2006-09-22 00:22:34 +08:00
|
|
|
\documentclass[12pt]{article}
|
|
|
|
|
|
|
|
\begin{document}
|
|
|
|
|
2007-12-01 07:16:45 +08:00
|
|
|
\begin{eqnarray*}
|
|
|
|
S_{ab} & = & - \left[ m v_a v_b +
|
2007-12-01 07:29:01 +08:00
|
|
|
\frac{1}{2} \sum_{n = 1}^{N_p} (r_{1_a} F_{1_b} + r_{2_a} F_{2_b}) +
|
2008-01-10 05:57:06 +08:00
|
|
|
\frac{1}{2} \sum_{n = 1}^{N_b} (r_{1_a} F_{1_b} + r_{2_a} F_{2_b}) + \right. \\
|
|
|
|
&& \left. \frac{1}{3} \sum_{n = 1}^{N_a} (r_{1_a} F_{1_b} + r_{2_a} F_{2_b} +
|
|
|
|
r_{3_a} F_{3_b}) +
|
|
|
|
\frac{1}{4} \sum_{n = 1}^{N_d} (r_{1_a} F_{1_b} + r_{2_a} F_{2_b} +
|
|
|
|
r_{3_a} F_{3_b} + r_{4_a} F_{4_b}) + \right. \\
|
|
|
|
&& \left. \frac{1}{4} \sum_{n = 1}^{N_i} (r_{1_a} F_{1_b} + r_{2_a} F_{2_b} +
|
|
|
|
r_{3_a} F_{3_b} + r_{4_a} F_{4_b}) +
|
2012-02-15 04:44:23 +08:00
|
|
|
{\rm Kspace}(r_{i_a},F_{i_b}) +
|
2008-01-10 05:57:06 +08:00
|
|
|
\sum_{n = 1}^{N_f} r_{i_a} F_{i_b} \right]
|
2007-12-01 07:16:45 +08:00
|
|
|
\end{eqnarray*}
|
2006-09-22 00:22:34 +08:00
|
|
|
|
2007-12-01 07:16:45 +08:00
|
|
|
\end{document}
|
2007-12-01 07:29:01 +08:00
|
|
|
|