forked from lijiext/lammps
85 lines
2.0 KiB
C
85 lines
2.0 KiB
C
|
//*****************************************************************
|
||
|
// Iterative template routine -- CG
|
||
|
//
|
||
|
// CG solves the symmetric positive definite linear
|
||
|
// system Ax=b using the Conjugate Gradient method.
|
||
|
//
|
||
|
// CG follows the algorithm described on p. 15 in the
|
||
|
// SIAM Templates book.
|
||
|
//
|
||
|
// The return value indicates convergence within max_iter (input)
|
||
|
// iterations (0), or no convergence within max_iter iterations (1).
|
||
|
//
|
||
|
// Upon successful return, output arguments have the following values:
|
||
|
//
|
||
|
// x -- approximate solution to Ax = b
|
||
|
// max_iter -- the number of iterations performed before the
|
||
|
// tolerance was reached
|
||
|
// tol -- the residual after the final iteration
|
||
|
//
|
||
|
//*****************************************************************
|
||
|
|
||
|
/**
|
||
|
* @class CG
|
||
|
* @brief Base class for solving the linear system Ax=b using the Conjugate Gradient method
|
||
|
*/
|
||
|
|
||
|
template < class Matrix, class Vector, class DataVector, class Preconditioner, class Real >
|
||
|
int
|
||
|
CG(const Matrix &A, Vector &x, const DataVector &b, const Preconditioner &M, int &max_iter, Real &tol) {
|
||
|
Real resid;
|
||
|
DenseVector<Real> p, z, q;
|
||
|
Real alpha, beta, rho, rho_1(0);
|
||
|
DenseVector<Real> tmp;
|
||
|
tmp.reset(b.size());
|
||
|
|
||
|
p.reset(b.size());
|
||
|
z.reset(b.size());
|
||
|
q.reset(b.size());
|
||
|
|
||
|
Real normb = b.norm();
|
||
|
DenseVector<Real> r;
|
||
|
tmp = A*x;
|
||
|
r = b - tmp;
|
||
|
// Implicit assumption that only diagonal matrices are being used for preconditioning
|
||
|
Preconditioner Minv = M.inv();
|
||
|
|
||
|
if (normb == 0.0)
|
||
|
normb = 1;
|
||
|
|
||
|
if ((resid = r.norm() / normb) <= tol) {
|
||
|
tol = resid;
|
||
|
max_iter = 0;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
for (int i = 0; i < max_iter; i++) {
|
||
|
z = Minv*r;
|
||
|
rho = r.dot(z);
|
||
|
|
||
|
if (i == 0)
|
||
|
p = z;
|
||
|
else {
|
||
|
beta = rho / rho_1;
|
||
|
tmp = p*beta;
|
||
|
p = z + tmp;
|
||
|
}
|
||
|
|
||
|
q = A*p;
|
||
|
alpha = rho / p.dot(q);
|
||
|
|
||
|
x += p*alpha;
|
||
|
r -= q*alpha;
|
||
|
|
||
|
if ((resid = r.norm() / normb) <= tol)
|
||
|
{
|
||
|
tol = resid;
|
||
|
max_iter = i+1;
|
||
|
return 0;
|
||
|
}
|
||
|
rho_1 = rho;
|
||
|
}
|
||
|
tol = resid;
|
||
|
return 1;
|
||
|
}
|