2010-10-26 04:29:58 +08:00
|
|
|
<HTML>
|
|
|
|
<CENTER><A HREF = "http://lammps.sandia.gov">LAMMPS WWW Site</A> - <A HREF = "Manual.html">LAMMPS Documentation</A> - <A HREF = "Section_commands.html#comm">LAMMPS Commands</A>
|
|
|
|
</CENTER>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<HR>
|
|
|
|
|
|
|
|
<H3>pair_style hbond/dreiding/lj command
|
|
|
|
</H3>
|
2011-10-07 01:32:51 +08:00
|
|
|
<H3>pair_style hbond/dreiding/lj/omp command
|
|
|
|
</H3>
|
2010-10-26 04:29:58 +08:00
|
|
|
<H3>pair_style hbond/dreiding/morse command
|
|
|
|
</H3>
|
2011-10-07 01:32:51 +08:00
|
|
|
<H3>pair_style hbond/dreiding/morse/omp command
|
|
|
|
</H3>
|
2010-10-26 04:29:58 +08:00
|
|
|
<P><B>Syntax:</B>
|
|
|
|
</P>
|
2011-05-28 07:59:19 +08:00
|
|
|
<PRE>pair_style style N inner_distance_cutoff outer_distance_cutoff angle_cutof
|
2010-10-26 04:29:58 +08:00
|
|
|
</PRE>
|
|
|
|
<UL><LI>style = <I>hbond/dreiding/lj</I> or <I>hbond/dreiding/morse</I>
|
|
|
|
<LI>n = cosine angle periodicity
|
2011-05-28 07:59:19 +08:00
|
|
|
<LI>inner_distance_cutoff = global inner spline cutoff for Donor-Acceptor interactions (distance units)
|
|
|
|
<LI>outer_distance_cutoff = global cutoff for Donor-Acceptor interactions (distance units)
|
2010-10-26 04:29:58 +08:00
|
|
|
<LI>angle_cutoff = global angle cutoff for Acceptor-Hydrogen-Donor
|
|
|
|
<LI>interactions (degrees)
|
|
|
|
</UL>
|
|
|
|
<P><B>Examples:</B>
|
|
|
|
</P>
|
2011-05-28 07:59:19 +08:00
|
|
|
<PRE>pair_style hbond/dreiding/lj 4 4.5 5.0 90
|
2010-10-26 04:34:40 +08:00
|
|
|
pair_coeff * * 3 i 100.0 3.1
|
2011-05-28 07:59:19 +08:00
|
|
|
pair_coeff * * 2*5 i 100.0 3.1 2 15.0 20.0 135.0
|
2010-10-26 04:29:58 +08:00
|
|
|
</PRE>
|
2011-05-28 07:59:19 +08:00
|
|
|
<PRE>pair_style hbond/dreiding/morse 2 3.0 4.6 75.0
|
2010-10-26 04:34:40 +08:00
|
|
|
pair_coeff * * 3 j 100.0 1.0 2.0
|
2011-05-28 07:59:19 +08:00
|
|
|
pair_coeff * * 2*5 j 100.0 1.0 2.0 4.0 6.0
|
2010-10-26 04:29:58 +08:00
|
|
|
</PRE>
|
|
|
|
<P><B>Description:</B>
|
|
|
|
</P>
|
|
|
|
<P>The <I>hbond/dreiding</I> styles compute the Acceptor-Hydrogen-Donor (AHD)
|
|
|
|
3-body hydrogen bond interaction for the
|
2011-08-26 01:01:01 +08:00
|
|
|
<A HREF = "Section_howto.html#howto_4">DREIDING</A> force field, given by:
|
2010-10-26 04:29:58 +08:00
|
|
|
</P>
|
|
|
|
<CENTER><IMG SRC = "Eqs/pair_hbond_dreiding.jpg">
|
|
|
|
</CENTER>
|
2011-05-28 07:59:19 +08:00
|
|
|
<P>where Rin is the inner spline distance cutoff, Rout is the outer
|
|
|
|
distance cutoff, theta_c is the angle cutoff, and n is the cosine
|
|
|
|
periodicity.
|
2010-10-26 04:29:58 +08:00
|
|
|
</P>
|
|
|
|
<P>Here, <I>r</I> is the radial distance between the donor (D) and acceptor
|
|
|
|
(A) atoms and <I>theta</I> is the bond angle between the acceptor, the
|
|
|
|
hydrogen (H) and the donor atoms:
|
|
|
|
</P>
|
|
|
|
<CENTER><IMG SRC = "Eqs/dreiding_hbond.jpg">
|
|
|
|
</CENTER>
|
|
|
|
<P>These 3-body interactions can be defined for pairs of acceptor and
|
|
|
|
donor atoms, based on atom types. For each donor/acceptor atom pair,
|
|
|
|
the 3rd atom in the interaction is a hydrogen permanently bonded to
|
|
|
|
the donor atom, e.g. in a bond list read in from a data file via the
|
|
|
|
<A HREF = "read_data.html">read_data</A> command. The atom types of possible
|
|
|
|
hydrogen atoms for each donor/acceptor type pair are specified by the
|
|
|
|
<A HREF = "pair_coeff.html">pair_coeff</A> command (see below).
|
|
|
|
</P>
|
|
|
|
<P>Style <I>hbond/dreiding/lj</I> is the original DREIDING potential of
|
|
|
|
<A HREF = "#Mayo">(Mayo)</A>. It uses a LJ 12/10 functional for the Donor-Acceptor
|
|
|
|
interactions. To match the results in the original paper, use n = 4.
|
|
|
|
</P>
|
|
|
|
<P>Style <I>hbond/dreiding/morse</I> is an improved version using a Morse
|
|
|
|
potential for the Donor-Acceptor interactions. <A HREF = "#Liu">(Liu)</A> showed
|
|
|
|
that the Morse form gives improved results for Dendrimer simulations,
|
|
|
|
when n = 2.
|
|
|
|
</P>
|
2011-08-26 01:01:01 +08:00
|
|
|
<P>See this <A HREF = "Section_howto.html#howto_4">howto section</A> of the manual for
|
|
|
|
more information on the DREIDING forcefield.
|
2010-10-26 04:29:58 +08:00
|
|
|
</P>
|
|
|
|
<P>Because the Dreiding hydrogen bond potential is only one portion of
|
|
|
|
an overall force field which typically includes other pairwise
|
|
|
|
interactions, it is common to use it as a sub-style in a <A HREF = "pair_hybrid.html">pair_style
|
|
|
|
hybrid or hybrid/overlay</A> command.
|
|
|
|
</P>
|
|
|
|
<P>The following coefficients must be defined for pairs of eligible
|
|
|
|
donor/acceptor types via the <A HREF = "pair_coeff.html">pair_coeff</A> command as
|
|
|
|
in the examples above.
|
|
|
|
</P>
|
|
|
|
<P>IMPORTANT NOTE: Unlike other pair styles and their associated
|
|
|
|
<A HREF = "pair_coeff.html">pair_coeff</A> commands, you do not need to specify
|
|
|
|
pair_coeff settings for all possible I,J type pairs. Only I,J type
|
|
|
|
pairs for atoms which act as joint donors/acceptors need to be
|
|
|
|
specified; all other type pairs are assumed to be inactive.
|
|
|
|
</P>
|
|
|
|
<P>IMPORTANT NOTE: A <A HREF = "pair_coeff.html">pair_coeff</A> command can be
|
|
|
|
speficied multiple times for the same donor/acceptor type pair. This
|
|
|
|
enables multiple hydrogen types to be assigned to the same
|
|
|
|
donor/acceptor type pair. For other pair_styles, if the pair_coeff
|
|
|
|
command is re-used for the same I.J type pair, the settings for that
|
|
|
|
type pair are overwritten. For the hydrogen bond potentials this is
|
|
|
|
not the case; the settings are cummulative. This means the only way
|
|
|
|
to turn off a previous setting, is to re-use the pair_style command
|
|
|
|
and start over.
|
|
|
|
</P>
|
|
|
|
<P>For the <I>hbond/dreiding/lj</I> style the list of coefficients is as
|
|
|
|
follows:
|
|
|
|
</P>
|
|
|
|
<UL><LI>K = hydrogen atom type = 1 to Ntypes
|
|
|
|
<LI>donor flag = <I>i</I> or <I>j</I>
|
|
|
|
<LI>epsilon (energy units)
|
|
|
|
<LI>sigma (distance units)
|
|
|
|
<LI>n = exponent in formula above
|
|
|
|
<LI>distance cutoff (distance units)
|
|
|
|
<LI>angle cutoff (degrees)
|
|
|
|
</UL>
|
|
|
|
<P>For the <I>hbond/dreiding/morse</I> style the list of coefficients is as
|
|
|
|
follows:
|
|
|
|
</P>
|
|
|
|
<UL><LI>K = hydrogen atom type = 1 to Ntypes
|
|
|
|
<LI>donor flag = <I>i</I> or <I>j</I>
|
|
|
|
<LI>D0 (energy units)
|
|
|
|
<LI>alpha (1/distance units)
|
|
|
|
<LI>r0 (distance units)
|
|
|
|
<LI>n = exponent in formula above
|
|
|
|
<LI>distance cutoff (distance units)
|
|
|
|
<LI>angle cutoff (degrees)
|
|
|
|
</UL>
|
|
|
|
<P>A single hydrogen atom type K can be specified, or a wild-card
|
|
|
|
asterisk can be used in place of or in conjunction with the K
|
|
|
|
arguments to select multiple types as hydrogens. This takes the form
|
|
|
|
"*" or "*n" or "n*" or "m*n". See the <A HREF = "pair_coeff">pair_coeff</A> command
|
|
|
|
doc page for details.
|
|
|
|
</P>
|
|
|
|
<P>If the donor flag is <I>i</I>, then the atom of type I in the pair_coeff
|
|
|
|
command is treated as the donor, and J is the acceptor. If the donor
|
|
|
|
flag is <I>j</I>, then the atom of type J in the pair_coeff command is
|
|
|
|
treated as the donor and I is the donor. This option is required
|
|
|
|
because the <A HREF = "pair_coeff.html">pair_coeff</A> command requires that I <= J.
|
|
|
|
</P>
|
|
|
|
<P>Epsilon and sigma are settings for the hydrogen bond potential based
|
|
|
|
on a Lennard-Jones functional form. Note that sigma is defined as the
|
|
|
|
zero-crossing distance for the potential, not as the energy minimum at
|
|
|
|
2^(1/6) sigma.
|
|
|
|
</P>
|
|
|
|
<P>D0 and alpha and r0 are settings for the hydrogen bond potential based
|
|
|
|
on a Morse functional form.
|
|
|
|
</P>
|
|
|
|
<P>The last 3 coefficients for both styles are optional. If not
|
|
|
|
specified, the global n, distance cutoff, and angle cutoff specified
|
|
|
|
in the pair_style command are used. If you wish to only override the
|
|
|
|
2nd or 3rd optional parameter, you must also specify the preceding
|
|
|
|
optional parameters.
|
|
|
|
</P>
|
|
|
|
<HR>
|
|
|
|
|
2011-12-14 04:35:35 +08:00
|
|
|
<P>Styles with a <I>cuda</I>, <I>gpu</I>, <I>omp</I>, or <I>opt</I> suffix are functionally
|
|
|
|
the same as the corresponding style without the suffix. They have
|
|
|
|
been optimized to run faster, depending on your available hardware, as
|
|
|
|
discussed in <A HREF = "Section_accelerate.html">Section_accelerate</A> of the
|
|
|
|
manual. The accelerated styles take the same arguments and should
|
|
|
|
produce the same results, except for round-off and precision issues.
|
2011-10-07 01:32:51 +08:00
|
|
|
</P>
|
|
|
|
<P>These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT
|
|
|
|
packages, respectively. They are only enabled if LAMMPS was built with
|
|
|
|
those packages. See the <A HREF = "Section_start.html#start_3">Making LAMMPS</A>
|
|
|
|
section for more info.
|
|
|
|
</P>
|
|
|
|
<P>You can specify the accelerated styles explicitly in your input script
|
2012-01-28 07:39:14 +08:00
|
|
|
by including their suffix, or you can use the <A HREF = "Section_start.html#start_7">-suffix command-line
|
2011-10-07 01:32:51 +08:00
|
|
|
switch</A> when you invoke LAMMPS, or you can
|
|
|
|
use the <A HREF = "suffix.html">suffix</A> command in your input script.
|
|
|
|
</P>
|
2011-12-14 04:35:35 +08:00
|
|
|
<P>See <A HREF = "Section_accelerate.html">Section_accelerate</A> of the manual for
|
|
|
|
more instructions on how to use the accelerated styles effectively.
|
2011-10-07 01:32:51 +08:00
|
|
|
</P>
|
|
|
|
<HR>
|
|
|
|
|
2010-10-26 04:29:58 +08:00
|
|
|
<P><B>Mixing, shift, table, tail correction, restart, rRESPA info</B>:
|
|
|
|
</P>
|
|
|
|
<P>These pair styles do not support mixing. You must explicitly identify
|
|
|
|
each donor/acceptor type pair.
|
|
|
|
</P>
|
|
|
|
<P>These styles do not support the <A HREF = "pair_modify.html">pair_modify</A> shift
|
|
|
|
option for the energy of the interactions.
|
|
|
|
</P>
|
|
|
|
<P>The <A HREF = "pair_modify.html">pair_modify</A> table option is not relevant for
|
|
|
|
these pair styles.
|
|
|
|
</P>
|
|
|
|
<P>These pair styles do not support the <A HREF = "pair_modify.html">pair_modify</A>
|
|
|
|
tail option for adding long-range tail corrections to energy and
|
|
|
|
pressure.
|
|
|
|
</P>
|
|
|
|
<P>These pair styles do not write their information to <A HREF = "restart.html">binary restart
|
|
|
|
files</A>, so pair_style and pair_coeff commands need to be
|
|
|
|
re-specified in an input script that reads a restart file.
|
|
|
|
</P>
|
|
|
|
<P>These pair styles can only be used via the <I>pair</I> keyword of the
|
|
|
|
<A HREF = "run_style.html">run_style respa</A> command. They do not support the
|
|
|
|
<I>inner</I>, <I>middle</I>, <I>outer</I> keywords.
|
|
|
|
</P>
|
2011-05-28 07:59:19 +08:00
|
|
|
<P>These pair styles tally a count of how many hydrogen bonding
|
|
|
|
interactions they calculate each timestep and the hbond energy. These
|
|
|
|
quantities can be accessed via the <A HREF = "compute_pair.html">compute pair</A>
|
|
|
|
command as a vector of values of length 2.
|
2010-10-26 04:29:58 +08:00
|
|
|
</P>
|
2011-05-28 07:59:19 +08:00
|
|
|
<P>To print these quantities to the log file (with a descriptive column
|
2010-10-26 04:29:58 +08:00
|
|
|
heading) the following commands could be included in an input script:
|
|
|
|
</P>
|
|
|
|
<PRE>compute hb all pair hbond/dreiding/lj
|
2011-05-28 07:59:19 +08:00
|
|
|
variable n_hbond equal c_hb[1] #number hbonds
|
|
|
|
variable E_hbond equal c_hb[2] #hbond energy
|
|
|
|
thermo_style custom step temp epair v_E_hbond
|
2010-10-26 04:29:58 +08:00
|
|
|
</PRE>
|
|
|
|
<HR>
|
|
|
|
|
|
|
|
<P><B>Restrictions:</B> none
|
|
|
|
</P>
|
|
|
|
<P><B>Related commands:</B>
|
|
|
|
</P>
|
|
|
|
<P><A HREF = "pair_coeff.html">pair_coeff</A>
|
|
|
|
</P>
|
|
|
|
<P><B>Default:</B> none
|
|
|
|
</P>
|
|
|
|
<HR>
|
|
|
|
|
|
|
|
<A NAME = "Mayo"></A>
|
|
|
|
|
|
|
|
<P><B>(Mayo)</B> Mayo, Olfason, Goddard III, J Phys Chem, 94, 8897-8909
|
|
|
|
(1990).
|
|
|
|
</P>
|
|
|
|
<A NAME = "Liu"></A>
|
|
|
|
|
|
|
|
<P><B>(Liu)</B> Liu, Bryantsev, Diallo, Goddard III, J. Am. Chem. Soc 131 (8)
|
|
|
|
2798 (2009)
|
|
|
|
</P>
|
|
|
|
</HTML>
|