forked from lijiext/lammps
494 lines
15 KiB
FortranFixed
494 lines
15 KiB
FortranFixed
|
*> \brief \b DLALSA computes the SVD of the coefficient matrix in compact form. Used by sgelsd.
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download DLALSA + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlalsa.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlalsa.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlalsa.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE DLALSA( ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U,
|
||
|
* LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR,
|
||
|
* GIVCOL, LDGCOL, PERM, GIVNUM, C, S, WORK,
|
||
|
* IWORK, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER ICOMPQ, INFO, LDB, LDBX, LDGCOL, LDU, N, NRHS,
|
||
|
* $ SMLSIZ
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
|
||
|
* $ K( * ), PERM( LDGCOL, * )
|
||
|
* DOUBLE PRECISION B( LDB, * ), BX( LDBX, * ), C( * ),
|
||
|
* $ DIFL( LDU, * ), DIFR( LDU, * ),
|
||
|
* $ GIVNUM( LDU, * ), POLES( LDU, * ), S( * ),
|
||
|
* $ U( LDU, * ), VT( LDU, * ), WORK( * ),
|
||
|
* $ Z( LDU, * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> DLALSA is an itermediate step in solving the least squares problem
|
||
|
*> by computing the SVD of the coefficient matrix in compact form (The
|
||
|
*> singular vectors are computed as products of simple orthorgonal
|
||
|
*> matrices.).
|
||
|
*>
|
||
|
*> If ICOMPQ = 0, DLALSA applies the inverse of the left singular vector
|
||
|
*> matrix of an upper bidiagonal matrix to the right hand side; and if
|
||
|
*> ICOMPQ = 1, DLALSA applies the right singular vector matrix to the
|
||
|
*> right hand side. The singular vector matrices were generated in
|
||
|
*> compact form by DLALSA.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] ICOMPQ
|
||
|
*> \verbatim
|
||
|
*> ICOMPQ is INTEGER
|
||
|
*> Specifies whether the left or the right singular vector
|
||
|
*> matrix is involved.
|
||
|
*> = 0: Left singular vector matrix
|
||
|
*> = 1: Right singular vector matrix
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] SMLSIZ
|
||
|
*> \verbatim
|
||
|
*> SMLSIZ is INTEGER
|
||
|
*> The maximum size of the subproblems at the bottom of the
|
||
|
*> computation tree.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The row and column dimensions of the upper bidiagonal matrix.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NRHS
|
||
|
*> \verbatim
|
||
|
*> NRHS is INTEGER
|
||
|
*> The number of columns of B and BX. NRHS must be at least 1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] B
|
||
|
*> \verbatim
|
||
|
*> B is DOUBLE PRECISION array, dimension ( LDB, NRHS )
|
||
|
*> On input, B contains the right hand sides of the least
|
||
|
*> squares problem in rows 1 through M.
|
||
|
*> On output, B contains the solution X in rows 1 through N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDB
|
||
|
*> \verbatim
|
||
|
*> LDB is INTEGER
|
||
|
*> The leading dimension of B in the calling subprogram.
|
||
|
*> LDB must be at least max(1,MAX( M, N ) ).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] BX
|
||
|
*> \verbatim
|
||
|
*> BX is DOUBLE PRECISION array, dimension ( LDBX, NRHS )
|
||
|
*> On exit, the result of applying the left or right singular
|
||
|
*> vector matrix to B.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDBX
|
||
|
*> \verbatim
|
||
|
*> LDBX is INTEGER
|
||
|
*> The leading dimension of BX.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] U
|
||
|
*> \verbatim
|
||
|
*> U is DOUBLE PRECISION array, dimension ( LDU, SMLSIZ ).
|
||
|
*> On entry, U contains the left singular vector matrices of all
|
||
|
*> subproblems at the bottom level.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDU
|
||
|
*> \verbatim
|
||
|
*> LDU is INTEGER, LDU = > N.
|
||
|
*> The leading dimension of arrays U, VT, DIFL, DIFR,
|
||
|
*> POLES, GIVNUM, and Z.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] VT
|
||
|
*> \verbatim
|
||
|
*> VT is DOUBLE PRECISION array, dimension ( LDU, SMLSIZ+1 ).
|
||
|
*> On entry, VT**T contains the right singular vector matrices of
|
||
|
*> all subproblems at the bottom level.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] K
|
||
|
*> \verbatim
|
||
|
*> K is INTEGER array, dimension ( N ).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] DIFL
|
||
|
*> \verbatim
|
||
|
*> DIFL is DOUBLE PRECISION array, dimension ( LDU, NLVL ).
|
||
|
*> where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] DIFR
|
||
|
*> \verbatim
|
||
|
*> DIFR is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
|
||
|
*> On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record
|
||
|
*> distances between singular values on the I-th level and
|
||
|
*> singular values on the (I -1)-th level, and DIFR(*, 2 * I)
|
||
|
*> record the normalizing factors of the right singular vectors
|
||
|
*> matrices of subproblems on I-th level.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] Z
|
||
|
*> \verbatim
|
||
|
*> Z is DOUBLE PRECISION array, dimension ( LDU, NLVL ).
|
||
|
*> On entry, Z(1, I) contains the components of the deflation-
|
||
|
*> adjusted updating row vector for subproblems on the I-th
|
||
|
*> level.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] POLES
|
||
|
*> \verbatim
|
||
|
*> POLES is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
|
||
|
*> On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old
|
||
|
*> singular values involved in the secular equations on the I-th
|
||
|
*> level.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] GIVPTR
|
||
|
*> \verbatim
|
||
|
*> GIVPTR is INTEGER array, dimension ( N ).
|
||
|
*> On entry, GIVPTR( I ) records the number of Givens
|
||
|
*> rotations performed on the I-th problem on the computation
|
||
|
*> tree.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] GIVCOL
|
||
|
*> \verbatim
|
||
|
*> GIVCOL is INTEGER array, dimension ( LDGCOL, 2 * NLVL ).
|
||
|
*> On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the
|
||
|
*> locations of Givens rotations performed on the I-th level on
|
||
|
*> the computation tree.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDGCOL
|
||
|
*> \verbatim
|
||
|
*> LDGCOL is INTEGER, LDGCOL = > N.
|
||
|
*> The leading dimension of arrays GIVCOL and PERM.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] PERM
|
||
|
*> \verbatim
|
||
|
*> PERM is INTEGER array, dimension ( LDGCOL, NLVL ).
|
||
|
*> On entry, PERM(*, I) records permutations done on the I-th
|
||
|
*> level of the computation tree.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] GIVNUM
|
||
|
*> \verbatim
|
||
|
*> GIVNUM is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
|
||
|
*> On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S-
|
||
|
*> values of Givens rotations performed on the I-th level on the
|
||
|
*> computation tree.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] C
|
||
|
*> \verbatim
|
||
|
*> C is DOUBLE PRECISION array, dimension ( N ).
|
||
|
*> On entry, if the I-th subproblem is not square,
|
||
|
*> C( I ) contains the C-value of a Givens rotation related to
|
||
|
*> the right null space of the I-th subproblem.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] S
|
||
|
*> \verbatim
|
||
|
*> S is DOUBLE PRECISION array, dimension ( N ).
|
||
|
*> On entry, if the I-th subproblem is not square,
|
||
|
*> S( I ) contains the S-value of a Givens rotation related to
|
||
|
*> the right null space of the I-th subproblem.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is DOUBLE PRECISION array, dimension (N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] IWORK
|
||
|
*> \verbatim
|
||
|
*> IWORK is INTEGER array, dimension (3*N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit.
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \date June 2017
|
||
|
*
|
||
|
*> \ingroup doubleOTHERcomputational
|
||
|
*
|
||
|
*> \par Contributors:
|
||
|
* ==================
|
||
|
*>
|
||
|
*> Ming Gu and Ren-Cang Li, Computer Science Division, University of
|
||
|
*> California at Berkeley, USA \n
|
||
|
*> Osni Marques, LBNL/NERSC, USA \n
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE DLALSA( ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U,
|
||
|
$ LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR,
|
||
|
$ GIVCOL, LDGCOL, PERM, GIVNUM, C, S, WORK,
|
||
|
$ IWORK, INFO )
|
||
|
*
|
||
|
* -- LAPACK computational routine (version 3.7.1) --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
* June 2017
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER ICOMPQ, INFO, LDB, LDBX, LDGCOL, LDU, N, NRHS,
|
||
|
$ SMLSIZ
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
|
||
|
$ K( * ), PERM( LDGCOL, * )
|
||
|
DOUBLE PRECISION B( LDB, * ), BX( LDBX, * ), C( * ),
|
||
|
$ DIFL( LDU, * ), DIFR( LDU, * ),
|
||
|
$ GIVNUM( LDU, * ), POLES( LDU, * ), S( * ),
|
||
|
$ U( LDU, * ), VT( LDU, * ), WORK( * ),
|
||
|
$ Z( LDU, * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER I, I1, IC, IM1, INODE, J, LF, LL, LVL, LVL2,
|
||
|
$ ND, NDB1, NDIML, NDIMR, NL, NLF, NLP1, NLVL,
|
||
|
$ NR, NRF, NRP1, SQRE
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL DCOPY, DGEMM, DLALS0, DLASDT, XERBLA
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input parameters.
|
||
|
*
|
||
|
INFO = 0
|
||
|
*
|
||
|
IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( SMLSIZ.LT.3 ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( N.LT.SMLSIZ ) THEN
|
||
|
INFO = -3
|
||
|
ELSE IF( NRHS.LT.1 ) THEN
|
||
|
INFO = -4
|
||
|
ELSE IF( LDB.LT.N ) THEN
|
||
|
INFO = -6
|
||
|
ELSE IF( LDBX.LT.N ) THEN
|
||
|
INFO = -8
|
||
|
ELSE IF( LDU.LT.N ) THEN
|
||
|
INFO = -10
|
||
|
ELSE IF( LDGCOL.LT.N ) THEN
|
||
|
INFO = -19
|
||
|
END IF
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'DLALSA', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Book-keeping and setting up the computation tree.
|
||
|
*
|
||
|
INODE = 1
|
||
|
NDIML = INODE + N
|
||
|
NDIMR = NDIML + N
|
||
|
*
|
||
|
CALL DLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ),
|
||
|
$ IWORK( NDIMR ), SMLSIZ )
|
||
|
*
|
||
|
* The following code applies back the left singular vector factors.
|
||
|
* For applying back the right singular vector factors, go to 50.
|
||
|
*
|
||
|
IF( ICOMPQ.EQ.1 ) THEN
|
||
|
GO TO 50
|
||
|
END IF
|
||
|
*
|
||
|
* The nodes on the bottom level of the tree were solved
|
||
|
* by DLASDQ. The corresponding left and right singular vector
|
||
|
* matrices are in explicit form. First apply back the left
|
||
|
* singular vector matrices.
|
||
|
*
|
||
|
NDB1 = ( ND+1 ) / 2
|
||
|
DO 10 I = NDB1, ND
|
||
|
*
|
||
|
* IC : center row of each node
|
||
|
* NL : number of rows of left subproblem
|
||
|
* NR : number of rows of right subproblem
|
||
|
* NLF: starting row of the left subproblem
|
||
|
* NRF: starting row of the right subproblem
|
||
|
*
|
||
|
I1 = I - 1
|
||
|
IC = IWORK( INODE+I1 )
|
||
|
NL = IWORK( NDIML+I1 )
|
||
|
NR = IWORK( NDIMR+I1 )
|
||
|
NLF = IC - NL
|
||
|
NRF = IC + 1
|
||
|
CALL DGEMM( 'T', 'N', NL, NRHS, NL, ONE, U( NLF, 1 ), LDU,
|
||
|
$ B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX )
|
||
|
CALL DGEMM( 'T', 'N', NR, NRHS, NR, ONE, U( NRF, 1 ), LDU,
|
||
|
$ B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX )
|
||
|
10 CONTINUE
|
||
|
*
|
||
|
* Next copy the rows of B that correspond to unchanged rows
|
||
|
* in the bidiagonal matrix to BX.
|
||
|
*
|
||
|
DO 20 I = 1, ND
|
||
|
IC = IWORK( INODE+I-1 )
|
||
|
CALL DCOPY( NRHS, B( IC, 1 ), LDB, BX( IC, 1 ), LDBX )
|
||
|
20 CONTINUE
|
||
|
*
|
||
|
* Finally go through the left singular vector matrices of all
|
||
|
* the other subproblems bottom-up on the tree.
|
||
|
*
|
||
|
J = 2**NLVL
|
||
|
SQRE = 0
|
||
|
*
|
||
|
DO 40 LVL = NLVL, 1, -1
|
||
|
LVL2 = 2*LVL - 1
|
||
|
*
|
||
|
* find the first node LF and last node LL on
|
||
|
* the current level LVL
|
||
|
*
|
||
|
IF( LVL.EQ.1 ) THEN
|
||
|
LF = 1
|
||
|
LL = 1
|
||
|
ELSE
|
||
|
LF = 2**( LVL-1 )
|
||
|
LL = 2*LF - 1
|
||
|
END IF
|
||
|
DO 30 I = LF, LL
|
||
|
IM1 = I - 1
|
||
|
IC = IWORK( INODE+IM1 )
|
||
|
NL = IWORK( NDIML+IM1 )
|
||
|
NR = IWORK( NDIMR+IM1 )
|
||
|
NLF = IC - NL
|
||
|
NRF = IC + 1
|
||
|
J = J - 1
|
||
|
CALL DLALS0( ICOMPQ, NL, NR, SQRE, NRHS, BX( NLF, 1 ), LDBX,
|
||
|
$ B( NLF, 1 ), LDB, PERM( NLF, LVL ),
|
||
|
$ GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL,
|
||
|
$ GIVNUM( NLF, LVL2 ), LDU, POLES( NLF, LVL2 ),
|
||
|
$ DIFL( NLF, LVL ), DIFR( NLF, LVL2 ),
|
||
|
$ Z( NLF, LVL ), K( J ), C( J ), S( J ), WORK,
|
||
|
$ INFO )
|
||
|
30 CONTINUE
|
||
|
40 CONTINUE
|
||
|
GO TO 90
|
||
|
*
|
||
|
* ICOMPQ = 1: applying back the right singular vector factors.
|
||
|
*
|
||
|
50 CONTINUE
|
||
|
*
|
||
|
* First now go through the right singular vector matrices of all
|
||
|
* the tree nodes top-down.
|
||
|
*
|
||
|
J = 0
|
||
|
DO 70 LVL = 1, NLVL
|
||
|
LVL2 = 2*LVL - 1
|
||
|
*
|
||
|
* Find the first node LF and last node LL on
|
||
|
* the current level LVL.
|
||
|
*
|
||
|
IF( LVL.EQ.1 ) THEN
|
||
|
LF = 1
|
||
|
LL = 1
|
||
|
ELSE
|
||
|
LF = 2**( LVL-1 )
|
||
|
LL = 2*LF - 1
|
||
|
END IF
|
||
|
DO 60 I = LL, LF, -1
|
||
|
IM1 = I - 1
|
||
|
IC = IWORK( INODE+IM1 )
|
||
|
NL = IWORK( NDIML+IM1 )
|
||
|
NR = IWORK( NDIMR+IM1 )
|
||
|
NLF = IC - NL
|
||
|
NRF = IC + 1
|
||
|
IF( I.EQ.LL ) THEN
|
||
|
SQRE = 0
|
||
|
ELSE
|
||
|
SQRE = 1
|
||
|
END IF
|
||
|
J = J + 1
|
||
|
CALL DLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B( NLF, 1 ), LDB,
|
||
|
$ BX( NLF, 1 ), LDBX, PERM( NLF, LVL ),
|
||
|
$ GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL,
|
||
|
$ GIVNUM( NLF, LVL2 ), LDU, POLES( NLF, LVL2 ),
|
||
|
$ DIFL( NLF, LVL ), DIFR( NLF, LVL2 ),
|
||
|
$ Z( NLF, LVL ), K( J ), C( J ), S( J ), WORK,
|
||
|
$ INFO )
|
||
|
60 CONTINUE
|
||
|
70 CONTINUE
|
||
|
*
|
||
|
* The nodes on the bottom level of the tree were solved
|
||
|
* by DLASDQ. The corresponding right singular vector
|
||
|
* matrices are in explicit form. Apply them back.
|
||
|
*
|
||
|
NDB1 = ( ND+1 ) / 2
|
||
|
DO 80 I = NDB1, ND
|
||
|
I1 = I - 1
|
||
|
IC = IWORK( INODE+I1 )
|
||
|
NL = IWORK( NDIML+I1 )
|
||
|
NR = IWORK( NDIMR+I1 )
|
||
|
NLP1 = NL + 1
|
||
|
IF( I.EQ.ND ) THEN
|
||
|
NRP1 = NR
|
||
|
ELSE
|
||
|
NRP1 = NR + 1
|
||
|
END IF
|
||
|
NLF = IC - NL
|
||
|
NRF = IC + 1
|
||
|
CALL DGEMM( 'T', 'N', NLP1, NRHS, NLP1, ONE, VT( NLF, 1 ), LDU,
|
||
|
$ B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX )
|
||
|
CALL DGEMM( 'T', 'N', NRP1, NRHS, NRP1, ONE, VT( NRF, 1 ), LDU,
|
||
|
$ B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX )
|
||
|
80 CONTINUE
|
||
|
*
|
||
|
90 CONTINUE
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of DLALSA
|
||
|
*
|
||
|
END
|