lammps/lib/atc/PerPairQuantity.cpp

373 lines
12 KiB
C++
Raw Normal View History

#include "PerPairQuantity.h"
#include "PerAtomQuantity.h"
#include "KernelFunction.h"
#include "FE_Mesh.h"
#include "Utility.h"
#include "Quadrature.h"
using ATC::HeartBeat;
using std::pair;
using std::map;
namespace ATC {
//==========================================================
PairMap::PairMap(LammpsInterface * lammpsInterface, int groupbit ):
lammpsInterface_(lammpsInterface),
groupbit_(groupbit),
nPairs_(0), nBonds_(0)
{
};
PairMap::~PairMap(void)
{
};
//==========================================================
PairMapNeighbor::PairMapNeighbor(LammpsInterface * lammpsInterface, int groupbit):
PairMap(lammpsInterface,groupbit)
{
};
void PairMapNeighbor::reset(void) const
{
int inum = lammpsInterface_->neighbor_list_inum();
int *ilist = lammpsInterface_->neighbor_list_ilist();
int *numneigh = lammpsInterface_->neighbor_list_numneigh();
int **firstneigh = lammpsInterface_->neighbor_list_firstneigh();
const int * mask = lammpsInterface_->atom_mask();
pairMap_.clear();
int pairIndex = nBonds_;
std::pair< int,int > pair_ij;
for (int i = 0; i < inum; i++) {
int lammps_i = ilist[i];
if (mask[lammps_i] & groupbit_) {
for (int j = 0; j < numneigh[lammps_i]; j++) {
int lammps_j = firstneigh[lammps_i][j];
lammpsInterface_->neighbor_remap(lammps_j);
pair_ij.first = lammps_i; // alpha
pair_ij.second = lammps_j; // beta
pairMap_[pair_ij] = pairIndex;
pairIndex++;
}
}
}
nPairs_ = pairIndex;
needReset_ = false;
}
//==========================================================
PairMapBond::PairMapBond(LammpsInterface * lammpsInterface, int groupbit):
PairMap(lammpsInterface,groupbit)
{
};
//==========================================================
PairMapBoth::PairMapBoth(LammpsInterface * lammpsInterface, int groupbit):
PairMapNeighbor(lammpsInterface,groupbit)
{
};
//==========================================================
DensePerPairMatrix::DensePerPairMatrix(LammpsInterface * lammpsInterface,
const PairMap & pairMap,
int nCols):
lammpsInterface_(lammpsInterface),
pairMap_(pairMap),
nCols_(nCols)
{
};
//==========================================================
PairVirial::PairVirial(LammpsInterface * lammpsInterface,
const PairMap & pairMap, int nCols):
DensePerPairMatrix(lammpsInterface,pairMap,nCols)
{
};
//==========================================================
PairVirialEulerian::PairVirialEulerian(LammpsInterface * lammpsInterface,
const PairMap & pairMap):
PairVirial(lammpsInterface,pairMap,6)
{
};
void PairVirialEulerian::reset(void) const
{
int nPairs = pairMap_.size();
quantity_.reset(nPairs,nCols_);
double **xatom = lammpsInterface_->xatom();
for (ATOM_PAIR apair = pairMap_.start();
! pairMap_.finished(); apair=pairMap_++){
int lammps_a = (apair.first).first ;
int lammps_b = (apair.first).second;
int pairIndex = apair.second;
double * xa = xatom[lammps_a];
double * xb = xatom[lammps_b];
double delx = xa[0] - xb[0];
double dely = xa[1] - xb[1];
double delz = xa[2] - xb[2];
double rsq = delx*delx + dely*dely + delz*delz;
double fforce = 0;
lammpsInterface_->pair_force(apair,rsq,fforce);
quantity_(pairIndex,0)=-delx*delx*fforce;
quantity_(pairIndex,1)=-dely*dely*fforce;
quantity_(pairIndex,2)=-delz*delz*fforce;
quantity_(pairIndex,3)=-delx*dely*fforce;
quantity_(pairIndex,4)=-delx*delz*fforce;
quantity_(pairIndex,5)=-dely*delz*fforce;
}
}
//==========================================================
PairVirialLagrangian::PairVirialLagrangian(LammpsInterface * lammpsInterface,
const PairMap & pairMap,
double ** xRef):
// const PerAtomQuantity<double> * xRef):
PairVirial(lammpsInterface,pairMap,9),
xRef_(xRef)
{
};
void PairVirialLagrangian::reset(void) const
{
int nPairs = pairMap_.size();
quantity_.reset(nPairs,nCols_);
double **xatom = lammpsInterface_->xatom();
double ** xref = xRef_;
for (ATOM_PAIR apair = pairMap_.start();
! pairMap_.finished(); apair=pairMap_++){
int lammps_a = (apair.first).first ;
int lammps_b = (apair.first).second;
int pairIndex = apair.second;
double * xa = xatom[lammps_a];
double * xb = xatom[lammps_b];
double delx = xa[0] - xb[0];
double dely = xa[1] - xb[1];
double delz = xa[2] - xb[2];
double * Xa = xref[lammps_a];
double * Xb = xref[lammps_b];
double delX = Xa[0] - Xb[0];
double delY = Xa[1] - Xb[1];
double delZ = Xa[2] - Xb[2];
double rsq = delx*delx + dely*dely + delz*delz;
double fforce = 0;
lammpsInterface_->pair_force(apair,rsq,fforce);
quantity_(pairIndex,0)=-delx*fforce*delX;
quantity_(pairIndex,1)=-delx*fforce*delY;
quantity_(pairIndex,2)=-delx*fforce*delZ;
quantity_(pairIndex,3)=-dely*fforce*delX;
quantity_(pairIndex,4)=-dely*fforce*delY;
quantity_(pairIndex,5)=-dely*fforce*delZ;
quantity_(pairIndex,6)=-delz*fforce*delX;
quantity_(pairIndex,7)=-delz*fforce*delY;
quantity_(pairIndex,8)=-delz*fforce*delZ;
}
}
//==========================================================
PairPotentialHeatFlux::PairPotentialHeatFlux(LammpsInterface * lammpsInterface,
const PairMap & pairMap):
DensePerPairMatrix(lammpsInterface,pairMap,3)
{
};
//==========================================================
PairPotentialHeatFluxEulerian::PairPotentialHeatFluxEulerian(LammpsInterface * lammpsInterface,
const PairMap & pairMap):
PairPotentialHeatFlux(lammpsInterface,pairMap)
{
};
void PairPotentialHeatFluxEulerian::reset(void) const
{
int nPairs = pairMap_.size();
quantity_.reset(nPairs,nCols_);
double **xatom = lammpsInterface_->xatom();
double **vatom = lammpsInterface_->vatom();
for (ATOM_PAIR apair = pairMap_.start();
! pairMap_.finished(); apair=pairMap_++){
int lammps_a = (apair.first).first ;
int lammps_b = (apair.first).second;
int pairIndex = apair.second;
double * xa = xatom[lammps_a];
double * xb = xatom[lammps_b];
double delx = xa[0] - xb[0];
double dely = xa[1] - xb[1];
double delz = xa[2] - xb[2];
double rsq = delx*delx + dely*dely + delz*delz;
double fforce = 0;
lammpsInterface_->pair_force(apair,rsq,fforce);
double* v = vatom[lammps_a];
fforce *=delx*v[0] + dely*v[1] + delz*v[2];
quantity_(pairIndex,0)=fforce*delx;
quantity_(pairIndex,1)=fforce*dely;
quantity_(pairIndex,2)=fforce*delz;
}
}
//==========================================================
PairPotentialHeatFluxLagrangian::PairPotentialHeatFluxLagrangian(LammpsInterface * lammpsInterface,
const PairMap & pairMap, double ** xRef):
PairPotentialHeatFlux(lammpsInterface,pairMap),
xRef_(xRef)
{
};
void PairPotentialHeatFluxLagrangian::reset(void) const
{
int nPairs = pairMap_.size();
quantity_.reset(nPairs,nCols_);
double **xatom = lammpsInterface_->xatom();
double **vatom = lammpsInterface_->vatom();
for (ATOM_PAIR apair = pairMap_.start();
! pairMap_.finished(); apair=pairMap_++){
int lammps_a = (apair.first).first ;
int lammps_b = (apair.first).second;
int pairIndex = apair.second;
double * xa = xatom[lammps_a];
double * xb = xatom[lammps_b];
double delx = xa[0] - xb[0];
double dely = xa[1] - xb[1];
double delz = xa[2] - xb[2];
double * Xa = xRef_[lammps_a];
double * Xb = xRef_[lammps_b];
double delX = Xa[0] - Xb[0];
double delY = Xa[1] - Xb[1];
double delZ = Xa[2] - Xb[2];
double rsq = delx*delx + dely*dely + delz*delz;
double fforce = 0;
lammpsInterface_->pair_force(apair,rsq,fforce);
double* v = vatom[lammps_a];
fforce *=delx*v[0] + dely*v[1] + delz*v[2];
quantity_(pairIndex,0)=fforce*delX;
quantity_(pairIndex,1)=fforce*delY;
quantity_(pairIndex,2)=fforce*delZ;
}
}
//==========================================================
SparsePerPairMatrix::SparsePerPairMatrix(LammpsInterface * lammpsInterface,
const PairMap & pairMap):
lammpsInterface_(lammpsInterface),
pairMap_(pairMap)
{
};
//==========================================================
BondMatrix::BondMatrix(LammpsInterface * lammpsInterface,
const PairMap & pairMap, double ** x, const FE_Mesh * feMesh):
SparsePerPairMatrix(lammpsInterface,pairMap), x_(x), feMesh_(feMesh)
{
};
//==========================================================
BondMatrixKernel::BondMatrixKernel(LammpsInterface * lammpsInterface,
const PairMap & pairMap,
double ** x,
const FE_Mesh * feMesh,
const KernelFunction * kernelFunction):
BondMatrix(lammpsInterface,pairMap,x,feMesh),
kernelFunction_(kernelFunction)
{
if (kernelFunction_ == NULL)
throw ATC_Error("No AtC kernel function initialized");
};
void BondMatrixKernel::reset(void) const
{
int nPairs = pairMap_.size(); // needs to come after quantity for reset
int nNodes = feMesh_->num_nodes_unique();
quantity_.reset(nNodes,nPairs);
double lam1,lam2;
std::pair< int,int > pair_jk;
int heartbeatFreq = (nNodes <= 10 ? 1 : (int) nNodes / 10);
HeartBeat beat("computing bond matrix ",heartbeatFreq);
beat.start();
DENS_VEC xa(3),xI(3),xaI(3),xb(3),xbI(3),xba(3);
double invVol = kernelFunction_->inv_vol();
for (int I = 0; I < nNodes; I++) {
beat.next();
xI = feMesh_->nodal_coordinates(I);
if (!kernelFunction_->node_contributes(xI)) { continue; }
for (ATOM_PAIR apair = pairMap_.start();
! pairMap_.finished(); apair=pairMap_++){
int lammps_a = (apair.first).first ;
int lammps_b = (apair.first).second;
xa.copy(x_[lammps_a],3);
xaI = xa - xI;
lammpsInterface_->periodicity_correction(xaI.ptr());
xb.copy(x_[lammps_b],3);
xba = xb - xa;
xbI = xba + xaI;
kernelFunction_->bond_intercepts(xaI,xbI,lam1,lam2);
if (lam1 < lam2) {
double bondValue = invVol*(kernelFunction_->bond(xaI,xbI,lam1,lam2));
int pairIndex = apair.second;
quantity_.add(I,pairIndex,bondValue);
} // if lam1 < lam2
} // pair map
} // end nodes loop
quantity_.compress();
beat.finish();
}
//==========================================================
BondMatrixPartitionOfUnity::BondMatrixPartitionOfUnity(LammpsInterface * lammpsInterface,
const PairMap & pairMap, double ** x, const FE_Mesh * feMesh,
const DIAG_MAN * invVols):
BondMatrix(lammpsInterface,pairMap,x,feMesh),
invVols_(invVols)
{
ATC::Quadrature::instance()->set_line_quadrature(lineNgauss_,lineXg_,lineWg_);
double lam1 = 0.0, lam2 = 1.0;
double del_lambda = 0.5*(lam2 - lam1);
double avg_lambda = 0.5*(lam2 + lam1);
for (int i = 0; i < lineNgauss_; i++) {
double lambda = del_lambda*lineXg_[i] +avg_lambda;
lineXg_[i] = lambda;
lineWg_[i] *= 0.5;
}
};
void BondMatrixPartitionOfUnity::reset(void) const
{
int nNodes = feMesh_->num_nodes_unique();
int nPairs = pairMap_.size();
quantity_.reset(nNodes,nPairs);
int nodes_per_element = feMesh_->num_nodes_per_element();
Array<int> node_list(nodes_per_element);
DENS_VEC shp(nodes_per_element);
std::pair< int,int > pair_jk;
int heartbeatFreq = (int) nPairs / 10;
HeartBeat beat("computing bond matrix ",heartbeatFreq);
beat.start();
DENS_VEC xa(3),xb(3),xab(3),xlambda(3);
for (ATOM_PAIR apair = pairMap_.start();
! pairMap_.finished(); apair=pairMap_++){
beat.next();
int lammps_a = (apair.first).first ;
int lammps_b = (apair.first).second;
int pairIndex = apair.second;
xa.copy(x_[lammps_a],3);
xb.copy(x_[lammps_b],3);
xab = xa - xb;
for (int i = 0; i < lineNgauss_; i++) {
double lambda = lineXg_[i];
xlambda = lambda*xab + xb;
lammpsInterface_->periodicity_correction(xlambda.ptr());
feMesh_->shape_functions(xlambda,shp,node_list);
// accumulate to nodes whose support overlaps the integration point
for (int I = 0; I < nodes_per_element; I++) {
int Inode = node_list(I);
double inv_vol = (invVols_->quantity())(Inode,Inode);
double val = inv_vol*shp(I)*lineWg_[i];
quantity_.add(Inode,pairIndex,val);
}
}
}
quantity_.compress();
beat.finish();
}
//==========================================================
}