lammps/lib/gpu/lal_born.cpp

182 lines
6.1 KiB
C++
Raw Normal View History

/***************************************************************************
born.cpp
-------------------
Trung Dac Nguyen (ORNL)
Class for acceleration of the born pair style.
__________________________________________________________________________
This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
__________________________________________________________________________
begin :
email : nguyentd@ornl.gov
***************************************************************************/
#ifdef USE_OPENCL
#include "born_cl.h"
#elif defined(USE_CUDART)
const char *born=0;
#else
#include "born_cubin.h"
#endif
#include "lal_born.h"
#include <cassert>
using namespace LAMMPS_AL;
#define BornT Born<numtyp, acctyp>
extern Device<PRECISION,ACC_PRECISION> device;
template <class numtyp, class acctyp>
BornT::Born() : BaseAtomic<numtyp,acctyp>(), _allocated(false) {
}
template <class numtyp, class acctyp>
BornT::~Born() {
clear();
}
template <class numtyp, class acctyp>
int BornT::bytes_per_atom(const int max_nbors) const {
return this->bytes_per_atom_atomic(max_nbors);
}
template <class numtyp, class acctyp>
int BornT::init(const int ntypes, double **host_cutsq,
double **host_rhoinv, double **host_born1, double **host_born2,
double **host_born3, double **host_a, double **host_c,
double **host_d, double **host_sigma,
double **host_offset, double *host_special_lj,
const int nlocal, const int nall, const int max_nbors,
const int maxspecial, const double cell_size,
const double gpu_split, FILE *_screen) {
int success;
success=this->init_atomic(nlocal,nall,max_nbors,maxspecial,cell_size,gpu_split,
_screen,born,"k_born");
if (success!=0)
return success;
// If atom type constants fit in shared memory use fast kernel
int lj_types=ntypes;
shared_types=false;
int max_shared_types=this->device->max_shared_types();
if (lj_types<=max_shared_types && this->_block_size>=max_shared_types) {
lj_types=max_shared_types;
shared_types=true;
}
_lj_types=lj_types;
// Allocate a host write buffer for data initialization
UCL_H_Vec<numtyp> host_write(lj_types*lj_types*32,*(this->ucl_device),
UCL_WRITE_ONLY);
for (int i=0; i<lj_types*lj_types; i++)
host_write[i]=0.0;
coeff1.alloc(lj_types*lj_types,*(this->ucl_device),UCL_READ_ONLY);
this->atom->type_pack4(ntypes,lj_types,coeff1,host_write,host_rhoinv,
host_born1,host_born2,host_born3);
coeff2.alloc(lj_types*lj_types,*(this->ucl_device),UCL_READ_ONLY);
this->atom->type_pack4(ntypes,lj_types,coeff2,host_write,host_a,host_c,
host_d,host_offset);
cutsq_sigma.alloc(lj_types*lj_types,*(this->ucl_device),UCL_READ_ONLY);
this->atom->type_pack2(ntypes,lj_types,cutsq_sigma,host_write,host_cutsq,
host_sigma);
UCL_H_Vec<double> dview;
sp_lj.alloc(4,*(this->ucl_device),UCL_READ_ONLY);
dview.view(host_special_lj,4,*(this->ucl_device));
ucl_copy(sp_lj,dview,false);
_allocated=true;
this->_max_bytes=coeff1.row_bytes()+coeff2.row_bytes()
+cutsq_sigma.row_bytes()+sp_lj.row_bytes();
return 0;
}
template <class numtyp, class acctyp>
void BornT::reinit(const int ntypes, double **host_rhoinv,
double **host_born1, double **host_born2,
double **host_born3, double **host_a, double **host_c,
double **host_d, double **host_offset) {
// Allocate a host write buffer for data initialization
UCL_H_Vec<numtyp> host_write(_lj_types*_lj_types*32,*(this->ucl_device),
UCL_WRITE_ONLY);
for (int i=0; i<_lj_types*_lj_types; i++)
host_write[i]=0.0;
this->atom->type_pack4(ntypes,_lj_types,coeff1,host_write,host_rhoinv,
host_born1,host_born2,host_born3);
this->atom->type_pack4(ntypes,_lj_types,coeff2,host_write,host_a,host_c,
host_d,host_offset);
}
template <class numtyp, class acctyp>
void BornT::clear() {
if (!_allocated)
return;
_allocated=false;
coeff1.clear();
coeff2.clear();
cutsq_sigma.clear();
sp_lj.clear();
this->clear_atomic();
}
template <class numtyp, class acctyp>
double BornT::host_memory_usage() const {
return this->host_memory_usage_atomic()+sizeof(Born<numtyp,acctyp>);
}
// ---------------------------------------------------------------------------
// Calculate energies, forces, and torques
// ---------------------------------------------------------------------------
template <class numtyp, class acctyp>
void BornT::loop(const bool _eflag, const bool _vflag) {
// Compute the block size and grid size to keep all cores busy
const int BX=this->block_size();
int eflag, vflag;
if (_eflag)
eflag=1;
else
eflag=0;
if (_vflag)
vflag=1;
else
vflag=0;
int GX=static_cast<int>(ceil(static_cast<double>(this->ans->inum())/
(BX/this->_threads_per_atom)));
int ainum=this->ans->inum();
int nbor_pitch=this->nbor->nbor_pitch();
this->time_pair.start();
if (shared_types) {
this->k_pair_fast.set_size(GX,BX);
this->k_pair_fast.run(&this->atom->x, &coeff1,&coeff2,
&cutsq_sigma, &sp_lj,
&this->nbor->dev_nbor,
&this->_nbor_data->begin(),
&this->ans->force, &this->ans->engv, &eflag, &vflag,
&ainum, &nbor_pitch, &this->_threads_per_atom);
} else {
this->k_pair.set_size(GX,BX);
this->k_pair.run(&this->atom->x, &coeff1, &coeff2,
&cutsq_sigma, &_lj_types, &sp_lj,
&this->nbor->dev_nbor,
&this->_nbor_data->begin(), &this->ans->force,
&this->ans->engv, &eflag, &vflag, &ainum,
&nbor_pitch, &this->_threads_per_atom);
}
this->time_pair.stop();
}
template class Born<PRECISION,ACC_PRECISION>;