2014-10-30 23:22:01 +08:00
|
|
|
*> \brief \b DLAEV2 computes the eigenvalues and eigenvectors of a 2-by-2 symmetric/Hermitian matrix.
|
|
|
|
*
|
|
|
|
* =========== DOCUMENTATION ===========
|
|
|
|
*
|
2018-05-19 05:17:13 +08:00
|
|
|
* Online html documentation available at
|
|
|
|
* http://www.netlib.org/lapack/explore-html/
|
2014-10-30 23:22:01 +08:00
|
|
|
*
|
|
|
|
*> \htmlonly
|
2018-05-19 05:17:13 +08:00
|
|
|
*> Download DLAEV2 + dependencies
|
|
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaev2.f">
|
|
|
|
*> [TGZ]</a>
|
|
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaev2.f">
|
|
|
|
*> [ZIP]</a>
|
|
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaev2.f">
|
2014-10-30 23:22:01 +08:00
|
|
|
*> [TXT]</a>
|
2018-05-19 05:17:13 +08:00
|
|
|
*> \endhtmlonly
|
2014-10-30 23:22:01 +08:00
|
|
|
*
|
|
|
|
* Definition:
|
|
|
|
* ===========
|
|
|
|
*
|
|
|
|
* SUBROUTINE DLAEV2( A, B, C, RT1, RT2, CS1, SN1 )
|
2018-05-19 05:17:13 +08:00
|
|
|
*
|
2014-10-30 23:22:01 +08:00
|
|
|
* .. Scalar Arguments ..
|
|
|
|
* DOUBLE PRECISION A, B, C, CS1, RT1, RT2, SN1
|
|
|
|
* ..
|
2018-05-19 05:17:13 +08:00
|
|
|
*
|
2014-10-30 23:22:01 +08:00
|
|
|
*
|
|
|
|
*> \par Purpose:
|
|
|
|
* =============
|
|
|
|
*>
|
|
|
|
*> \verbatim
|
|
|
|
*>
|
|
|
|
*> DLAEV2 computes the eigendecomposition of a 2-by-2 symmetric matrix
|
|
|
|
*> [ A B ]
|
|
|
|
*> [ B C ].
|
|
|
|
*> On return, RT1 is the eigenvalue of larger absolute value, RT2 is the
|
|
|
|
*> eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right
|
|
|
|
*> eigenvector for RT1, giving the decomposition
|
|
|
|
*>
|
|
|
|
*> [ CS1 SN1 ] [ A B ] [ CS1 -SN1 ] = [ RT1 0 ]
|
|
|
|
*> [-SN1 CS1 ] [ B C ] [ SN1 CS1 ] [ 0 RT2 ].
|
|
|
|
*> \endverbatim
|
|
|
|
*
|
|
|
|
* Arguments:
|
|
|
|
* ==========
|
|
|
|
*
|
|
|
|
*> \param[in] A
|
|
|
|
*> \verbatim
|
|
|
|
*> A is DOUBLE PRECISION
|
|
|
|
*> The (1,1) element of the 2-by-2 matrix.
|
|
|
|
*> \endverbatim
|
|
|
|
*>
|
|
|
|
*> \param[in] B
|
|
|
|
*> \verbatim
|
|
|
|
*> B is DOUBLE PRECISION
|
|
|
|
*> The (1,2) element and the conjugate of the (2,1) element of
|
|
|
|
*> the 2-by-2 matrix.
|
|
|
|
*> \endverbatim
|
|
|
|
*>
|
|
|
|
*> \param[in] C
|
|
|
|
*> \verbatim
|
|
|
|
*> C is DOUBLE PRECISION
|
|
|
|
*> The (2,2) element of the 2-by-2 matrix.
|
|
|
|
*> \endverbatim
|
|
|
|
*>
|
|
|
|
*> \param[out] RT1
|
|
|
|
*> \verbatim
|
|
|
|
*> RT1 is DOUBLE PRECISION
|
|
|
|
*> The eigenvalue of larger absolute value.
|
|
|
|
*> \endverbatim
|
|
|
|
*>
|
|
|
|
*> \param[out] RT2
|
|
|
|
*> \verbatim
|
|
|
|
*> RT2 is DOUBLE PRECISION
|
|
|
|
*> The eigenvalue of smaller absolute value.
|
|
|
|
*> \endverbatim
|
|
|
|
*>
|
|
|
|
*> \param[out] CS1
|
|
|
|
*> \verbatim
|
|
|
|
*> CS1 is DOUBLE PRECISION
|
|
|
|
*> \endverbatim
|
|
|
|
*>
|
|
|
|
*> \param[out] SN1
|
|
|
|
*> \verbatim
|
|
|
|
*> SN1 is DOUBLE PRECISION
|
|
|
|
*> The vector (CS1, SN1) is a unit right eigenvector for RT1.
|
|
|
|
*> \endverbatim
|
|
|
|
*
|
|
|
|
* Authors:
|
|
|
|
* ========
|
|
|
|
*
|
2018-05-19 05:17:13 +08:00
|
|
|
*> \author Univ. of Tennessee
|
|
|
|
*> \author Univ. of California Berkeley
|
|
|
|
*> \author Univ. of Colorado Denver
|
|
|
|
*> \author NAG Ltd.
|
2014-10-30 23:22:01 +08:00
|
|
|
*
|
2018-05-19 05:17:13 +08:00
|
|
|
*> \date December 2016
|
2014-10-30 23:22:01 +08:00
|
|
|
*
|
2018-05-19 05:17:13 +08:00
|
|
|
*> \ingroup OTHERauxiliary
|
2014-10-30 23:22:01 +08:00
|
|
|
*
|
|
|
|
*> \par Further Details:
|
|
|
|
* =====================
|
|
|
|
*>
|
|
|
|
*> \verbatim
|
|
|
|
*>
|
|
|
|
*> RT1 is accurate to a few ulps barring over/underflow.
|
|
|
|
*>
|
|
|
|
*> RT2 may be inaccurate if there is massive cancellation in the
|
|
|
|
*> determinant A*C-B*B; higher precision or correctly rounded or
|
|
|
|
*> correctly truncated arithmetic would be needed to compute RT2
|
|
|
|
*> accurately in all cases.
|
|
|
|
*>
|
|
|
|
*> CS1 and SN1 are accurate to a few ulps barring over/underflow.
|
|
|
|
*>
|
|
|
|
*> Overflow is possible only if RT1 is within a factor of 5 of overflow.
|
|
|
|
*> Underflow is harmless if the input data is 0 or exceeds
|
|
|
|
*> underflow_threshold / macheps.
|
|
|
|
*> \endverbatim
|
|
|
|
*>
|
|
|
|
* =====================================================================
|
|
|
|
SUBROUTINE DLAEV2( A, B, C, RT1, RT2, CS1, SN1 )
|
|
|
|
*
|
2018-05-19 05:17:13 +08:00
|
|
|
* -- LAPACK auxiliary routine (version 3.7.0) --
|
2014-10-30 23:22:01 +08:00
|
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
2018-05-19 05:17:13 +08:00
|
|
|
* December 2016
|
2014-10-30 23:22:01 +08:00
|
|
|
*
|
|
|
|
* .. Scalar Arguments ..
|
|
|
|
DOUBLE PRECISION A, B, C, CS1, RT1, RT2, SN1
|
|
|
|
* ..
|
|
|
|
*
|
|
|
|
* =====================================================================
|
|
|
|
*
|
|
|
|
* .. Parameters ..
|
|
|
|
DOUBLE PRECISION ONE
|
|
|
|
PARAMETER ( ONE = 1.0D0 )
|
|
|
|
DOUBLE PRECISION TWO
|
|
|
|
PARAMETER ( TWO = 2.0D0 )
|
|
|
|
DOUBLE PRECISION ZERO
|
|
|
|
PARAMETER ( ZERO = 0.0D0 )
|
|
|
|
DOUBLE PRECISION HALF
|
|
|
|
PARAMETER ( HALF = 0.5D0 )
|
|
|
|
* ..
|
|
|
|
* .. Local Scalars ..
|
|
|
|
INTEGER SGN1, SGN2
|
|
|
|
DOUBLE PRECISION AB, ACMN, ACMX, ACS, ADF, CS, CT, DF, RT, SM,
|
|
|
|
$ TB, TN
|
|
|
|
* ..
|
|
|
|
* .. Intrinsic Functions ..
|
|
|
|
INTRINSIC ABS, SQRT
|
|
|
|
* ..
|
|
|
|
* .. Executable Statements ..
|
|
|
|
*
|
|
|
|
* Compute the eigenvalues
|
|
|
|
*
|
|
|
|
SM = A + C
|
|
|
|
DF = A - C
|
|
|
|
ADF = ABS( DF )
|
|
|
|
TB = B + B
|
|
|
|
AB = ABS( TB )
|
|
|
|
IF( ABS( A ).GT.ABS( C ) ) THEN
|
|
|
|
ACMX = A
|
|
|
|
ACMN = C
|
|
|
|
ELSE
|
|
|
|
ACMX = C
|
|
|
|
ACMN = A
|
|
|
|
END IF
|
|
|
|
IF( ADF.GT.AB ) THEN
|
|
|
|
RT = ADF*SQRT( ONE+( AB / ADF )**2 )
|
|
|
|
ELSE IF( ADF.LT.AB ) THEN
|
|
|
|
RT = AB*SQRT( ONE+( ADF / AB )**2 )
|
|
|
|
ELSE
|
|
|
|
*
|
|
|
|
* Includes case AB=ADF=0
|
|
|
|
*
|
|
|
|
RT = AB*SQRT( TWO )
|
|
|
|
END IF
|
|
|
|
IF( SM.LT.ZERO ) THEN
|
|
|
|
RT1 = HALF*( SM-RT )
|
|
|
|
SGN1 = -1
|
|
|
|
*
|
|
|
|
* Order of execution important.
|
|
|
|
* To get fully accurate smaller eigenvalue,
|
|
|
|
* next line needs to be executed in higher precision.
|
|
|
|
*
|
|
|
|
RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
|
|
|
|
ELSE IF( SM.GT.ZERO ) THEN
|
|
|
|
RT1 = HALF*( SM+RT )
|
|
|
|
SGN1 = 1
|
|
|
|
*
|
|
|
|
* Order of execution important.
|
|
|
|
* To get fully accurate smaller eigenvalue,
|
|
|
|
* next line needs to be executed in higher precision.
|
|
|
|
*
|
|
|
|
RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
|
|
|
|
ELSE
|
|
|
|
*
|
|
|
|
* Includes case RT1 = RT2 = 0
|
|
|
|
*
|
|
|
|
RT1 = HALF*RT
|
|
|
|
RT2 = -HALF*RT
|
|
|
|
SGN1 = 1
|
|
|
|
END IF
|
|
|
|
*
|
|
|
|
* Compute the eigenvector
|
|
|
|
*
|
|
|
|
IF( DF.GE.ZERO ) THEN
|
|
|
|
CS = DF + RT
|
|
|
|
SGN2 = 1
|
|
|
|
ELSE
|
|
|
|
CS = DF - RT
|
|
|
|
SGN2 = -1
|
|
|
|
END IF
|
|
|
|
ACS = ABS( CS )
|
|
|
|
IF( ACS.GT.AB ) THEN
|
|
|
|
CT = -TB / CS
|
|
|
|
SN1 = ONE / SQRT( ONE+CT*CT )
|
|
|
|
CS1 = CT*SN1
|
|
|
|
ELSE
|
|
|
|
IF( AB.EQ.ZERO ) THEN
|
|
|
|
CS1 = ONE
|
|
|
|
SN1 = ZERO
|
|
|
|
ELSE
|
|
|
|
TN = -CS / TB
|
|
|
|
CS1 = ONE / SQRT( ONE+TN*TN )
|
|
|
|
SN1 = TN*CS1
|
|
|
|
END IF
|
|
|
|
END IF
|
|
|
|
IF( SGN1.EQ.SGN2 ) THEN
|
|
|
|
TN = CS1
|
|
|
|
CS1 = -SN1
|
|
|
|
SN1 = TN
|
|
|
|
END IF
|
|
|
|
RETURN
|
|
|
|
*
|
|
|
|
* End of DLAEV2
|
|
|
|
*
|
|
|
|
END
|