forked from lijiext/lammps
414 lines
13 KiB
FortranFixed
414 lines
13 KiB
FortranFixed
|
*> \brief \b DLASDQ computes the SVD of a real bidiagonal matrix with diagonal d and off-diagonal e. Used by sbdsdc.
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download DLASDQ + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasdq.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasdq.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasdq.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE DLASDQ( UPLO, SQRE, N, NCVT, NRU, NCC, D, E, VT, LDVT,
|
||
|
* U, LDU, C, LDC, WORK, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER UPLO
|
||
|
* INTEGER INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU, SQRE
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* DOUBLE PRECISION C( LDC, * ), D( * ), E( * ), U( LDU, * ),
|
||
|
* $ VT( LDVT, * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> DLASDQ computes the singular value decomposition (SVD) of a real
|
||
|
*> (upper or lower) bidiagonal matrix with diagonal D and offdiagonal
|
||
|
*> E, accumulating the transformations if desired. Letting B denote
|
||
|
*> the input bidiagonal matrix, the algorithm computes orthogonal
|
||
|
*> matrices Q and P such that B = Q * S * P**T (P**T denotes the transpose
|
||
|
*> of P). The singular values S are overwritten on D.
|
||
|
*>
|
||
|
*> The input matrix U is changed to U * Q if desired.
|
||
|
*> The input matrix VT is changed to P**T * VT if desired.
|
||
|
*> The input matrix C is changed to Q**T * C if desired.
|
||
|
*>
|
||
|
*> See "Computing Small Singular Values of Bidiagonal Matrices With
|
||
|
*> Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,
|
||
|
*> LAPACK Working Note #3, for a detailed description of the algorithm.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] UPLO
|
||
|
*> \verbatim
|
||
|
*> UPLO is CHARACTER*1
|
||
|
*> On entry, UPLO specifies whether the input bidiagonal matrix
|
||
|
*> is upper or lower bidiagonal, and whether it is square are
|
||
|
*> not.
|
||
|
*> UPLO = 'U' or 'u' B is upper bidiagonal.
|
||
|
*> UPLO = 'L' or 'l' B is lower bidiagonal.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] SQRE
|
||
|
*> \verbatim
|
||
|
*> SQRE is INTEGER
|
||
|
*> = 0: then the input matrix is N-by-N.
|
||
|
*> = 1: then the input matrix is N-by-(N+1) if UPLU = 'U' and
|
||
|
*> (N+1)-by-N if UPLU = 'L'.
|
||
|
*>
|
||
|
*> The bidiagonal matrix has
|
||
|
*> N = NL + NR + 1 rows and
|
||
|
*> M = N + SQRE >= N columns.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> On entry, N specifies the number of rows and columns
|
||
|
*> in the matrix. N must be at least 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NCVT
|
||
|
*> \verbatim
|
||
|
*> NCVT is INTEGER
|
||
|
*> On entry, NCVT specifies the number of columns of
|
||
|
*> the matrix VT. NCVT must be at least 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NRU
|
||
|
*> \verbatim
|
||
|
*> NRU is INTEGER
|
||
|
*> On entry, NRU specifies the number of rows of
|
||
|
*> the matrix U. NRU must be at least 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NCC
|
||
|
*> \verbatim
|
||
|
*> NCC is INTEGER
|
||
|
*> On entry, NCC specifies the number of columns of
|
||
|
*> the matrix C. NCC must be at least 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] D
|
||
|
*> \verbatim
|
||
|
*> D is DOUBLE PRECISION array, dimension (N)
|
||
|
*> On entry, D contains the diagonal entries of the
|
||
|
*> bidiagonal matrix whose SVD is desired. On normal exit,
|
||
|
*> D contains the singular values in ascending order.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] E
|
||
|
*> \verbatim
|
||
|
*> E is DOUBLE PRECISION array.
|
||
|
*> dimension is (N-1) if SQRE = 0 and N if SQRE = 1.
|
||
|
*> On entry, the entries of E contain the offdiagonal entries
|
||
|
*> of the bidiagonal matrix whose SVD is desired. On normal
|
||
|
*> exit, E will contain 0. If the algorithm does not converge,
|
||
|
*> D and E will contain the diagonal and superdiagonal entries
|
||
|
*> of a bidiagonal matrix orthogonally equivalent to the one
|
||
|
*> given as input.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] VT
|
||
|
*> \verbatim
|
||
|
*> VT is DOUBLE PRECISION array, dimension (LDVT, NCVT)
|
||
|
*> On entry, contains a matrix which on exit has been
|
||
|
*> premultiplied by P**T, dimension N-by-NCVT if SQRE = 0
|
||
|
*> and (N+1)-by-NCVT if SQRE = 1 (not referenced if NCVT=0).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDVT
|
||
|
*> \verbatim
|
||
|
*> LDVT is INTEGER
|
||
|
*> On entry, LDVT specifies the leading dimension of VT as
|
||
|
*> declared in the calling (sub) program. LDVT must be at
|
||
|
*> least 1. If NCVT is nonzero LDVT must also be at least N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] U
|
||
|
*> \verbatim
|
||
|
*> U is DOUBLE PRECISION array, dimension (LDU, N)
|
||
|
*> On entry, contains a matrix which on exit has been
|
||
|
*> postmultiplied by Q, dimension NRU-by-N if SQRE = 0
|
||
|
*> and NRU-by-(N+1) if SQRE = 1 (not referenced if NRU=0).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDU
|
||
|
*> \verbatim
|
||
|
*> LDU is INTEGER
|
||
|
*> On entry, LDU specifies the leading dimension of U as
|
||
|
*> declared in the calling (sub) program. LDU must be at
|
||
|
*> least max( 1, NRU ) .
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] C
|
||
|
*> \verbatim
|
||
|
*> C is DOUBLE PRECISION array, dimension (LDC, NCC)
|
||
|
*> On entry, contains an N-by-NCC matrix which on exit
|
||
|
*> has been premultiplied by Q**T dimension N-by-NCC if SQRE = 0
|
||
|
*> and (N+1)-by-NCC if SQRE = 1 (not referenced if NCC=0).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDC
|
||
|
*> \verbatim
|
||
|
*> LDC is INTEGER
|
||
|
*> On entry, LDC specifies the leading dimension of C as
|
||
|
*> declared in the calling (sub) program. LDC must be at
|
||
|
*> least 1. If NCC is nonzero, LDC must also be at least N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is DOUBLE PRECISION array, dimension (4*N)
|
||
|
*> Workspace. Only referenced if one of NCVT, NRU, or NCC is
|
||
|
*> nonzero, and if N is at least 2.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> On exit, a value of 0 indicates a successful exit.
|
||
|
*> If INFO < 0, argument number -INFO is illegal.
|
||
|
*> If INFO > 0, the algorithm did not converge, and INFO
|
||
|
*> specifies how many superdiagonals did not converge.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \date June 2016
|
||
|
*
|
||
|
*> \ingroup OTHERauxiliary
|
||
|
*
|
||
|
*> \par Contributors:
|
||
|
* ==================
|
||
|
*>
|
||
|
*> Ming Gu and Huan Ren, Computer Science Division, University of
|
||
|
*> California at Berkeley, USA
|
||
|
*>
|
||
|
* =====================================================================
|
||
|
SUBROUTINE DLASDQ( UPLO, SQRE, N, NCVT, NRU, NCC, D, E, VT, LDVT,
|
||
|
$ U, LDU, C, LDC, WORK, INFO )
|
||
|
*
|
||
|
* -- LAPACK auxiliary routine (version 3.7.0) --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
* June 2016
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER UPLO
|
||
|
INTEGER INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU, SQRE
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
DOUBLE PRECISION C( LDC, * ), D( * ), E( * ), U( LDU, * ),
|
||
|
$ VT( LDVT, * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ZERO
|
||
|
PARAMETER ( ZERO = 0.0D+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL ROTATE
|
||
|
INTEGER I, ISUB, IUPLO, J, NP1, SQRE1
|
||
|
DOUBLE PRECISION CS, R, SMIN, SN
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL DBDSQR, DLARTG, DLASR, DSWAP, XERBLA
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
EXTERNAL LSAME
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC MAX
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input parameters.
|
||
|
*
|
||
|
INFO = 0
|
||
|
IUPLO = 0
|
||
|
IF( LSAME( UPLO, 'U' ) )
|
||
|
$ IUPLO = 1
|
||
|
IF( LSAME( UPLO, 'L' ) )
|
||
|
$ IUPLO = 2
|
||
|
IF( IUPLO.EQ.0 ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -3
|
||
|
ELSE IF( NCVT.LT.0 ) THEN
|
||
|
INFO = -4
|
||
|
ELSE IF( NRU.LT.0 ) THEN
|
||
|
INFO = -5
|
||
|
ELSE IF( NCC.LT.0 ) THEN
|
||
|
INFO = -6
|
||
|
ELSE IF( ( NCVT.EQ.0 .AND. LDVT.LT.1 ) .OR.
|
||
|
$ ( NCVT.GT.0 .AND. LDVT.LT.MAX( 1, N ) ) ) THEN
|
||
|
INFO = -10
|
||
|
ELSE IF( LDU.LT.MAX( 1, NRU ) ) THEN
|
||
|
INFO = -12
|
||
|
ELSE IF( ( NCC.EQ.0 .AND. LDC.LT.1 ) .OR.
|
||
|
$ ( NCC.GT.0 .AND. LDC.LT.MAX( 1, N ) ) ) THEN
|
||
|
INFO = -14
|
||
|
END IF
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'DLASDQ', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
IF( N.EQ.0 )
|
||
|
$ RETURN
|
||
|
*
|
||
|
* ROTATE is true if any singular vectors desired, false otherwise
|
||
|
*
|
||
|
ROTATE = ( NCVT.GT.0 ) .OR. ( NRU.GT.0 ) .OR. ( NCC.GT.0 )
|
||
|
NP1 = N + 1
|
||
|
SQRE1 = SQRE
|
||
|
*
|
||
|
* If matrix non-square upper bidiagonal, rotate to be lower
|
||
|
* bidiagonal. The rotations are on the right.
|
||
|
*
|
||
|
IF( ( IUPLO.EQ.1 ) .AND. ( SQRE1.EQ.1 ) ) THEN
|
||
|
DO 10 I = 1, N - 1
|
||
|
CALL DLARTG( D( I ), E( I ), CS, SN, R )
|
||
|
D( I ) = R
|
||
|
E( I ) = SN*D( I+1 )
|
||
|
D( I+1 ) = CS*D( I+1 )
|
||
|
IF( ROTATE ) THEN
|
||
|
WORK( I ) = CS
|
||
|
WORK( N+I ) = SN
|
||
|
END IF
|
||
|
10 CONTINUE
|
||
|
CALL DLARTG( D( N ), E( N ), CS, SN, R )
|
||
|
D( N ) = R
|
||
|
E( N ) = ZERO
|
||
|
IF( ROTATE ) THEN
|
||
|
WORK( N ) = CS
|
||
|
WORK( N+N ) = SN
|
||
|
END IF
|
||
|
IUPLO = 2
|
||
|
SQRE1 = 0
|
||
|
*
|
||
|
* Update singular vectors if desired.
|
||
|
*
|
||
|
IF( NCVT.GT.0 )
|
||
|
$ CALL DLASR( 'L', 'V', 'F', NP1, NCVT, WORK( 1 ),
|
||
|
$ WORK( NP1 ), VT, LDVT )
|
||
|
END IF
|
||
|
*
|
||
|
* If matrix lower bidiagonal, rotate to be upper bidiagonal
|
||
|
* by applying Givens rotations on the left.
|
||
|
*
|
||
|
IF( IUPLO.EQ.2 ) THEN
|
||
|
DO 20 I = 1, N - 1
|
||
|
CALL DLARTG( D( I ), E( I ), CS, SN, R )
|
||
|
D( I ) = R
|
||
|
E( I ) = SN*D( I+1 )
|
||
|
D( I+1 ) = CS*D( I+1 )
|
||
|
IF( ROTATE ) THEN
|
||
|
WORK( I ) = CS
|
||
|
WORK( N+I ) = SN
|
||
|
END IF
|
||
|
20 CONTINUE
|
||
|
*
|
||
|
* If matrix (N+1)-by-N lower bidiagonal, one additional
|
||
|
* rotation is needed.
|
||
|
*
|
||
|
IF( SQRE1.EQ.1 ) THEN
|
||
|
CALL DLARTG( D( N ), E( N ), CS, SN, R )
|
||
|
D( N ) = R
|
||
|
IF( ROTATE ) THEN
|
||
|
WORK( N ) = CS
|
||
|
WORK( N+N ) = SN
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
* Update singular vectors if desired.
|
||
|
*
|
||
|
IF( NRU.GT.0 ) THEN
|
||
|
IF( SQRE1.EQ.0 ) THEN
|
||
|
CALL DLASR( 'R', 'V', 'F', NRU, N, WORK( 1 ),
|
||
|
$ WORK( NP1 ), U, LDU )
|
||
|
ELSE
|
||
|
CALL DLASR( 'R', 'V', 'F', NRU, NP1, WORK( 1 ),
|
||
|
$ WORK( NP1 ), U, LDU )
|
||
|
END IF
|
||
|
END IF
|
||
|
IF( NCC.GT.0 ) THEN
|
||
|
IF( SQRE1.EQ.0 ) THEN
|
||
|
CALL DLASR( 'L', 'V', 'F', N, NCC, WORK( 1 ),
|
||
|
$ WORK( NP1 ), C, LDC )
|
||
|
ELSE
|
||
|
CALL DLASR( 'L', 'V', 'F', NP1, NCC, WORK( 1 ),
|
||
|
$ WORK( NP1 ), C, LDC )
|
||
|
END IF
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
* Call DBDSQR to compute the SVD of the reduced real
|
||
|
* N-by-N upper bidiagonal matrix.
|
||
|
*
|
||
|
CALL DBDSQR( 'U', N, NCVT, NRU, NCC, D, E, VT, LDVT, U, LDU, C,
|
||
|
$ LDC, WORK, INFO )
|
||
|
*
|
||
|
* Sort the singular values into ascending order (insertion sort on
|
||
|
* singular values, but only one transposition per singular vector)
|
||
|
*
|
||
|
DO 40 I = 1, N
|
||
|
*
|
||
|
* Scan for smallest D(I).
|
||
|
*
|
||
|
ISUB = I
|
||
|
SMIN = D( I )
|
||
|
DO 30 J = I + 1, N
|
||
|
IF( D( J ).LT.SMIN ) THEN
|
||
|
ISUB = J
|
||
|
SMIN = D( J )
|
||
|
END IF
|
||
|
30 CONTINUE
|
||
|
IF( ISUB.NE.I ) THEN
|
||
|
*
|
||
|
* Swap singular values and vectors.
|
||
|
*
|
||
|
D( ISUB ) = D( I )
|
||
|
D( I ) = SMIN
|
||
|
IF( NCVT.GT.0 )
|
||
|
$ CALL DSWAP( NCVT, VT( ISUB, 1 ), LDVT, VT( I, 1 ), LDVT )
|
||
|
IF( NRU.GT.0 )
|
||
|
$ CALL DSWAP( NRU, U( 1, ISUB ), 1, U( 1, I ), 1 )
|
||
|
IF( NCC.GT.0 )
|
||
|
$ CALL DSWAP( NCC, C( ISUB, 1 ), LDC, C( I, 1 ), LDC )
|
||
|
END IF
|
||
|
40 CONTINUE
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of DLASDQ
|
||
|
*
|
||
|
END
|