lammps/lib/atc/ParSparseMatrix.cpp

303 lines
9.6 KiB
C++
Raw Normal View History

#include "ParSparseMatrix.h"
#include <fstream>
#ifdef TIMING_ON
double time_diff(timespec &start, timespec &end)
{
return (double)(1e9 * (end.tv_sec - start.tv_sec) +
end.tv_nsec - start.tv_nsec) / 1e9;
}
#endif
using namespace MPI_Wrappers;
using namespace std;
namespace ATC_matrix {
// All the same constructors as for SparseMatrix
ParSparseMatrix<double>::ParSparseMatrix(MPI_Comm comm, INDEX rows, INDEX cols)
: SparseMatrix<double>(rows, cols), _comm(comm) {}
ParSparseMatrix<double>::ParSparseMatrix(MPI_Comm comm,
const SparseMatrix<double> &c) :
SparseMatrix<double>(c), _comm(comm) {}
ParSparseMatrix<double>::ParSparseMatrix(MPI_Comm comm,
INDEX* rows, INDEX* cols, double* vals, INDEX size,
INDEX nRows, INDEX nCols, INDEX nRowsCRS)
: SparseMatrix<double>(rows, cols, vals, size, nRows,
nCols, nRowsCRS), _comm(comm) {}
//============================================================
void ParSparseMatrix<double>::MultMv(const Vector<double>& v,
DenseVector<double>& c) const
{
int numProcs = MPI_Wrappers::size(_comm);
#ifdef DISABLE_PAR_HEURISTICS
// Use much more lenient heuristics to exercise parallel code
if (numProcs == 1 || _size < 300) {
#else
// These are simple heuristics to perform multiplication in serial if
// parallel will be slower. They were determined experimentally.
if ( numProcs == 1 ||
(_size < 50000 || _size > 10000000) ||
((_size < 150000 || _size > 5000000) && numProcs > 8) ||
((_size < 500000 || _size > 2500000) && numProcs > 16 ) ||
(numProcs > 32)) {
#endif
SparseMatrix<double>::MultMv(v, c);
return;
}
SparseMatrix<double>::compress(*this);
GCK(*this, v, this->nCols() != v.size(), "ParSparseMatrix * Vector")
SparseMatrix<double> A_local;
// Split the sparse matrix. partition() takes a ParSparMat, so we cast.
partition(*static_cast<ParSparseMatrix<double>*>(&A_local));
// actually do multiplication - end up with partial result vector
// on each processor
#ifdef TIMING_ON
timespec before, after;
// barrier(MPI_COMM_WORLD);
clock_gettime(CLOCK_MONOTONIC, &before);
#endif
DenseVector<double> c_local = A_local * v;
#ifdef TIMING_ON
// barrier(MPI_COMM_WORLD);
clock_gettime(CLOCK_MONOTONIC, &after);
cout << "P" << MPI_Wrappers::rank(MPI_COMM_WORLD) << " " << time_diff(before,after) << " mat.vec time\n";
//LammpsInterface::instance()->all_print((after-before),"mat.vec time");
barrier(MPI_COMM_WORLD);
#endif
// destroy A_local intelligently
static_cast<ParSparseMatrix<double>*>(&A_local)->finalize();
// Add all the result vectors together on each processor.
#ifdef TIMING_ON
barrier(MPI_COMM_WORLD);
//barrier(MPI_COMM_WORLD);
clock_gettime(CLOCK_MONOTONIC, &before);
#endif
allsum(_comm, c_local.ptr(), c.ptr(), c_local.size());
#ifdef TIMING_ON
//barrier(MPI_COMM_WORLD);
clock_gettime(CLOCK_MONOTONIC, &after);
cout << "P" << MPI_Wrappers::rank(MPI_COMM_WORLD) << " " << time_diff(before,after) << " allsum time\n";
//LammpsInterface::instance()->print_msg_once((after-before),"allsum time");
#endif
}
DenseVector<double> ParSparseMatrix<double>::transMat(
const Vector<double>& v) const {
SparseMatrix<double>::compress(*this);
GCK(*this, v, this->nRows() != v.size(), "ParSparseMatrix transpose * Vector")
DenseVector<double> c(nCols(), true);
SparseMatrix<double> A_local;
partition(*static_cast<ParSparseMatrix<double>*>(&A_local));
// actually do multiplication - end up with partial result vector
// on each processor
DenseVector<double> c_local = A_local.transMat(v);
static_cast<ParSparseMatrix<double>*>(&A_local)->finalize();
// Add all the result vectors together on each processor.
allsum(_comm, c_local.ptr(), c.ptr(), c_local.size());
return c;
}
void ParSparseMatrix<double>::MultAB(const Matrix<double>& B,
DenseMatrix<double>& C) const {
SparseMatrix<double>::compress(*this);
GCK(*this, B, this->nCols() != B.nRows(), "ParSparseMatrix * Matrix")
SparseMatrix<double> A_local;
partition(*static_cast<ParSparseMatrix<double>*>(&A_local));
// actually do multiplication - end up with partial result matrix
// on each processor
#ifdef TIMING_ON
timespec before, after;
barrier(MPI_COMM_WORLD);
clock_gettime(CLOCK_MONOTONIC, &before);
#endif
DenseMatrix<double> C_local = A_local * B;
#ifdef TIMING_ON
barrier(MPI_COMM_WORLD);
clock_gettime(CLOCK_MONOTONIC, &after);
cout << "P" << MPI_Wrappers::rank(MPI_COMM_WORLD) << " " << time_diff(after,before) << " mat.vec time\n";
//LammpsInterface::instance()->all_print((after-before),"mat.vec time");
#endif
static_cast<ParSparseMatrix<double>*>(&A_local)->finalize();
// Add all the result vectors together on each processor.
#ifdef TIMING_ON
barrier(MPI_COMM_WORLD);
clock_gettime(CLOCK_MONOTONIC, &before);
#endif
allsum(_comm, C_local.ptr(), C.ptr(), C_local.size());
#ifdef TIMING_ON
barrier(MPI_COMM_WORLD);
clock_gettime(CLOCK_MONOTONIC, &after);
cout << "P" << MPI_Wrappers::rank(MPI_COMM_WORLD) << " " << time_diff(after,before) << " allsum time\n";
//LammpsInterface::instance()->print_msg_once((after-before),"allsum time");
#endif
}
DenseMatrix<double> ParSparseMatrix<double>::transMat(
const DenseMatrix<double>& B) const {
SparseMatrix<double>::compress(*this);
GCK(*this, B, this->nRows() != B.nRows(), "ParSparseMatrix transpose * Matrix")
DenseMatrix<double> C(nCols(), B.nCols(), true);
SparseMatrix<double> A_local;
partition(*static_cast<ParSparseMatrix<double>*>(&A_local));
// actually do multiplication - end up with partial result matrix
// on each processor
DenseMatrix<double> C_local = A_local.transMat(B);
static_cast<ParSparseMatrix<double>*>(&A_local)->finalize();
// Add all the result vectors together on each processor.
allsum(_comm, C_local.ptr(), C.ptr(), C_local.size());
return C;
}
/*
The two commented-out functions both need to return SparseMatrices. It's hard
to combine sparse matrices between processors, so this has not yet been completed.
void ParMultAB(const SparseMatrix<double> &B, SparseMatrix<double> &C) const
{
//SparseMatrix<T>::compress(*this);
GCK(*this, B, this->nCols()!=B.nRows(), "ParSparseMatrix * SparseMatrix")
ParSparseMatrix<double> A_local(this->_comm);
this->partition(A_local);
// actually do multiplication - end up with partial result matrix
// on each processor
SparseMatrix<double> C_local = ((SparseMatrix<double>)A_local) * B;
// destroy newA intelligently
static_cast<ParSparseMatrix<double>*>(&A_local)->finalize();
// Add all the result vectors together on each processor.
sumSparse(C_local, C);
}*/
DenseMatrix<double> ParSparseMatrix<double>::transMat(
const SparseMatrix<double>& B) const {
SparseMatrix<double>::compress(*this);
GCK(*this, B, this->nRows() != B.nRows(), "ParSparseMatrix transpose * SparseMatrix")
DenseMatrix<double> C(nCols(), B.nCols(), true);
SparseMatrix<double> A_local;
partition(*static_cast<ParSparseMatrix<double>*>(&A_local));
// actually do multiplication - end up with partial result matrix
// on each processor
DenseMatrix<double> C_local = A_local.transMat(B);
static_cast<ParSparseMatrix<double>*>(&A_local)->finalize();
// Add all the result vectors together on each processor.
allsum(_comm, C_local.ptr(), C.ptr(), C_local.size());
return C;
}
/*void ParMultAB(const DiagonalMatrix<double> &B, SparseMatrix<double> &C) const
{
//SparseMatrix<T>::compress(*this);
GCK(*this, B, this->nCols()!=B.nRows(), "ParSparseMatrix * DiagonalMatrix")
ParSparseMatrix<double> A_local(this->_comm);
this->partition(A_local);
// actually do multiplication - end up with partial result matrix
// on each processor
SparseMatrix<double> C_local = ((SparseMatrix<double>)A_local) * B;
// destroy newA intelligently
A_local._val = NULL;
A_local._ja = NULL;
// Add all the result vectors together on each processor.
sumSparse(C_local, C);
}*/
void ParSparseMatrix<double>::partition(
ParSparseMatrix<double>& A_local) const {
// create new sparse matrix on each processor, with same size and
// a disjoint subset of A's elements.
//
// Ex: on two processors,
//
// |0 1 0| |0 1 0| |0 0 0|
// |2 6 0| splits into |2 0 0| on proc 1 and |0 6 0| on proc 2
// |0 0 3| |0 0 0| |0 0 3|
//
// We compute the subproducts individually on each processor, then
// sum up all the vectors to get our final result.
//
// decide which elements will be in each submatrix
INDEX startIndex = (MPI_Wrappers::rank(_comm) * size()) / MPI_Wrappers::size(_comm);
INDEX endIndex = ((MPI_Wrappers::rank(_comm) + 1) * size()) / MPI_Wrappers::size(_comm);
// update number of elements
A_local._nRows = _nRows;
A_local._nCols = _nCols;
A_local._size = endIndex - startIndex;
A_local._nRowsCRS = _nRowsCRS;
// use pointer arithmetic to:
// set newA's _val (to inside A's _val)
A_local._val = _val + startIndex;
// set newA's _ja (to inside A's _ja)
A_local._ja = _ja + startIndex;
// set newA's _ia (from scratch)
A_local._ia = new INDEX[nRowsCRS() + 1];
INDEX numRows = nRowsCRS();
if (A_local._size > 0) {
for (INDEX i = 0; i < numRows + 1; i++) {
A_local._ia[i] = std::min(std::max((_ia[i] - startIndex), 0),
endIndex - startIndex);
}
} else {
A_local._nRowsCRS = 0;
}
}
// Prepare an A_local matrix for deletion after it has been loaded with
// data members from another matrix.
void ParSparseMatrix<double>::finalize() {
_val = NULL;
_ja = NULL;
}
void ParSparseMatrix<double>::operator=(const SparseMatrix<double> &source)
{
copy(source);
}
/*void sumSparse(SparseMatrix<double> &C_local, SparseMatrix<double> &C)
{
}*/
}