lammps/lib/colvars/colvarcomp.cpp

147 lines
4.5 KiB
C++
Raw Normal View History

#include "colvarmodule.h"
#include "colvarvalue.h"
#include "colvar.h"
#include "colvarcomp.h"
colvar::cvc::cvc()
: sup_coeff (1.0), sup_np (1),
b_periodic (false),
b_debug_gradients (false),
b_inverse_gradients (false),
b_Jacobian_derivative (false)
{}
colvar::cvc::cvc (std::string const &conf)
: sup_coeff (1.0), sup_np (1),
b_periodic (false),
b_debug_gradients (false),
b_inverse_gradients (false),
b_Jacobian_derivative (false)
{
if (cvm::debug())
cvm::log ("Initializing cvc base object.\n");
get_keyval (conf, "name", this->name, std::string (""), parse_silent);
get_keyval (conf, "componentCoeff", sup_coeff, 1.0);
get_keyval (conf, "componentExp", sup_np, 1);
get_keyval (conf, "period", period, 0.0);
get_keyval (conf, "wrapAround", wrap_center, 0.0);
get_keyval (conf, "debugGradients", b_debug_gradients, false, parse_silent);
if (cvm::debug())
cvm::log ("Done initializing cvc base object.\n");
}
void colvar::cvc::parse_group (std::string const &conf,
char const *group_key,
cvm::atom_group &group,
bool optional)
{
if (key_lookup (conf, group_key)) {
group.parse (conf, group_key);
} else {
if (! optional) {
cvm::fatal_error ("Error: definition for atom group \""+
std::string (group_key)+"\" not found.\n");
}
}
}
colvar::cvc::~cvc()
{}
void colvar::cvc::calc_force_invgrads()
{
cvm::fatal_error ("Error: calculation of inverse gradients is not implemented "
"for colvar components of type \""+function_type+"\".\n");
}
void colvar::cvc::calc_Jacobian_derivative()
{
cvm::fatal_error ("Error: calculation of inverse gradients is not implemented "
"for colvar components of type \""+function_type+"\".\n");
}
void colvar::cvc::debug_gradients (cvm::atom_group &group)
{
// this function should work for any scalar variable:
// the only difference will be the name of the atom group (here, "group")
// collect into a vector for convenience
std::vector<cvm::rvector> gradients (group.size());
for (size_t i = 0; i < group.size(); i++) {
gradients[i] = group[i].grad;
}
cvm::rotation const rot_0 = group.rot;
cvm::rotation const rot_inv = group.rot.inverse();
cvm::real const x_0 = x.real_value;
cvm::log ("gradients = "+cvm::to_str (gradients)+"\n");
// it only makes sense to debug the fit gradients
// when the fitting group is the same as this group
if (group.b_fit_gradients && (group.ref_pos_group == NULL)) {
group.calc_fit_gradients();
if (group.b_rotate) {
// fit_gradients are in the original frame, we should print them in the rotated frame
for (size_t j = 0; j < group.fit_gradients.size(); j++) {
group.fit_gradients[j] = rot_0.rotate (group.fit_gradients[j]);
}
}
cvm::log ("fit_gradients = "+cvm::to_str (group.fit_gradients)+"\n");
if (group.b_rotate) {
for (size_t j = 0; j < group.fit_gradients.size(); j++) {
group.fit_gradients[j] = rot_inv.rotate (group.fit_gradients[j]);
}
}
}
for (size_t ia = 0; ia < group.size(); ia++) {
// tests are best conducted in the unrotated (simulation) frame
cvm::rvector const atom_grad = group.b_rotate ?
rot_inv.rotate (group[ia].grad) :
group[ia].grad;
for (size_t id = 0; id < 3; id++) {
// (re)read original positions
group.read_positions();
// change one coordinate
group[ia].pos[id] += cvm::debug_gradients_step_size;
// (re)do the fit (if defined)
if (group.b_center || group.b_rotate) {
group.calc_apply_roto_translation();
}
calc_value();
cvm::real const x_1 = x.real_value;
cvm::log ("Atom "+cvm::to_str (ia)+", component "+cvm::to_str (id)+":\n");
cvm::log ("dx(actual) = "+cvm::to_str (x_1 - x_0,
21, 14)+"\n");
cvm::real const dx_pred = (group.b_fit_gradients && (group.ref_pos_group == NULL)) ?
(cvm::debug_gradients_step_size * (atom_grad[id] + group.fit_gradients[ia][id])) :
(cvm::debug_gradients_step_size * atom_grad[id]);
cvm::log ("dx(interp) = "+cvm::to_str (dx_pred,
21, 14)+"\n");
cvm::log ("|dx(actual) - dx(interp)|/|dx(actual)| = "+
cvm::to_str (std::fabs (x_1 - x_0 - dx_pred) /
std::fabs (x_1 - x_0),
12, 5)+
".\n");
}
}
}