forked from lijiext/lammps
326 lines
8.3 KiB
FortranFixed
326 lines
8.3 KiB
FortranFixed
|
*> \brief \b DLASV2 computes the singular value decomposition of a 2-by-2 triangular matrix.
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download DLASV2 + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasv2.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasv2.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasv2.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE DLASV2( F, G, H, SSMIN, SSMAX, SNR, CSR, SNL, CSL )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* DOUBLE PRECISION CSL, CSR, F, G, H, SNL, SNR, SSMAX, SSMIN
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> DLASV2 computes the singular value decomposition of a 2-by-2
|
||
|
*> triangular matrix
|
||
|
*> [ F G ]
|
||
|
*> [ 0 H ].
|
||
|
*> On return, abs(SSMAX) is the larger singular value, abs(SSMIN) is the
|
||
|
*> smaller singular value, and (CSL,SNL) and (CSR,SNR) are the left and
|
||
|
*> right singular vectors for abs(SSMAX), giving the decomposition
|
||
|
*>
|
||
|
*> [ CSL SNL ] [ F G ] [ CSR -SNR ] = [ SSMAX 0 ]
|
||
|
*> [-SNL CSL ] [ 0 H ] [ SNR CSR ] [ 0 SSMIN ].
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] F
|
||
|
*> \verbatim
|
||
|
*> F is DOUBLE PRECISION
|
||
|
*> The (1,1) element of the 2-by-2 matrix.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] G
|
||
|
*> \verbatim
|
||
|
*> G is DOUBLE PRECISION
|
||
|
*> The (1,2) element of the 2-by-2 matrix.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] H
|
||
|
*> \verbatim
|
||
|
*> H is DOUBLE PRECISION
|
||
|
*> The (2,2) element of the 2-by-2 matrix.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] SSMIN
|
||
|
*> \verbatim
|
||
|
*> SSMIN is DOUBLE PRECISION
|
||
|
*> abs(SSMIN) is the smaller singular value.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] SSMAX
|
||
|
*> \verbatim
|
||
|
*> SSMAX is DOUBLE PRECISION
|
||
|
*> abs(SSMAX) is the larger singular value.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] SNL
|
||
|
*> \verbatim
|
||
|
*> SNL is DOUBLE PRECISION
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] CSL
|
||
|
*> \verbatim
|
||
|
*> CSL is DOUBLE PRECISION
|
||
|
*> The vector (CSL, SNL) is a unit left singular vector for the
|
||
|
*> singular value abs(SSMAX).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] SNR
|
||
|
*> \verbatim
|
||
|
*> SNR is DOUBLE PRECISION
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] CSR
|
||
|
*> \verbatim
|
||
|
*> CSR is DOUBLE PRECISION
|
||
|
*> The vector (CSR, SNR) is a unit right singular vector for the
|
||
|
*> singular value abs(SSMAX).
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \date September 2012
|
||
|
*
|
||
|
*> \ingroup auxOTHERauxiliary
|
||
|
*
|
||
|
*> \par Further Details:
|
||
|
* =====================
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> Any input parameter may be aliased with any output parameter.
|
||
|
*>
|
||
|
*> Barring over/underflow and assuming a guard digit in subtraction, all
|
||
|
*> output quantities are correct to within a few units in the last
|
||
|
*> place (ulps).
|
||
|
*>
|
||
|
*> In IEEE arithmetic, the code works correctly if one matrix element is
|
||
|
*> infinite.
|
||
|
*>
|
||
|
*> Overflow will not occur unless the largest singular value itself
|
||
|
*> overflows or is within a few ulps of overflow. (On machines with
|
||
|
*> partial overflow, like the Cray, overflow may occur if the largest
|
||
|
*> singular value is within a factor of 2 of overflow.)
|
||
|
*>
|
||
|
*> Underflow is harmless if underflow is gradual. Otherwise, results
|
||
|
*> may correspond to a matrix modified by perturbations of size near
|
||
|
*> the underflow threshold.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
* =====================================================================
|
||
|
SUBROUTINE DLASV2( F, G, H, SSMIN, SSMAX, SNR, CSR, SNL, CSL )
|
||
|
*
|
||
|
* -- LAPACK auxiliary routine (version 3.4.2) --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
* September 2012
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
DOUBLE PRECISION CSL, CSR, F, G, H, SNL, SNR, SSMAX, SSMIN
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ZERO
|
||
|
PARAMETER ( ZERO = 0.0D0 )
|
||
|
DOUBLE PRECISION HALF
|
||
|
PARAMETER ( HALF = 0.5D0 )
|
||
|
DOUBLE PRECISION ONE
|
||
|
PARAMETER ( ONE = 1.0D0 )
|
||
|
DOUBLE PRECISION TWO
|
||
|
PARAMETER ( TWO = 2.0D0 )
|
||
|
DOUBLE PRECISION FOUR
|
||
|
PARAMETER ( FOUR = 4.0D0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL GASMAL, SWAP
|
||
|
INTEGER PMAX
|
||
|
DOUBLE PRECISION A, CLT, CRT, D, FA, FT, GA, GT, HA, HT, L, M,
|
||
|
$ MM, R, S, SLT, SRT, T, TEMP, TSIGN, TT
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, SIGN, SQRT
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
DOUBLE PRECISION DLAMCH
|
||
|
EXTERNAL DLAMCH
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
FT = F
|
||
|
FA = ABS( FT )
|
||
|
HT = H
|
||
|
HA = ABS( H )
|
||
|
*
|
||
|
* PMAX points to the maximum absolute element of matrix
|
||
|
* PMAX = 1 if F largest in absolute values
|
||
|
* PMAX = 2 if G largest in absolute values
|
||
|
* PMAX = 3 if H largest in absolute values
|
||
|
*
|
||
|
PMAX = 1
|
||
|
SWAP = ( HA.GT.FA )
|
||
|
IF( SWAP ) THEN
|
||
|
PMAX = 3
|
||
|
TEMP = FT
|
||
|
FT = HT
|
||
|
HT = TEMP
|
||
|
TEMP = FA
|
||
|
FA = HA
|
||
|
HA = TEMP
|
||
|
*
|
||
|
* Now FA .ge. HA
|
||
|
*
|
||
|
END IF
|
||
|
GT = G
|
||
|
GA = ABS( GT )
|
||
|
IF( GA.EQ.ZERO ) THEN
|
||
|
*
|
||
|
* Diagonal matrix
|
||
|
*
|
||
|
SSMIN = HA
|
||
|
SSMAX = FA
|
||
|
CLT = ONE
|
||
|
CRT = ONE
|
||
|
SLT = ZERO
|
||
|
SRT = ZERO
|
||
|
ELSE
|
||
|
GASMAL = .TRUE.
|
||
|
IF( GA.GT.FA ) THEN
|
||
|
PMAX = 2
|
||
|
IF( ( FA / GA ).LT.DLAMCH( 'EPS' ) ) THEN
|
||
|
*
|
||
|
* Case of very large GA
|
||
|
*
|
||
|
GASMAL = .FALSE.
|
||
|
SSMAX = GA
|
||
|
IF( HA.GT.ONE ) THEN
|
||
|
SSMIN = FA / ( GA / HA )
|
||
|
ELSE
|
||
|
SSMIN = ( FA / GA )*HA
|
||
|
END IF
|
||
|
CLT = ONE
|
||
|
SLT = HT / GT
|
||
|
SRT = ONE
|
||
|
CRT = FT / GT
|
||
|
END IF
|
||
|
END IF
|
||
|
IF( GASMAL ) THEN
|
||
|
*
|
||
|
* Normal case
|
||
|
*
|
||
|
D = FA - HA
|
||
|
IF( D.EQ.FA ) THEN
|
||
|
*
|
||
|
* Copes with infinite F or H
|
||
|
*
|
||
|
L = ONE
|
||
|
ELSE
|
||
|
L = D / FA
|
||
|
END IF
|
||
|
*
|
||
|
* Note that 0 .le. L .le. 1
|
||
|
*
|
||
|
M = GT / FT
|
||
|
*
|
||
|
* Note that abs(M) .le. 1/macheps
|
||
|
*
|
||
|
T = TWO - L
|
||
|
*
|
||
|
* Note that T .ge. 1
|
||
|
*
|
||
|
MM = M*M
|
||
|
TT = T*T
|
||
|
S = SQRT( TT+MM )
|
||
|
*
|
||
|
* Note that 1 .le. S .le. 1 + 1/macheps
|
||
|
*
|
||
|
IF( L.EQ.ZERO ) THEN
|
||
|
R = ABS( M )
|
||
|
ELSE
|
||
|
R = SQRT( L*L+MM )
|
||
|
END IF
|
||
|
*
|
||
|
* Note that 0 .le. R .le. 1 + 1/macheps
|
||
|
*
|
||
|
A = HALF*( S+R )
|
||
|
*
|
||
|
* Note that 1 .le. A .le. 1 + abs(M)
|
||
|
*
|
||
|
SSMIN = HA / A
|
||
|
SSMAX = FA*A
|
||
|
IF( MM.EQ.ZERO ) THEN
|
||
|
*
|
||
|
* Note that M is very tiny
|
||
|
*
|
||
|
IF( L.EQ.ZERO ) THEN
|
||
|
T = SIGN( TWO, FT )*SIGN( ONE, GT )
|
||
|
ELSE
|
||
|
T = GT / SIGN( D, FT ) + M / T
|
||
|
END IF
|
||
|
ELSE
|
||
|
T = ( M / ( S+T )+M / ( R+L ) )*( ONE+A )
|
||
|
END IF
|
||
|
L = SQRT( T*T+FOUR )
|
||
|
CRT = TWO / L
|
||
|
SRT = T / L
|
||
|
CLT = ( CRT+SRT*M ) / A
|
||
|
SLT = ( HT / FT )*SRT / A
|
||
|
END IF
|
||
|
END IF
|
||
|
IF( SWAP ) THEN
|
||
|
CSL = SRT
|
||
|
SNL = CRT
|
||
|
CSR = SLT
|
||
|
SNR = CLT
|
||
|
ELSE
|
||
|
CSL = CLT
|
||
|
SNL = SLT
|
||
|
CSR = CRT
|
||
|
SNR = SRT
|
||
|
END IF
|
||
|
*
|
||
|
* Correct signs of SSMAX and SSMIN
|
||
|
*
|
||
|
IF( PMAX.EQ.1 )
|
||
|
$ TSIGN = SIGN( ONE, CSR )*SIGN( ONE, CSL )*SIGN( ONE, F )
|
||
|
IF( PMAX.EQ.2 )
|
||
|
$ TSIGN = SIGN( ONE, SNR )*SIGN( ONE, CSL )*SIGN( ONE, G )
|
||
|
IF( PMAX.EQ.3 )
|
||
|
$ TSIGN = SIGN( ONE, SNR )*SIGN( ONE, SNL )*SIGN( ONE, H )
|
||
|
SSMAX = SIGN( SSMAX, TSIGN )
|
||
|
SSMIN = SIGN( SSMIN, TSIGN*SIGN( ONE, F )*SIGN( ONE, H ) )
|
||
|
RETURN
|
||
|
*
|
||
|
* End of DLASV2
|
||
|
*
|
||
|
END
|