2006-11-04 01:09:44 +08:00
|
|
|
\documentclass[12pt]{article}
|
|
|
|
|
|
|
|
\begin{document}
|
|
|
|
|
|
|
|
\begin{eqnarray*}
|
|
|
|
E & = & \frac{1}{2} \sum_i \sum_{j \neq i} V_{ij} \\
|
|
|
|
V_{ij} & = & f_C(r_{ij}) \left[ f_R(r_{ij}) + b_{ij} f_A(r_{ij}) \right] \\
|
|
|
|
f_C(r) & = & \left\{ \begin{array} {r@{\quad:\quad}l}
|
|
|
|
1 & r < R - D \\
|
|
|
|
\frac{1}{2} - \frac{1}{2} \sin \left( \frac{\pi}{2} \frac{r-R}{D} \right) &
|
|
|
|
R-D < r < R + D \\
|
|
|
|
0 & r > R + D
|
|
|
|
\end{array} \right. \\
|
|
|
|
f_R(r) & = & A \exp (-\lambda_1 r) \\
|
|
|
|
f_A(r) & = & -B \exp (-\lambda_2 r) \\
|
|
|
|
b_{ij} & = & \left( 1 + \beta^n {\zeta_{ij}}^n \right)^{-\frac{1}{2n}} \\
|
|
|
|
\zeta_{ij} & = & \sum_{k \neq i,j} f_C(r_{ik}) g(\theta_{ijk})
|
2008-01-25 07:12:52 +08:00
|
|
|
\exp \left[ {\lambda_3}^m (r_{ij} - r_{ik})^m \right] \\
|
2007-10-23 03:16:44 +08:00
|
|
|
g(\theta) & = & \gamma_{ijk} \left( 1 + \frac{c^2}{d^2} -
|
2006-11-04 01:09:44 +08:00
|
|
|
\frac{c^2}{\left[ d^2 +
|
2007-10-23 03:16:44 +08:00
|
|
|
(\cos \theta - \cos \theta_0)^2\right]} \right)
|
2006-11-04 01:09:44 +08:00
|
|
|
\end{eqnarray*}
|
|
|
|
|
2007-10-23 03:16:44 +08:00
|
|
|
\end{document}
|