forked from lijiext/lammps
525 lines
16 KiB
FortranFixed
525 lines
16 KiB
FortranFixed
|
*> \brief \b DLAED8 used by sstedc. Merges eigenvalues and deflates secular equation. Used when the original matrix is dense.
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download DLAED8 + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed8.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed8.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed8.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE DLAED8( ICOMPQ, K, N, QSIZ, D, Q, LDQ, INDXQ, RHO,
|
||
|
* CUTPNT, Z, DLAMDA, Q2, LDQ2, W, PERM, GIVPTR,
|
||
|
* GIVCOL, GIVNUM, INDXP, INDX, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER CUTPNT, GIVPTR, ICOMPQ, INFO, K, LDQ, LDQ2, N,
|
||
|
* $ QSIZ
|
||
|
* DOUBLE PRECISION RHO
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER GIVCOL( 2, * ), INDX( * ), INDXP( * ),
|
||
|
* $ INDXQ( * ), PERM( * )
|
||
|
* DOUBLE PRECISION D( * ), DLAMDA( * ), GIVNUM( 2, * ),
|
||
|
* $ Q( LDQ, * ), Q2( LDQ2, * ), W( * ), Z( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> DLAED8 merges the two sets of eigenvalues together into a single
|
||
|
*> sorted set. Then it tries to deflate the size of the problem.
|
||
|
*> There are two ways in which deflation can occur: when two or more
|
||
|
*> eigenvalues are close together or if there is a tiny element in the
|
||
|
*> Z vector. For each such occurrence the order of the related secular
|
||
|
*> equation problem is reduced by one.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] ICOMPQ
|
||
|
*> \verbatim
|
||
|
*> ICOMPQ is INTEGER
|
||
|
*> = 0: Compute eigenvalues only.
|
||
|
*> = 1: Compute eigenvectors of original dense symmetric matrix
|
||
|
*> also. On entry, Q contains the orthogonal matrix used
|
||
|
*> to reduce the original matrix to tridiagonal form.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] K
|
||
|
*> \verbatim
|
||
|
*> K is INTEGER
|
||
|
*> The number of non-deflated eigenvalues, and the order of the
|
||
|
*> related secular equation.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The dimension of the symmetric tridiagonal matrix. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] QSIZ
|
||
|
*> \verbatim
|
||
|
*> QSIZ is INTEGER
|
||
|
*> The dimension of the orthogonal matrix used to reduce
|
||
|
*> the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] D
|
||
|
*> \verbatim
|
||
|
*> D is DOUBLE PRECISION array, dimension (N)
|
||
|
*> On entry, the eigenvalues of the two submatrices to be
|
||
|
*> combined. On exit, the trailing (N-K) updated eigenvalues
|
||
|
*> (those which were deflated) sorted into increasing order.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] Q
|
||
|
*> \verbatim
|
||
|
*> Q is DOUBLE PRECISION array, dimension (LDQ,N)
|
||
|
*> If ICOMPQ = 0, Q is not referenced. Otherwise,
|
||
|
*> on entry, Q contains the eigenvectors of the partially solved
|
||
|
*> system which has been previously updated in matrix
|
||
|
*> multiplies with other partially solved eigensystems.
|
||
|
*> On exit, Q contains the trailing (N-K) updated eigenvectors
|
||
|
*> (those which were deflated) in its last N-K columns.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDQ
|
||
|
*> \verbatim
|
||
|
*> LDQ is INTEGER
|
||
|
*> The leading dimension of the array Q. LDQ >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] INDXQ
|
||
|
*> \verbatim
|
||
|
*> INDXQ is INTEGER array, dimension (N)
|
||
|
*> The permutation which separately sorts the two sub-problems
|
||
|
*> in D into ascending order. Note that elements in the second
|
||
|
*> half of this permutation must first have CUTPNT added to
|
||
|
*> their values in order to be accurate.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] RHO
|
||
|
*> \verbatim
|
||
|
*> RHO is DOUBLE PRECISION
|
||
|
*> On entry, the off-diagonal element associated with the rank-1
|
||
|
*> cut which originally split the two submatrices which are now
|
||
|
*> being recombined.
|
||
|
*> On exit, RHO has been modified to the value required by
|
||
|
*> DLAED3.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] CUTPNT
|
||
|
*> \verbatim
|
||
|
*> CUTPNT is INTEGER
|
||
|
*> The location of the last eigenvalue in the leading
|
||
|
*> sub-matrix. min(1,N) <= CUTPNT <= N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] Z
|
||
|
*> \verbatim
|
||
|
*> Z is DOUBLE PRECISION array, dimension (N)
|
||
|
*> On entry, Z contains the updating vector (the last row of
|
||
|
*> the first sub-eigenvector matrix and the first row of the
|
||
|
*> second sub-eigenvector matrix).
|
||
|
*> On exit, the contents of Z are destroyed by the updating
|
||
|
*> process.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] DLAMDA
|
||
|
*> \verbatim
|
||
|
*> DLAMDA is DOUBLE PRECISION array, dimension (N)
|
||
|
*> A copy of the first K eigenvalues which will be used by
|
||
|
*> DLAED3 to form the secular equation.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] Q2
|
||
|
*> \verbatim
|
||
|
*> Q2 is DOUBLE PRECISION array, dimension (LDQ2,N)
|
||
|
*> If ICOMPQ = 0, Q2 is not referenced. Otherwise,
|
||
|
*> a copy of the first K eigenvectors which will be used by
|
||
|
*> DLAED7 in a matrix multiply (DGEMM) to update the new
|
||
|
*> eigenvectors.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDQ2
|
||
|
*> \verbatim
|
||
|
*> LDQ2 is INTEGER
|
||
|
*> The leading dimension of the array Q2. LDQ2 >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] W
|
||
|
*> \verbatim
|
||
|
*> W is DOUBLE PRECISION array, dimension (N)
|
||
|
*> The first k values of the final deflation-altered z-vector and
|
||
|
*> will be passed to DLAED3.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] PERM
|
||
|
*> \verbatim
|
||
|
*> PERM is INTEGER array, dimension (N)
|
||
|
*> The permutations (from deflation and sorting) to be applied
|
||
|
*> to each eigenblock.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] GIVPTR
|
||
|
*> \verbatim
|
||
|
*> GIVPTR is INTEGER
|
||
|
*> The number of Givens rotations which took place in this
|
||
|
*> subproblem.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] GIVCOL
|
||
|
*> \verbatim
|
||
|
*> GIVCOL is INTEGER array, dimension (2, N)
|
||
|
*> Each pair of numbers indicates a pair of columns to take place
|
||
|
*> in a Givens rotation.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] GIVNUM
|
||
|
*> \verbatim
|
||
|
*> GIVNUM is DOUBLE PRECISION array, dimension (2, N)
|
||
|
*> Each number indicates the S value to be used in the
|
||
|
*> corresponding Givens rotation.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INDXP
|
||
|
*> \verbatim
|
||
|
*> INDXP is INTEGER array, dimension (N)
|
||
|
*> The permutation used to place deflated values of D at the end
|
||
|
*> of the array. INDXP(1:K) points to the nondeflated D-values
|
||
|
*> and INDXP(K+1:N) points to the deflated eigenvalues.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INDX
|
||
|
*> \verbatim
|
||
|
*> INDX is INTEGER array, dimension (N)
|
||
|
*> The permutation used to sort the contents of D into ascending
|
||
|
*> order.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit.
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \date September 2012
|
||
|
*
|
||
|
*> \ingroup auxOTHERcomputational
|
||
|
*
|
||
|
*> \par Contributors:
|
||
|
* ==================
|
||
|
*>
|
||
|
*> Jeff Rutter, Computer Science Division, University of California
|
||
|
*> at Berkeley, USA
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE DLAED8( ICOMPQ, K, N, QSIZ, D, Q, LDQ, INDXQ, RHO,
|
||
|
$ CUTPNT, Z, DLAMDA, Q2, LDQ2, W, PERM, GIVPTR,
|
||
|
$ GIVCOL, GIVNUM, INDXP, INDX, INFO )
|
||
|
*
|
||
|
* -- LAPACK computational routine (version 3.4.2) --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
* September 2012
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER CUTPNT, GIVPTR, ICOMPQ, INFO, K, LDQ, LDQ2, N,
|
||
|
$ QSIZ
|
||
|
DOUBLE PRECISION RHO
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER GIVCOL( 2, * ), INDX( * ), INDXP( * ),
|
||
|
$ INDXQ( * ), PERM( * )
|
||
|
DOUBLE PRECISION D( * ), DLAMDA( * ), GIVNUM( 2, * ),
|
||
|
$ Q( LDQ, * ), Q2( LDQ2, * ), W( * ), Z( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION MONE, ZERO, ONE, TWO, EIGHT
|
||
|
PARAMETER ( MONE = -1.0D0, ZERO = 0.0D0, ONE = 1.0D0,
|
||
|
$ TWO = 2.0D0, EIGHT = 8.0D0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
*
|
||
|
INTEGER I, IMAX, J, JLAM, JMAX, JP, K2, N1, N1P1, N2
|
||
|
DOUBLE PRECISION C, EPS, S, T, TAU, TOL
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
INTEGER IDAMAX
|
||
|
DOUBLE PRECISION DLAMCH, DLAPY2
|
||
|
EXTERNAL IDAMAX, DLAMCH, DLAPY2
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL DCOPY, DLACPY, DLAMRG, DROT, DSCAL, XERBLA
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, MAX, MIN, SQRT
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input parameters.
|
||
|
*
|
||
|
INFO = 0
|
||
|
*
|
||
|
IF( ICOMPQ.LT.0 .OR. ICOMPQ.GT.1 ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -3
|
||
|
ELSE IF( ICOMPQ.EQ.1 .AND. QSIZ.LT.N ) THEN
|
||
|
INFO = -4
|
||
|
ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -7
|
||
|
ELSE IF( CUTPNT.LT.MIN( 1, N ) .OR. CUTPNT.GT.N ) THEN
|
||
|
INFO = -10
|
||
|
ELSE IF( LDQ2.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -14
|
||
|
END IF
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'DLAED8', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Need to initialize GIVPTR to O here in case of quick exit
|
||
|
* to prevent an unspecified code behavior (usually sigfault)
|
||
|
* when IWORK array on entry to *stedc is not zeroed
|
||
|
* (or at least some IWORK entries which used in *laed7 for GIVPTR).
|
||
|
*
|
||
|
GIVPTR = 0
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
IF( N.EQ.0 )
|
||
|
$ RETURN
|
||
|
*
|
||
|
N1 = CUTPNT
|
||
|
N2 = N - N1
|
||
|
N1P1 = N1 + 1
|
||
|
*
|
||
|
IF( RHO.LT.ZERO ) THEN
|
||
|
CALL DSCAL( N2, MONE, Z( N1P1 ), 1 )
|
||
|
END IF
|
||
|
*
|
||
|
* Normalize z so that norm(z) = 1
|
||
|
*
|
||
|
T = ONE / SQRT( TWO )
|
||
|
DO 10 J = 1, N
|
||
|
INDX( J ) = J
|
||
|
10 CONTINUE
|
||
|
CALL DSCAL( N, T, Z, 1 )
|
||
|
RHO = ABS( TWO*RHO )
|
||
|
*
|
||
|
* Sort the eigenvalues into increasing order
|
||
|
*
|
||
|
DO 20 I = CUTPNT + 1, N
|
||
|
INDXQ( I ) = INDXQ( I ) + CUTPNT
|
||
|
20 CONTINUE
|
||
|
DO 30 I = 1, N
|
||
|
DLAMDA( I ) = D( INDXQ( I ) )
|
||
|
W( I ) = Z( INDXQ( I ) )
|
||
|
30 CONTINUE
|
||
|
I = 1
|
||
|
J = CUTPNT + 1
|
||
|
CALL DLAMRG( N1, N2, DLAMDA, 1, 1, INDX )
|
||
|
DO 40 I = 1, N
|
||
|
D( I ) = DLAMDA( INDX( I ) )
|
||
|
Z( I ) = W( INDX( I ) )
|
||
|
40 CONTINUE
|
||
|
*
|
||
|
* Calculate the allowable deflation tolerence
|
||
|
*
|
||
|
IMAX = IDAMAX( N, Z, 1 )
|
||
|
JMAX = IDAMAX( N, D, 1 )
|
||
|
EPS = DLAMCH( 'Epsilon' )
|
||
|
TOL = EIGHT*EPS*ABS( D( JMAX ) )
|
||
|
*
|
||
|
* If the rank-1 modifier is small enough, no more needs to be done
|
||
|
* except to reorganize Q so that its columns correspond with the
|
||
|
* elements in D.
|
||
|
*
|
||
|
IF( RHO*ABS( Z( IMAX ) ).LE.TOL ) THEN
|
||
|
K = 0
|
||
|
IF( ICOMPQ.EQ.0 ) THEN
|
||
|
DO 50 J = 1, N
|
||
|
PERM( J ) = INDXQ( INDX( J ) )
|
||
|
50 CONTINUE
|
||
|
ELSE
|
||
|
DO 60 J = 1, N
|
||
|
PERM( J ) = INDXQ( INDX( J ) )
|
||
|
CALL DCOPY( QSIZ, Q( 1, PERM( J ) ), 1, Q2( 1, J ), 1 )
|
||
|
60 CONTINUE
|
||
|
CALL DLACPY( 'A', QSIZ, N, Q2( 1, 1 ), LDQ2, Q( 1, 1 ),
|
||
|
$ LDQ )
|
||
|
END IF
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* If there are multiple eigenvalues then the problem deflates. Here
|
||
|
* the number of equal eigenvalues are found. As each equal
|
||
|
* eigenvalue is found, an elementary reflector is computed to rotate
|
||
|
* the corresponding eigensubspace so that the corresponding
|
||
|
* components of Z are zero in this new basis.
|
||
|
*
|
||
|
K = 0
|
||
|
K2 = N + 1
|
||
|
DO 70 J = 1, N
|
||
|
IF( RHO*ABS( Z( J ) ).LE.TOL ) THEN
|
||
|
*
|
||
|
* Deflate due to small z component.
|
||
|
*
|
||
|
K2 = K2 - 1
|
||
|
INDXP( K2 ) = J
|
||
|
IF( J.EQ.N )
|
||
|
$ GO TO 110
|
||
|
ELSE
|
||
|
JLAM = J
|
||
|
GO TO 80
|
||
|
END IF
|
||
|
70 CONTINUE
|
||
|
80 CONTINUE
|
||
|
J = J + 1
|
||
|
IF( J.GT.N )
|
||
|
$ GO TO 100
|
||
|
IF( RHO*ABS( Z( J ) ).LE.TOL ) THEN
|
||
|
*
|
||
|
* Deflate due to small z component.
|
||
|
*
|
||
|
K2 = K2 - 1
|
||
|
INDXP( K2 ) = J
|
||
|
ELSE
|
||
|
*
|
||
|
* Check if eigenvalues are close enough to allow deflation.
|
||
|
*
|
||
|
S = Z( JLAM )
|
||
|
C = Z( J )
|
||
|
*
|
||
|
* Find sqrt(a**2+b**2) without overflow or
|
||
|
* destructive underflow.
|
||
|
*
|
||
|
TAU = DLAPY2( C, S )
|
||
|
T = D( J ) - D( JLAM )
|
||
|
C = C / TAU
|
||
|
S = -S / TAU
|
||
|
IF( ABS( T*C*S ).LE.TOL ) THEN
|
||
|
*
|
||
|
* Deflation is possible.
|
||
|
*
|
||
|
Z( J ) = TAU
|
||
|
Z( JLAM ) = ZERO
|
||
|
*
|
||
|
* Record the appropriate Givens rotation
|
||
|
*
|
||
|
GIVPTR = GIVPTR + 1
|
||
|
GIVCOL( 1, GIVPTR ) = INDXQ( INDX( JLAM ) )
|
||
|
GIVCOL( 2, GIVPTR ) = INDXQ( INDX( J ) )
|
||
|
GIVNUM( 1, GIVPTR ) = C
|
||
|
GIVNUM( 2, GIVPTR ) = S
|
||
|
IF( ICOMPQ.EQ.1 ) THEN
|
||
|
CALL DROT( QSIZ, Q( 1, INDXQ( INDX( JLAM ) ) ), 1,
|
||
|
$ Q( 1, INDXQ( INDX( J ) ) ), 1, C, S )
|
||
|
END IF
|
||
|
T = D( JLAM )*C*C + D( J )*S*S
|
||
|
D( J ) = D( JLAM )*S*S + D( J )*C*C
|
||
|
D( JLAM ) = T
|
||
|
K2 = K2 - 1
|
||
|
I = 1
|
||
|
90 CONTINUE
|
||
|
IF( K2+I.LE.N ) THEN
|
||
|
IF( D( JLAM ).LT.D( INDXP( K2+I ) ) ) THEN
|
||
|
INDXP( K2+I-1 ) = INDXP( K2+I )
|
||
|
INDXP( K2+I ) = JLAM
|
||
|
I = I + 1
|
||
|
GO TO 90
|
||
|
ELSE
|
||
|
INDXP( K2+I-1 ) = JLAM
|
||
|
END IF
|
||
|
ELSE
|
||
|
INDXP( K2+I-1 ) = JLAM
|
||
|
END IF
|
||
|
JLAM = J
|
||
|
ELSE
|
||
|
K = K + 1
|
||
|
W( K ) = Z( JLAM )
|
||
|
DLAMDA( K ) = D( JLAM )
|
||
|
INDXP( K ) = JLAM
|
||
|
JLAM = J
|
||
|
END IF
|
||
|
END IF
|
||
|
GO TO 80
|
||
|
100 CONTINUE
|
||
|
*
|
||
|
* Record the last eigenvalue.
|
||
|
*
|
||
|
K = K + 1
|
||
|
W( K ) = Z( JLAM )
|
||
|
DLAMDA( K ) = D( JLAM )
|
||
|
INDXP( K ) = JLAM
|
||
|
*
|
||
|
110 CONTINUE
|
||
|
*
|
||
|
* Sort the eigenvalues and corresponding eigenvectors into DLAMDA
|
||
|
* and Q2 respectively. The eigenvalues/vectors which were not
|
||
|
* deflated go into the first K slots of DLAMDA and Q2 respectively,
|
||
|
* while those which were deflated go into the last N - K slots.
|
||
|
*
|
||
|
IF( ICOMPQ.EQ.0 ) THEN
|
||
|
DO 120 J = 1, N
|
||
|
JP = INDXP( J )
|
||
|
DLAMDA( J ) = D( JP )
|
||
|
PERM( J ) = INDXQ( INDX( JP ) )
|
||
|
120 CONTINUE
|
||
|
ELSE
|
||
|
DO 130 J = 1, N
|
||
|
JP = INDXP( J )
|
||
|
DLAMDA( J ) = D( JP )
|
||
|
PERM( J ) = INDXQ( INDX( JP ) )
|
||
|
CALL DCOPY( QSIZ, Q( 1, PERM( J ) ), 1, Q2( 1, J ), 1 )
|
||
|
130 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
* The deflated eigenvalues and their corresponding vectors go back
|
||
|
* into the last N - K slots of D and Q respectively.
|
||
|
*
|
||
|
IF( K.LT.N ) THEN
|
||
|
IF( ICOMPQ.EQ.0 ) THEN
|
||
|
CALL DCOPY( N-K, DLAMDA( K+1 ), 1, D( K+1 ), 1 )
|
||
|
ELSE
|
||
|
CALL DCOPY( N-K, DLAMDA( K+1 ), 1, D( K+1 ), 1 )
|
||
|
CALL DLACPY( 'A', QSIZ, N-K, Q2( 1, K+1 ), LDQ2,
|
||
|
$ Q( 1, K+1 ), LDQ )
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of DLAED8
|
||
|
*
|
||
|
END
|