lammps/doc/pair_gauss.html

121 lines
4.2 KiB
HTML
Raw Normal View History

<HTML>
<CENTER><A HREF = "http://lammps.sandia.gov">LAMMPS WWW Site</A> - <A HREF = "Manual.html">LAMMPS Documentation</A> - <A HREF = "Section_commands.html#comm">LAMMPS Commands</A>
</CENTER>
<HR>
<H3>pair_style gauss command
</H3>
<H3>pair_style gauss/omp command
</H3>
<P><B>Syntax:</B>
</P>
<PRE>pair_style gauss cutoff
</PRE>
<UL><LI>cutoff = global cutoff for Gauss interactions (distance units)
</UL>
<P><B>Examples:</B>
</P>
<PRE>pair_style gauss 12.0
pair_coeff * * 1.0 0.9
pair_coeff 1 4 1.0 0.9 10.0
</PRE>
<P><B>Description:</B>
</P>
<P>Style <I>gauss</I> computes a tethering potential of the form
</P>
<CENTER><IMG SRC = "Eqs/pair_gauss.jpg">
</CENTER>
<P>between an atom and its corresponding tether site which will typically
be a frozen atom in the simulation. Rc is the cutoff.
</P>
<P>The following coefficients must be defined for each pair of atom types
via the <A HREF = "pair_coeff.html">pair_coeff</A> command as in the examples above,
or in the data file or restart files read by the
<A HREF = "read_data.html">read_data</A> or <A HREF = "read_restart.html">read_restart</A>
commands:
</P>
<UL><LI>A (energy units)
<LI>B (1/distance^2 units)
<LI>cutoff (distance units)
</UL>
<P>The last coefficient is optional. If not specified, the global cutoff
is used.
</P>
<HR>
<P>Styles with a <I>cuda</I>, <I>gpu</I>, <I>omp</I>, or <I>opt</I> suffix are functionally
the same as the corresponding style without the suffix. They have
been optimized to run faster, depending on your available hardware,
as discussed in <A HREF = "Section_accelerate.html">this section</A> of the manual.
The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.
</P>
<P>These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT
packages, respectively. They are only enabled if LAMMPS was built with
those packages. See the <A HREF = "Section_start.html#start_3">Making LAMMPS</A>
section for more info.
</P>
<P>You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the <A HREF = "Section_start.html#start_6">-suffix command-line
switch</A> when you invoke LAMMPS, or you can
use the <A HREF = "suffix.html">suffix</A> command in your input script.
</P>
<P>See <A HREF = "Section_accelerate.html">this section</A> of the manual for more
instructions on how to use the accelerated styles effectively.
</P>
<HR>
<P><B>Mixing, shift, table, tail correction, restart, rRESPA info</B>:
</P>
<P>This pair style does not support mixing. Thus, coefficients for all
I,J pairs must be specified explicitly.
</P>
<P>This pair style does not support the <A HREF = "pair_modify.html">pair_modify</A>
shift option. There is no effect due to the Gaussian well beyond the
cutoff; hence reasonable cutoffs need to be specified.
</P>
<P>The <A HREF = "pair_modify.html">pair_modify</A> table and tail options are not
relevant for this pair style.
</P>
<P>This pair style does not support the <A HREF = "pair_modify.html">pair_modify</A>
table option, since a tabulation capability does not exist for this
potential.
</P>
<P>This pair style writes its information to <A HREF = "restart.html">binary restart
files</A>, so pair_style and pair_coeff commands do not need
to be specified in an input script that reads a restart file.
</P>
<P>This pair style can only be used via the <I>pair</I> keyword of the
<A HREF = "run_style.html">run_style respa</A> command. It does not support the
<I>inner</I>, <I>middle</I>, <I>outer</I> keywords.
</P>
<P>This pair style tallies an "occupancy" count of how many Gaussian-well
sites have an atom within the distance at which the force is a maximum
= sqrt(0.5/b). This quantity can be accessed via the <A HREF = "compute_pair.html">compute
pair</A> command as a vector of values of length 1.
</P>
<P>To print this quantity to the log file (with a descriptive column
heading) the following commands could be included in an input script:
</P>
<PRE>compute gauss all pair gauss
variable occ equal c_gauss[1]
thermo_style custom step temp epair v_occ
</PRE>
<HR>
<P><B>Restrictions:</B> none
</P>
<P><B>Related commands:</B>
</P>
<P><A HREF = "pair_coeff.html">pair_coeff</A>
</P>
<P><B>Default:</B> none
</P>
</HTML>