2017-10-25 01:22:20 +08:00
|
|
|
*> \brief \b ZTRMV
|
|
|
|
*
|
|
|
|
* =========== DOCUMENTATION ===========
|
|
|
|
*
|
2018-05-19 05:17:13 +08:00
|
|
|
* Online html documentation available at
|
|
|
|
* http://www.netlib.org/lapack/explore-html/
|
2017-10-25 01:22:20 +08:00
|
|
|
*
|
|
|
|
* Definition:
|
|
|
|
* ===========
|
|
|
|
*
|
|
|
|
* SUBROUTINE ZTRMV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
|
2018-05-19 05:17:13 +08:00
|
|
|
*
|
2017-10-25 01:22:20 +08:00
|
|
|
* .. Scalar Arguments ..
|
|
|
|
* INTEGER INCX,LDA,N
|
|
|
|
* CHARACTER DIAG,TRANS,UPLO
|
|
|
|
* ..
|
|
|
|
* .. Array Arguments ..
|
|
|
|
* COMPLEX*16 A(LDA,*),X(*)
|
|
|
|
* ..
|
2018-05-19 05:17:13 +08:00
|
|
|
*
|
2017-10-25 01:22:20 +08:00
|
|
|
*
|
|
|
|
*> \par Purpose:
|
|
|
|
* =============
|
|
|
|
*>
|
|
|
|
*> \verbatim
|
|
|
|
*>
|
|
|
|
*> ZTRMV performs one of the matrix-vector operations
|
|
|
|
*>
|
|
|
|
*> x := A*x, or x := A**T*x, or x := A**H*x,
|
|
|
|
*>
|
|
|
|
*> where x is an n element vector and A is an n by n unit, or non-unit,
|
|
|
|
*> upper or lower triangular matrix.
|
|
|
|
*> \endverbatim
|
|
|
|
*
|
|
|
|
* Arguments:
|
|
|
|
* ==========
|
|
|
|
*
|
|
|
|
*> \param[in] UPLO
|
|
|
|
*> \verbatim
|
|
|
|
*> UPLO is CHARACTER*1
|
|
|
|
*> On entry, UPLO specifies whether the matrix is an upper or
|
|
|
|
*> lower triangular matrix as follows:
|
|
|
|
*>
|
|
|
|
*> UPLO = 'U' or 'u' A is an upper triangular matrix.
|
|
|
|
*>
|
|
|
|
*> UPLO = 'L' or 'l' A is a lower triangular matrix.
|
|
|
|
*> \endverbatim
|
|
|
|
*>
|
|
|
|
*> \param[in] TRANS
|
|
|
|
*> \verbatim
|
|
|
|
*> TRANS is CHARACTER*1
|
|
|
|
*> On entry, TRANS specifies the operation to be performed as
|
|
|
|
*> follows:
|
|
|
|
*>
|
|
|
|
*> TRANS = 'N' or 'n' x := A*x.
|
|
|
|
*>
|
|
|
|
*> TRANS = 'T' or 't' x := A**T*x.
|
|
|
|
*>
|
|
|
|
*> TRANS = 'C' or 'c' x := A**H*x.
|
|
|
|
*> \endverbatim
|
|
|
|
*>
|
|
|
|
*> \param[in] DIAG
|
|
|
|
*> \verbatim
|
|
|
|
*> DIAG is CHARACTER*1
|
|
|
|
*> On entry, DIAG specifies whether or not A is unit
|
|
|
|
*> triangular as follows:
|
|
|
|
*>
|
|
|
|
*> DIAG = 'U' or 'u' A is assumed to be unit triangular.
|
|
|
|
*>
|
|
|
|
*> DIAG = 'N' or 'n' A is not assumed to be unit
|
|
|
|
*> triangular.
|
|
|
|
*> \endverbatim
|
|
|
|
*>
|
|
|
|
*> \param[in] N
|
|
|
|
*> \verbatim
|
|
|
|
*> N is INTEGER
|
|
|
|
*> On entry, N specifies the order of the matrix A.
|
|
|
|
*> N must be at least zero.
|
|
|
|
*> \endverbatim
|
|
|
|
*>
|
|
|
|
*> \param[in] A
|
|
|
|
*> \verbatim
|
2018-05-19 05:17:13 +08:00
|
|
|
*> A is COMPLEX*16 array, dimension ( LDA, N ).
|
2017-10-25 01:22:20 +08:00
|
|
|
*> Before entry with UPLO = 'U' or 'u', the leading n by n
|
|
|
|
*> upper triangular part of the array A must contain the upper
|
|
|
|
*> triangular matrix and the strictly lower triangular part of
|
|
|
|
*> A is not referenced.
|
|
|
|
*> Before entry with UPLO = 'L' or 'l', the leading n by n
|
|
|
|
*> lower triangular part of the array A must contain the lower
|
|
|
|
*> triangular matrix and the strictly upper triangular part of
|
|
|
|
*> A is not referenced.
|
|
|
|
*> Note that when DIAG = 'U' or 'u', the diagonal elements of
|
|
|
|
*> A are not referenced either, but are assumed to be unity.
|
|
|
|
*> \endverbatim
|
|
|
|
*>
|
|
|
|
*> \param[in] LDA
|
|
|
|
*> \verbatim
|
|
|
|
*> LDA is INTEGER
|
|
|
|
*> On entry, LDA specifies the first dimension of A as declared
|
|
|
|
*> in the calling (sub) program. LDA must be at least
|
|
|
|
*> max( 1, n ).
|
|
|
|
*> \endverbatim
|
|
|
|
*>
|
2018-05-19 05:17:13 +08:00
|
|
|
*> \param[in,out] X
|
2017-10-25 01:22:20 +08:00
|
|
|
*> \verbatim
|
2018-05-19 05:17:13 +08:00
|
|
|
*> X is COMPLEX*16 array, dimension at least
|
2017-10-25 01:22:20 +08:00
|
|
|
*> ( 1 + ( n - 1 )*abs( INCX ) ).
|
|
|
|
*> Before entry, the incremented array X must contain the n
|
|
|
|
*> element vector x. On exit, X is overwritten with the
|
2018-05-19 05:17:13 +08:00
|
|
|
*> transformed vector x.
|
2017-10-25 01:22:20 +08:00
|
|
|
*> \endverbatim
|
|
|
|
*>
|
|
|
|
*> \param[in] INCX
|
|
|
|
*> \verbatim
|
|
|
|
*> INCX is INTEGER
|
|
|
|
*> On entry, INCX specifies the increment for the elements of
|
|
|
|
*> X. INCX must not be zero.
|
|
|
|
*> \endverbatim
|
|
|
|
*
|
|
|
|
* Authors:
|
|
|
|
* ========
|
|
|
|
*
|
2018-05-19 05:17:13 +08:00
|
|
|
*> \author Univ. of Tennessee
|
|
|
|
*> \author Univ. of California Berkeley
|
|
|
|
*> \author Univ. of Colorado Denver
|
|
|
|
*> \author NAG Ltd.
|
2017-10-25 01:22:20 +08:00
|
|
|
*
|
2018-05-19 05:17:13 +08:00
|
|
|
*> \date December 2016
|
2017-10-25 01:22:20 +08:00
|
|
|
*
|
|
|
|
*> \ingroup complex16_blas_level2
|
|
|
|
*
|
|
|
|
*> \par Further Details:
|
|
|
|
* =====================
|
|
|
|
*>
|
|
|
|
*> \verbatim
|
|
|
|
*>
|
|
|
|
*> Level 2 Blas routine.
|
|
|
|
*> The vector and matrix arguments are not referenced when N = 0, or M = 0
|
|
|
|
*>
|
|
|
|
*> -- Written on 22-October-1986.
|
|
|
|
*> Jack Dongarra, Argonne National Lab.
|
|
|
|
*> Jeremy Du Croz, Nag Central Office.
|
|
|
|
*> Sven Hammarling, Nag Central Office.
|
|
|
|
*> Richard Hanson, Sandia National Labs.
|
|
|
|
*> \endverbatim
|
|
|
|
*>
|
|
|
|
* =====================================================================
|
|
|
|
SUBROUTINE ZTRMV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
|
|
|
|
*
|
2018-05-19 05:17:13 +08:00
|
|
|
* -- Reference BLAS level2 routine (version 3.7.0) --
|
2017-10-25 01:22:20 +08:00
|
|
|
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
|
|
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
2018-05-19 05:17:13 +08:00
|
|
|
* December 2016
|
2017-10-25 01:22:20 +08:00
|
|
|
*
|
|
|
|
* .. Scalar Arguments ..
|
|
|
|
INTEGER INCX,LDA,N
|
|
|
|
CHARACTER DIAG,TRANS,UPLO
|
|
|
|
* ..
|
|
|
|
* .. Array Arguments ..
|
|
|
|
COMPLEX*16 A(LDA,*),X(*)
|
|
|
|
* ..
|
|
|
|
*
|
|
|
|
* =====================================================================
|
|
|
|
*
|
|
|
|
* .. Parameters ..
|
|
|
|
COMPLEX*16 ZERO
|
|
|
|
PARAMETER (ZERO= (0.0D+0,0.0D+0))
|
|
|
|
* ..
|
|
|
|
* .. Local Scalars ..
|
|
|
|
COMPLEX*16 TEMP
|
|
|
|
INTEGER I,INFO,IX,J,JX,KX
|
|
|
|
LOGICAL NOCONJ,NOUNIT
|
|
|
|
* ..
|
|
|
|
* .. External Functions ..
|
|
|
|
LOGICAL LSAME
|
|
|
|
EXTERNAL LSAME
|
|
|
|
* ..
|
|
|
|
* .. External Subroutines ..
|
|
|
|
EXTERNAL XERBLA
|
|
|
|
* ..
|
|
|
|
* .. Intrinsic Functions ..
|
|
|
|
INTRINSIC DCONJG,MAX
|
|
|
|
* ..
|
|
|
|
*
|
|
|
|
* Test the input parameters.
|
|
|
|
*
|
|
|
|
INFO = 0
|
|
|
|
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
|
|
|
|
INFO = 1
|
|
|
|
ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
|
|
|
|
+ .NOT.LSAME(TRANS,'C')) THEN
|
|
|
|
INFO = 2
|
|
|
|
ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
|
|
|
|
INFO = 3
|
|
|
|
ELSE IF (N.LT.0) THEN
|
|
|
|
INFO = 4
|
|
|
|
ELSE IF (LDA.LT.MAX(1,N)) THEN
|
|
|
|
INFO = 6
|
|
|
|
ELSE IF (INCX.EQ.0) THEN
|
|
|
|
INFO = 8
|
|
|
|
END IF
|
|
|
|
IF (INFO.NE.0) THEN
|
|
|
|
CALL XERBLA('ZTRMV ',INFO)
|
|
|
|
RETURN
|
|
|
|
END IF
|
|
|
|
*
|
|
|
|
* Quick return if possible.
|
|
|
|
*
|
|
|
|
IF (N.EQ.0) RETURN
|
|
|
|
*
|
|
|
|
NOCONJ = LSAME(TRANS,'T')
|
|
|
|
NOUNIT = LSAME(DIAG,'N')
|
|
|
|
*
|
|
|
|
* Set up the start point in X if the increment is not unity. This
|
|
|
|
* will be ( N - 1 )*INCX too small for descending loops.
|
|
|
|
*
|
|
|
|
IF (INCX.LE.0) THEN
|
|
|
|
KX = 1 - (N-1)*INCX
|
|
|
|
ELSE IF (INCX.NE.1) THEN
|
|
|
|
KX = 1
|
|
|
|
END IF
|
|
|
|
*
|
|
|
|
* Start the operations. In this version the elements of A are
|
|
|
|
* accessed sequentially with one pass through A.
|
|
|
|
*
|
|
|
|
IF (LSAME(TRANS,'N')) THEN
|
|
|
|
*
|
|
|
|
* Form x := A*x.
|
|
|
|
*
|
|
|
|
IF (LSAME(UPLO,'U')) THEN
|
|
|
|
IF (INCX.EQ.1) THEN
|
|
|
|
DO 20 J = 1,N
|
|
|
|
IF (X(J).NE.ZERO) THEN
|
|
|
|
TEMP = X(J)
|
|
|
|
DO 10 I = 1,J - 1
|
|
|
|
X(I) = X(I) + TEMP*A(I,J)
|
|
|
|
10 CONTINUE
|
|
|
|
IF (NOUNIT) X(J) = X(J)*A(J,J)
|
|
|
|
END IF
|
|
|
|
20 CONTINUE
|
|
|
|
ELSE
|
|
|
|
JX = KX
|
|
|
|
DO 40 J = 1,N
|
|
|
|
IF (X(JX).NE.ZERO) THEN
|
|
|
|
TEMP = X(JX)
|
|
|
|
IX = KX
|
|
|
|
DO 30 I = 1,J - 1
|
|
|
|
X(IX) = X(IX) + TEMP*A(I,J)
|
|
|
|
IX = IX + INCX
|
|
|
|
30 CONTINUE
|
|
|
|
IF (NOUNIT) X(JX) = X(JX)*A(J,J)
|
|
|
|
END IF
|
|
|
|
JX = JX + INCX
|
|
|
|
40 CONTINUE
|
|
|
|
END IF
|
|
|
|
ELSE
|
|
|
|
IF (INCX.EQ.1) THEN
|
|
|
|
DO 60 J = N,1,-1
|
|
|
|
IF (X(J).NE.ZERO) THEN
|
|
|
|
TEMP = X(J)
|
|
|
|
DO 50 I = N,J + 1,-1
|
|
|
|
X(I) = X(I) + TEMP*A(I,J)
|
|
|
|
50 CONTINUE
|
|
|
|
IF (NOUNIT) X(J) = X(J)*A(J,J)
|
|
|
|
END IF
|
|
|
|
60 CONTINUE
|
|
|
|
ELSE
|
|
|
|
KX = KX + (N-1)*INCX
|
|
|
|
JX = KX
|
|
|
|
DO 80 J = N,1,-1
|
|
|
|
IF (X(JX).NE.ZERO) THEN
|
|
|
|
TEMP = X(JX)
|
|
|
|
IX = KX
|
|
|
|
DO 70 I = N,J + 1,-1
|
|
|
|
X(IX) = X(IX) + TEMP*A(I,J)
|
|
|
|
IX = IX - INCX
|
|
|
|
70 CONTINUE
|
|
|
|
IF (NOUNIT) X(JX) = X(JX)*A(J,J)
|
|
|
|
END IF
|
|
|
|
JX = JX - INCX
|
|
|
|
80 CONTINUE
|
|
|
|
END IF
|
|
|
|
END IF
|
|
|
|
ELSE
|
|
|
|
*
|
|
|
|
* Form x := A**T*x or x := A**H*x.
|
|
|
|
*
|
|
|
|
IF (LSAME(UPLO,'U')) THEN
|
|
|
|
IF (INCX.EQ.1) THEN
|
|
|
|
DO 110 J = N,1,-1
|
|
|
|
TEMP = X(J)
|
|
|
|
IF (NOCONJ) THEN
|
|
|
|
IF (NOUNIT) TEMP = TEMP*A(J,J)
|
|
|
|
DO 90 I = J - 1,1,-1
|
|
|
|
TEMP = TEMP + A(I,J)*X(I)
|
|
|
|
90 CONTINUE
|
|
|
|
ELSE
|
|
|
|
IF (NOUNIT) TEMP = TEMP*DCONJG(A(J,J))
|
|
|
|
DO 100 I = J - 1,1,-1
|
|
|
|
TEMP = TEMP + DCONJG(A(I,J))*X(I)
|
|
|
|
100 CONTINUE
|
|
|
|
END IF
|
|
|
|
X(J) = TEMP
|
|
|
|
110 CONTINUE
|
|
|
|
ELSE
|
|
|
|
JX = KX + (N-1)*INCX
|
|
|
|
DO 140 J = N,1,-1
|
|
|
|
TEMP = X(JX)
|
|
|
|
IX = JX
|
|
|
|
IF (NOCONJ) THEN
|
|
|
|
IF (NOUNIT) TEMP = TEMP*A(J,J)
|
|
|
|
DO 120 I = J - 1,1,-1
|
|
|
|
IX = IX - INCX
|
|
|
|
TEMP = TEMP + A(I,J)*X(IX)
|
|
|
|
120 CONTINUE
|
|
|
|
ELSE
|
|
|
|
IF (NOUNIT) TEMP = TEMP*DCONJG(A(J,J))
|
|
|
|
DO 130 I = J - 1,1,-1
|
|
|
|
IX = IX - INCX
|
|
|
|
TEMP = TEMP + DCONJG(A(I,J))*X(IX)
|
|
|
|
130 CONTINUE
|
|
|
|
END IF
|
|
|
|
X(JX) = TEMP
|
|
|
|
JX = JX - INCX
|
|
|
|
140 CONTINUE
|
|
|
|
END IF
|
|
|
|
ELSE
|
|
|
|
IF (INCX.EQ.1) THEN
|
|
|
|
DO 170 J = 1,N
|
|
|
|
TEMP = X(J)
|
|
|
|
IF (NOCONJ) THEN
|
|
|
|
IF (NOUNIT) TEMP = TEMP*A(J,J)
|
|
|
|
DO 150 I = J + 1,N
|
|
|
|
TEMP = TEMP + A(I,J)*X(I)
|
|
|
|
150 CONTINUE
|
|
|
|
ELSE
|
|
|
|
IF (NOUNIT) TEMP = TEMP*DCONJG(A(J,J))
|
|
|
|
DO 160 I = J + 1,N
|
|
|
|
TEMP = TEMP + DCONJG(A(I,J))*X(I)
|
|
|
|
160 CONTINUE
|
|
|
|
END IF
|
|
|
|
X(J) = TEMP
|
|
|
|
170 CONTINUE
|
|
|
|
ELSE
|
|
|
|
JX = KX
|
|
|
|
DO 200 J = 1,N
|
|
|
|
TEMP = X(JX)
|
|
|
|
IX = JX
|
|
|
|
IF (NOCONJ) THEN
|
|
|
|
IF (NOUNIT) TEMP = TEMP*A(J,J)
|
|
|
|
DO 180 I = J + 1,N
|
|
|
|
IX = IX + INCX
|
|
|
|
TEMP = TEMP + A(I,J)*X(IX)
|
|
|
|
180 CONTINUE
|
|
|
|
ELSE
|
|
|
|
IF (NOUNIT) TEMP = TEMP*DCONJG(A(J,J))
|
|
|
|
DO 190 I = J + 1,N
|
|
|
|
IX = IX + INCX
|
|
|
|
TEMP = TEMP + DCONJG(A(I,J))*X(IX)
|
|
|
|
190 CONTINUE
|
|
|
|
END IF
|
|
|
|
X(JX) = TEMP
|
|
|
|
JX = JX + INCX
|
|
|
|
200 CONTINUE
|
|
|
|
END IF
|
|
|
|
END IF
|
|
|
|
END IF
|
|
|
|
*
|
|
|
|
RETURN
|
|
|
|
*
|
|
|
|
* End of ZTRMV .
|
|
|
|
*
|
|
|
|
END
|