lammps/lib/gpu/lal_pppm_ext.cpp

178 lines
6.6 KiB
C++
Raw Normal View History

/***************************************************************************
pppm_ext.cpp
-------------------
W. Michael Brown (ORNL)
Functions for LAMMPS access to PPPM acceleration routines
__________________________________________________________________________
This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
__________________________________________________________________________
begin :
email : brownw@ornl.gov
***************************************************************************/
#include <iostream>
#include <cassert>
#include <math.h>
#include "lal_pppm.h"
using namespace std;
using namespace LAMMPS_AL;
static PPPM<PRECISION,ACC_PRECISION,float,_lgpu_float4> PPPMF;
static PPPM<PRECISION,ACC_PRECISION,double,_lgpu_double4> PPPMD;
// ---------------------------------------------------------------------------
// Allocate memory on host and device and copy constants to device
// ---------------------------------------------------------------------------
template <class grdtyp, class memtyp>
grdtyp * pppm_gpu_init(memtyp &pppm, const int nlocal, const int nall,
FILE *screen, const int order, const int nxlo_out,
const int nylo_out, const int nzlo_out,
const int nxhi_out, const int nyhi_out,
const int nzhi_out, grdtyp **rho_coeff,
grdtyp **vd_brick, const double slab_volfactor,
const int nx_pppm, const int ny_pppm, const int nz_pppm,
const bool split, int &success) {
pppm.clear(0.0);
int first_gpu=pppm.device->first_device();
int last_gpu=pppm.device->last_device();
int world_me=pppm.device->world_me();
int gpu_rank=pppm.device->gpu_rank();
int procs_per_gpu=pppm.device->procs_per_gpu();
pppm.device->init_message(screen,"pppm",first_gpu,last_gpu);
bool message=false;
if (pppm.device->replica_me()==0 && screen)
message=true;
if (message) {
fprintf(screen,"Initializing GPU and compiling on process 0...");
fflush(screen);
}
success=0;
grdtyp * host_brick=NULL;
if (world_me==0)
host_brick=pppm.init(nlocal,nall,screen,order,nxlo_out,nylo_out,nzlo_out,
nxhi_out,nyhi_out,nzhi_out,rho_coeff,vd_brick,
slab_volfactor,nx_pppm,ny_pppm,nz_pppm,split,success);
pppm.device->world_barrier();
if (message)
fprintf(screen,"Done.\n");
for (int i=0; i<procs_per_gpu; i++) {
if (message) {
if (last_gpu-first_gpu==0)
fprintf(screen,"Initializing GPU %d on core %d...",first_gpu,i);
else
fprintf(screen,"Initializing GPUs %d-%d on core %d...",first_gpu,
last_gpu,i);
fflush(screen);
}
if (gpu_rank==i && world_me!=0)
host_brick=pppm.init(nlocal,nall,screen,order,nxlo_out,nylo_out,
nzlo_out,nxhi_out,nyhi_out,nzhi_out,rho_coeff,
vd_brick,slab_volfactor,nx_pppm,ny_pppm,nz_pppm,
split,success);
pppm.device->gpu_barrier();
if (message)
fprintf(screen,"Done.\n");
}
if (message)
fprintf(screen,"\n");
return host_brick;
}
float * pppm_gpu_init_f(const int nlocal, const int nall, FILE *screen,
const int order, const int nxlo_out,
const int nylo_out, const int nzlo_out,
const int nxhi_out, const int nyhi_out,
const int nzhi_out, float **rho_coeff,
float **vd_brick, const double slab_volfactor,
const int nx_pppm, const int ny_pppm, const int nz_pppm,
const bool split, int &success) {
float *b=pppm_gpu_init(PPPMF,nlocal,nall,screen,order,nxlo_out,nylo_out,
nzlo_out,nxhi_out,nyhi_out,nzhi_out,rho_coeff,vd_brick,
slab_volfactor,nx_pppm,ny_pppm,nz_pppm,split,success);
if (split==false)
PPPMF.device->set_single_precompute(&PPPMF);
return b;
}
void pppm_gpu_clear_f(const double cpu_time) {
PPPMF.clear(cpu_time);
}
int pppm_gpu_spread_f(const int ago, const int nlocal, const int nall,
double **host_x, int *host_type, bool &success,
double *host_q, double *boxlo, const double delxinv,
const double delyinv, const double delzinv) {
return PPPMF.spread(ago,nlocal,nall,host_x,host_type,success,host_q,boxlo,
delxinv,delyinv,delzinv);
}
void pppm_gpu_interp_f(const float qqrd2e_scale) {
PPPMF.interp(qqrd2e_scale);
}
double pppm_gpu_bytes_f() {
return PPPMF.host_memory_usage();
}
void pppm_gpu_forces_f(double **f) {
double etmp;
PPPMF.atom->data_unavail();
PPPMF.ans->get_answers(f,NULL,NULL,NULL,NULL,etmp);
}
double * pppm_gpu_init_d(const int nlocal, const int nall, FILE *screen,
const int order, const int nxlo_out,
const int nylo_out, const int nzlo_out,
const int nxhi_out, const int nyhi_out,
const int nzhi_out, double **rho_coeff,
double **vd_brick, const double slab_volfactor,
const int nx_pppm, const int ny_pppm,
const int nz_pppm, const bool split, int &success) {
double *b=pppm_gpu_init(PPPMD,nlocal,nall,screen,order,nxlo_out,nylo_out,
nzlo_out,nxhi_out,nyhi_out,nzhi_out,rho_coeff,
vd_brick,slab_volfactor,nx_pppm,ny_pppm,nz_pppm,
split,success);
if (split==false)
PPPMD.device->set_double_precompute(&PPPMD);
return b;
}
void pppm_gpu_clear_d(const double cpu_time) {
PPPMD.clear(cpu_time);
}
int pppm_gpu_spread_d(const int ago, const int nlocal, const int nall,
double **host_x, int *host_type, bool &success,
double *host_q, double *boxlo, const double delxinv,
const double delyinv, const double delzinv) {
return PPPMD.spread(ago,nlocal,nall,host_x,host_type,success,host_q,boxlo,
delxinv,delyinv,delzinv);
}
void pppm_gpu_interp_d(const double qqrd2e_scale) {
PPPMD.interp(qqrd2e_scale);
}
double pppm_gpu_bytes_d() {
return PPPMD.host_memory_usage();
}
void pppm_gpu_forces_d(double **f) {
double etmp;
PPPMD.atom->data_unavail();
PPPMD.ans->get_answers(f,NULL,NULL,NULL,NULL,etmp);
}