<LI>type = <I>thermal</I> or <I>two_temperature</I> or <I>hardy</I> or <I>field</I>
<PRE><I>thermal</I> = thermal coupling with fields: temperature
<I>two_temperature</I> = electron-phonon coupling with field: temperature and electron_temperature
<I>hardy</I> = on-the-fly post-processing using kernel localization functions (see "related" section for possible fields)
<I>field</I> = on-the-fly post-processing using mesh-based localization functions (see "related" section for possible fields)
</PRE>
<LI>parameter_file = name of the file with material parameters. Note: Neither hardy nor field requires a parameter file
</UL>
<P><B>Examples:</B>
</P>
<PRE>fix AtC internal atc thermal Ar_thermal.dat
fix AtC internal atc two_temperature Ar_ttm.mat
fix AtC internal atc hardy
fix AtC internal atc field
</PRE>
<P><B>Description:</B>
</P>
<P>This fix is the beginning to creating a coupled FE/MD simulation and/or an on-the-fly estimation of continuum fields. The coupled versions of this fix do Verlet integration and the post-processing does not. After instantiating this fix, several other fix_modify commands will be needed to set up the problem, e.g. define the finite element mesh and prescribe initial and boundary conditions.
</P>
<CENTER><IMGSRC ="JPG/atc_nanotube.jpg">
</CENTER>
<PRE>The following coupling example is typical, but non-exhaustive:
# ... commands to create and initialize the MD system
</PRE>
<PRE> # initial fix to designate coupling type and group to apply it to
# tag group physics material_file
fix AtC internal atc thermal Ar_thermal.mat
</PRE>
<PRE> # create a uniform 12 x 2 x 2 mesh that covers region contain the group
# nx ny nz region periodicity
fix_modify AtC mesh create 12 2 2 mdRegion f p p
</PRE>
<PRE> # specify the control method for the type of coupling
# physics control_type
fix_modify AtC thermal control flux
</PRE>
<PRE> # specify the initial values for the empirical field "temperature"
# field node_group value
fix_modify AtC initial temperature all 30
</PRE>
<PRE> # create an output stream for nodal fields
# filename output_frequency
fix_modify AtC output atc_fe_output 100
</PRE>
<PRE> run 1000
</PRE>
<P>likewise for this post-processing example:
</P>
<PRE> # ... commands to create and initialize the MD system
</PRE>
<PRE> # initial fix to designate post-processing and the group to apply it to
# no material file is allowed nor required
fix AtC internal atc hardy
</PRE>
<PRE> # for hardy fix, specific kernel function (function type and range) to # be used as a localization function
fix AtC kernel quartic_sphere 10.0
</PRE>
<PRE> # create a uniform 1 x 1 x 1 mesh that covers region contain the group
# with periodicity this effectively creats a system average
fix_modify AtC mesh create 1 1 1 box p p p
</PRE>
<PRE> # change from default lagrangian map to eulerian
# refreshed every 100 steps
fix_modify AtC atom_element_map eulerian 100
</PRE>
<PRE> # start with no field defined
# add mass density, potential energy density, stress and temperature
fix_modify AtC fields add density energy stress temperature
</PRE>
<PRE> # create an output stream for nodal fields
# filename output_frequency
fix_modify AtC output nvtFE 100 text
</PRE>
<PRE> run 1000
</PRE>
<P>the mesh's linear interpolation functions can be used as the localization function
by using the field option:
</P>
<P> fix AtC internal atc field
</P>
<P> fix_modify AtC mesh create 1 1 1 box p p p
</P>
<P> ...
</P>
<P>Note coupling and post-processing can be combined in the same simulations using separate fixes.
</P>
<HR>
<P><B>Restart, fix_modify, output, run start/stop, minimize info:</B>
</P>
<P>No information about this fix is written to <AHREF ="restart.html">binary restart files</A>. The <AHREF ="fix_modify.html">fix_modify</A> options relevant to this fix are listed below. No global scalar or vector or per-atom quantities are stored by this fix for access by various <AHREF ="Section_howto.html#howto_15">output commands</A>. No parameter of this fix can be used with the <I>start/stop</I> keywords of the <AHREF ="run.html">run</A> command. This fix is not invoked during <AHREF ="minimize.html">energy minimization</A>.
</P>
<P><B>Restrictions:</B>
</P>
<P>Thermal and two_temperature (coupling) types use a Verlet time-integration algorithm. The hardy type does not contain its own time-integrator and must be used with a separate fix that does contain one, e.g. nve, nvt, etc.
</P>
<UL><LI>Currently,
<LI>- the coupling is restricted to thermal physics
<LI>- the FE computations are done in serial on each processor.
</UL>
<P><B>Related commands:</B>
</P>
<P>After specifying this fix in your input script, several other <AHREF ="fix_modify.html">fix_modify</A> commands are used to setup the problem, e.g. define the finite element mesh and prescribe initial and boundary conditions.
<P>For detailed exposition of the theory and algorithms please see:
</P>
<ANAME ="Wagner"></A>
<P><B>(Wagner)</B> Wagner, GJ; Jones, RE; Templeton, JA; Parks, MA, "An atomistic-to-continuum coupling method for heat transfer in solids." Special Issue of Computer Methods and Applied Mechanics (2008) 197:3351.
</P>
<ANAME ="Zimmeman2004"></A>
<P><B>(Zimmerman2004)</B> Zimmerman, JA; Webb, EB; Hoyt, JJ;. Jones, RE; Klein, PA; Bammann, DJ, "Calculation of stress in atomistic simulation." Special Issue of Modelling and Simulation in Materials Science and Engineering (2004), 12:S319.
</P>
<ANAME ="Zimmerman2010"></A>
<P><B>(Zimmerman2010)</B> Zimmerman, JA; Jones, RE; Templeton, JA, "A material frame approach for evaluating continuum variables in atomistic simulations." Journal of Computational Physics (2010), 229:2364.
</P>
<ANAME ="Templeton2010"></A>
<P><B>(Templeton2010)</B> Templeton, JA; Jones, RE; Wagner, GJ, "Application of a field-based method to spatially varying thermal transport problems in molecular dynamics." Modelling and Simulation in Materials Science and Engineering (2010), 18:085007.
</P>
<ANAME ="Jones"></A>
<P><B>(Jones)</B> Jones, RE; Templeton, JA; Wagner, GJ; Olmsted, D; Modine, JA, "Electron transport enhanced molecular dynamics for metals and semi-metals." International Journal for Numerical Methods in Engineering (2010), 83:940.
</P>
<ANAME ="Templeton2011"></A>
<P><B>(Templeton2011)</B> Templeton, JA; Jones, RE; Lee, JW; Zimmerman, JA; Wong, BM, "A long-range electric field solver for molecular dynamics based on atomistic-to-continuum modeling." Journal of Chemical Theory and Computation (2011), 7:1736.
</P>
<ANAME ="Mandadapu"></A>
<P><B>(Mandadapu)</B> Mandadapu, KK; Templeton, JA; Lee, JW, "Polarization as a field variable from molecular dynamics simulations." Journal of Chemical Physics (2013), 139:054115.
</P>
<P>Please refer to the standard finite element (FE) texts, e.g. T.J.R Hughes " The finite element method ", Dover 2003, for the basics of FE simulation.