2013-05-31 23:36:13 +08:00
|
|
|
*> \brief \b ZPPTRF
|
|
|
|
*
|
|
|
|
* =========== DOCUMENTATION ===========
|
|
|
|
*
|
2018-05-19 05:17:13 +08:00
|
|
|
* Online html documentation available at
|
|
|
|
* http://www.netlib.org/lapack/explore-html/
|
2013-05-31 23:36:13 +08:00
|
|
|
*
|
|
|
|
*> \htmlonly
|
2018-05-19 05:17:13 +08:00
|
|
|
*> Download ZPPTRF + dependencies
|
|
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpptrf.f">
|
|
|
|
*> [TGZ]</a>
|
|
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpptrf.f">
|
|
|
|
*> [ZIP]</a>
|
|
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpptrf.f">
|
2013-05-31 23:36:13 +08:00
|
|
|
*> [TXT]</a>
|
2018-05-19 05:17:13 +08:00
|
|
|
*> \endhtmlonly
|
2013-05-31 23:36:13 +08:00
|
|
|
*
|
|
|
|
* Definition:
|
|
|
|
* ===========
|
|
|
|
*
|
|
|
|
* SUBROUTINE ZPPTRF( UPLO, N, AP, INFO )
|
2018-05-19 05:17:13 +08:00
|
|
|
*
|
2013-05-31 23:36:13 +08:00
|
|
|
* .. Scalar Arguments ..
|
|
|
|
* CHARACTER UPLO
|
|
|
|
* INTEGER INFO, N
|
|
|
|
* ..
|
|
|
|
* .. Array Arguments ..
|
|
|
|
* COMPLEX*16 AP( * )
|
|
|
|
* ..
|
2018-05-19 05:17:13 +08:00
|
|
|
*
|
2013-05-31 23:36:13 +08:00
|
|
|
*
|
|
|
|
*> \par Purpose:
|
|
|
|
* =============
|
|
|
|
*>
|
|
|
|
*> \verbatim
|
|
|
|
*>
|
|
|
|
*> ZPPTRF computes the Cholesky factorization of a complex Hermitian
|
|
|
|
*> positive definite matrix A stored in packed format.
|
|
|
|
*>
|
|
|
|
*> The factorization has the form
|
|
|
|
*> A = U**H * U, if UPLO = 'U', or
|
|
|
|
*> A = L * L**H, if UPLO = 'L',
|
|
|
|
*> where U is an upper triangular matrix and L is lower triangular.
|
|
|
|
*> \endverbatim
|
|
|
|
*
|
|
|
|
* Arguments:
|
|
|
|
* ==========
|
|
|
|
*
|
|
|
|
*> \param[in] UPLO
|
|
|
|
*> \verbatim
|
|
|
|
*> UPLO is CHARACTER*1
|
|
|
|
*> = 'U': Upper triangle of A is stored;
|
|
|
|
*> = 'L': Lower triangle of A is stored.
|
|
|
|
*> \endverbatim
|
|
|
|
*>
|
|
|
|
*> \param[in] N
|
|
|
|
*> \verbatim
|
|
|
|
*> N is INTEGER
|
|
|
|
*> The order of the matrix A. N >= 0.
|
|
|
|
*> \endverbatim
|
|
|
|
*>
|
|
|
|
*> \param[in,out] AP
|
|
|
|
*> \verbatim
|
|
|
|
*> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
|
|
|
|
*> On entry, the upper or lower triangle of the Hermitian matrix
|
|
|
|
*> A, packed columnwise in a linear array. The j-th column of A
|
|
|
|
*> is stored in the array AP as follows:
|
|
|
|
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
|
|
|
|
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
|
|
|
|
*> See below for further details.
|
|
|
|
*>
|
|
|
|
*> On exit, if INFO = 0, the triangular factor U or L from the
|
|
|
|
*> Cholesky factorization A = U**H*U or A = L*L**H, in the same
|
|
|
|
*> storage format as A.
|
|
|
|
*> \endverbatim
|
|
|
|
*>
|
|
|
|
*> \param[out] INFO
|
|
|
|
*> \verbatim
|
|
|
|
*> INFO is INTEGER
|
|
|
|
*> = 0: successful exit
|
|
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
|
|
*> > 0: if INFO = i, the leading minor of order i is not
|
|
|
|
*> positive definite, and the factorization could not be
|
|
|
|
*> completed.
|
|
|
|
*> \endverbatim
|
|
|
|
*
|
|
|
|
* Authors:
|
|
|
|
* ========
|
|
|
|
*
|
2018-05-19 05:17:13 +08:00
|
|
|
*> \author Univ. of Tennessee
|
|
|
|
*> \author Univ. of California Berkeley
|
|
|
|
*> \author Univ. of Colorado Denver
|
|
|
|
*> \author NAG Ltd.
|
2013-05-31 23:36:13 +08:00
|
|
|
*
|
2018-05-19 05:17:13 +08:00
|
|
|
*> \date December 2016
|
2013-05-31 23:36:13 +08:00
|
|
|
*
|
|
|
|
*> \ingroup complex16OTHERcomputational
|
|
|
|
*
|
|
|
|
*> \par Further Details:
|
|
|
|
* =====================
|
|
|
|
*>
|
|
|
|
*> \verbatim
|
|
|
|
*>
|
|
|
|
*> The packed storage scheme is illustrated by the following example
|
|
|
|
*> when N = 4, UPLO = 'U':
|
|
|
|
*>
|
|
|
|
*> Two-dimensional storage of the Hermitian matrix A:
|
|
|
|
*>
|
|
|
|
*> a11 a12 a13 a14
|
|
|
|
*> a22 a23 a24
|
|
|
|
*> a33 a34 (aij = conjg(aji))
|
|
|
|
*> a44
|
|
|
|
*>
|
|
|
|
*> Packed storage of the upper triangle of A:
|
|
|
|
*>
|
|
|
|
*> AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
|
|
|
|
*> \endverbatim
|
|
|
|
*>
|
|
|
|
* =====================================================================
|
|
|
|
SUBROUTINE ZPPTRF( UPLO, N, AP, INFO )
|
|
|
|
*
|
2018-05-19 05:17:13 +08:00
|
|
|
* -- LAPACK computational routine (version 3.7.0) --
|
2013-05-31 23:36:13 +08:00
|
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
2018-05-19 05:17:13 +08:00
|
|
|
* December 2016
|
2013-05-31 23:36:13 +08:00
|
|
|
*
|
|
|
|
* .. Scalar Arguments ..
|
|
|
|
CHARACTER UPLO
|
|
|
|
INTEGER INFO, N
|
|
|
|
* ..
|
|
|
|
* .. Array Arguments ..
|
|
|
|
COMPLEX*16 AP( * )
|
|
|
|
* ..
|
|
|
|
*
|
|
|
|
* =====================================================================
|
|
|
|
*
|
|
|
|
* .. Parameters ..
|
|
|
|
DOUBLE PRECISION ZERO, ONE
|
|
|
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
|
|
|
|
* ..
|
|
|
|
* .. Local Scalars ..
|
|
|
|
LOGICAL UPPER
|
|
|
|
INTEGER J, JC, JJ
|
|
|
|
DOUBLE PRECISION AJJ
|
|
|
|
* ..
|
|
|
|
* .. External Functions ..
|
|
|
|
LOGICAL LSAME
|
|
|
|
COMPLEX*16 ZDOTC
|
|
|
|
EXTERNAL LSAME, ZDOTC
|
|
|
|
* ..
|
|
|
|
* .. External Subroutines ..
|
|
|
|
EXTERNAL XERBLA, ZDSCAL, ZHPR, ZTPSV
|
|
|
|
* ..
|
|
|
|
* .. Intrinsic Functions ..
|
|
|
|
INTRINSIC DBLE, SQRT
|
|
|
|
* ..
|
|
|
|
* .. Executable Statements ..
|
|
|
|
*
|
|
|
|
* Test the input parameters.
|
|
|
|
*
|
|
|
|
INFO = 0
|
|
|
|
UPPER = LSAME( UPLO, 'U' )
|
|
|
|
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
|
|
|
|
INFO = -1
|
|
|
|
ELSE IF( N.LT.0 ) THEN
|
|
|
|
INFO = -2
|
|
|
|
END IF
|
|
|
|
IF( INFO.NE.0 ) THEN
|
|
|
|
CALL XERBLA( 'ZPPTRF', -INFO )
|
|
|
|
RETURN
|
|
|
|
END IF
|
|
|
|
*
|
|
|
|
* Quick return if possible
|
|
|
|
*
|
|
|
|
IF( N.EQ.0 )
|
|
|
|
$ RETURN
|
|
|
|
*
|
|
|
|
IF( UPPER ) THEN
|
|
|
|
*
|
|
|
|
* Compute the Cholesky factorization A = U**H * U.
|
|
|
|
*
|
|
|
|
JJ = 0
|
|
|
|
DO 10 J = 1, N
|
|
|
|
JC = JJ + 1
|
|
|
|
JJ = JJ + J
|
|
|
|
*
|
|
|
|
* Compute elements 1:J-1 of column J.
|
|
|
|
*
|
|
|
|
IF( J.GT.1 )
|
|
|
|
$ CALL ZTPSV( 'Upper', 'Conjugate transpose', 'Non-unit',
|
|
|
|
$ J-1, AP, AP( JC ), 1 )
|
|
|
|
*
|
|
|
|
* Compute U(J,J) and test for non-positive-definiteness.
|
|
|
|
*
|
|
|
|
AJJ = DBLE( AP( JJ ) ) - ZDOTC( J-1, AP( JC ), 1, AP( JC ),
|
|
|
|
$ 1 )
|
|
|
|
IF( AJJ.LE.ZERO ) THEN
|
|
|
|
AP( JJ ) = AJJ
|
|
|
|
GO TO 30
|
|
|
|
END IF
|
|
|
|
AP( JJ ) = SQRT( AJJ )
|
|
|
|
10 CONTINUE
|
|
|
|
ELSE
|
|
|
|
*
|
|
|
|
* Compute the Cholesky factorization A = L * L**H.
|
|
|
|
*
|
|
|
|
JJ = 1
|
|
|
|
DO 20 J = 1, N
|
|
|
|
*
|
|
|
|
* Compute L(J,J) and test for non-positive-definiteness.
|
|
|
|
*
|
|
|
|
AJJ = DBLE( AP( JJ ) )
|
|
|
|
IF( AJJ.LE.ZERO ) THEN
|
|
|
|
AP( JJ ) = AJJ
|
|
|
|
GO TO 30
|
|
|
|
END IF
|
|
|
|
AJJ = SQRT( AJJ )
|
|
|
|
AP( JJ ) = AJJ
|
|
|
|
*
|
|
|
|
* Compute elements J+1:N of column J and update the trailing
|
|
|
|
* submatrix.
|
|
|
|
*
|
|
|
|
IF( J.LT.N ) THEN
|
|
|
|
CALL ZDSCAL( N-J, ONE / AJJ, AP( JJ+1 ), 1 )
|
|
|
|
CALL ZHPR( 'Lower', N-J, -ONE, AP( JJ+1 ), 1,
|
|
|
|
$ AP( JJ+N-J+1 ) )
|
|
|
|
JJ = JJ + N - J + 1
|
|
|
|
END IF
|
|
|
|
20 CONTINUE
|
|
|
|
END IF
|
|
|
|
GO TO 40
|
|
|
|
*
|
|
|
|
30 CONTINUE
|
|
|
|
INFO = J
|
|
|
|
*
|
|
|
|
40 CONTINUE
|
|
|
|
RETURN
|
|
|
|
*
|
|
|
|
* End of ZPPTRF
|
|
|
|
*
|
|
|
|
END
|