_usage(max_atoms)+nbor.host_memory_usage()+
sizeof(LJ_GPU_Memory<numtyp,acctyp>);
}
template class LJ_GPU_Memory<PRECISION,ACC_PRECISION>;