2014-10-30 23:22:01 +08:00
*> \brief \b DLANST returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric tridiagonal matrix.
*
* =========== DOCUMENTATION ===========
*
2018-05-19 05:17:13 +08:00
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
2014-10-30 23:22:01 +08:00
*
*> \htmlonly
2018-05-19 05:17:13 +08:00
*> Download DLANST + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlanst.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlanst.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlanst.f">
2014-10-30 23:22:01 +08:00
*> [TXT]</a>
2018-05-19 05:17:13 +08:00
*> \endhtmlonly
2014-10-30 23:22:01 +08:00
*
* Definition:
* ===========
*
* DOUBLE PRECISION FUNCTION DLANST( NORM, N, D, E )
2018-05-19 05:17:13 +08:00
*
2014-10-30 23:22:01 +08:00
* .. Scalar Arguments ..
* CHARACTER NORM
* INTEGER N
* ..
* .. Array Arguments ..
* DOUBLE PRECISION D( * ), E( * )
* ..
2018-05-19 05:17:13 +08:00
*
2014-10-30 23:22:01 +08:00
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DLANST returns the value of the one norm, or the Frobenius norm, or
*> the infinity norm, or the element of largest absolute value of a
*> real symmetric tridiagonal matrix A.
*> \endverbatim
*>
*> \return DLANST
*> \verbatim
*>
*> DLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm'
*> (
*> ( norm1(A), NORM = '1', 'O' or 'o'
*> (
*> ( normI(A), NORM = 'I' or 'i'
*> (
*> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
*>
*> where norm1 denotes the one norm of a matrix (maximum column sum),
*> normI denotes the infinity norm of a matrix (maximum row sum) and
*> normF denotes the Frobenius norm of a matrix (square root of sum of
*> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] NORM
*> \verbatim
*> NORM is CHARACTER*1
*> Specifies the value to be returned in DLANST as described
*> above.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0. When N = 0, DLANST is
*> set to zero.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*> D is DOUBLE PRECISION array, dimension (N)
*> The diagonal elements of A.
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*> E is DOUBLE PRECISION array, dimension (N-1)
*> The (n-1) sub-diagonal or super-diagonal elements of A.
*> \endverbatim
*
* Authors:
* ========
*
2018-05-19 05:17:13 +08:00
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
2014-10-30 23:22:01 +08:00
*
2018-05-19 05:17:13 +08:00
*> \date December 2016
2014-10-30 23:22:01 +08:00
*
2018-05-19 05:17:13 +08:00
*> \ingroup OTHERauxiliary
2014-10-30 23:22:01 +08:00
*
* =====================================================================
DOUBLE PRECISION FUNCTION DLANST ( NORM , N , D , E )
*
2018-05-19 05:17:13 +08:00
* -- LAPACK auxiliary routine (version 3.7.0) --
2014-10-30 23:22:01 +08:00
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
2018-05-19 05:17:13 +08:00
* December 2016
2014-10-30 23:22:01 +08:00
*
* .. Scalar Arguments ..
CHARACTER NORM
INTEGER N
* ..
* .. Array Arguments ..
DOUBLE PRECISION D ( * ) , E ( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE , ZERO
PARAMETER ( ONE = 1.0D+0 , ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I
DOUBLE PRECISION ANORM , SCALE , SUM
* ..
* .. External Functions ..
LOGICAL LSAME , DISNAN
EXTERNAL LSAME , DISNAN
* ..
* .. External Subroutines ..
EXTERNAL DLASSQ
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS , SQRT
* ..
* .. Executable Statements ..
*
IF ( N . LE . 0 ) THEN
ANORM = ZERO
ELSE IF ( LSAME ( NORM , 'M' ) ) THEN
*
* Find max(abs(A(i,j))).
*
ANORM = ABS ( D ( N ) )
DO 10 I = 1 , N - 1
SUM = ABS ( D ( I ) )
IF ( ANORM . LT . SUM . OR . DISNAN ( SUM ) ) ANORM = SUM
SUM = ABS ( E ( I ) )
IF ( ANORM . LT . SUM . OR . DISNAN ( SUM ) ) ANORM = SUM
10 CONTINUE
ELSE IF ( LSAME ( NORM , 'O' ) . OR . NORM . EQ . '1' . OR .
$ LSAME ( NORM , 'I' ) ) THEN
*
* Find norm1(A).
*
IF ( N . EQ . 1 ) THEN
ANORM = ABS ( D ( 1 ) )
ELSE
ANORM = ABS ( D ( 1 ) ) + ABS ( E ( 1 ) )
SUM = ABS ( E ( N - 1 ) ) + ABS ( D ( N ) )
IF ( ANORM . LT . SUM . OR . DISNAN ( SUM ) ) ANORM = SUM
DO 20 I = 2 , N - 1
SUM = ABS ( D ( I ) ) + ABS ( E ( I ) ) + ABS ( E ( I - 1 ) )
IF ( ANORM . LT . SUM . OR . DISNAN ( SUM ) ) ANORM = SUM
20 CONTINUE
END IF
ELSE IF ( ( LSAME ( NORM , 'F' ) ) . OR . ( LSAME ( NORM , 'E' ) ) ) THEN
*
* Find normF(A).
*
SCALE = ZERO
SUM = ONE
IF ( N . GT . 1 ) THEN
CALL DLASSQ ( N - 1 , E , 1 , SCALE , SUM )
SUM = 2 * SUM
END IF
CALL DLASSQ ( N , D , 1 , SCALE , SUM )
ANORM = SCALE * SQRT ( SUM )
END IF
*
DLANST = ANORM
RETURN
*
* End of DLANST
*
END