lammps/python/lammps.py

1392 lines
46 KiB
Python
Raw Normal View History

# ----------------------------------------------------------------------
# LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
# http://lammps.sandia.gov, Sandia National Laboratories
# Steve Plimpton, sjplimp@sandia.gov
#
# Copyright (2003) Sandia Corporation. Under the terms of Contract
# DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
2018-04-20 06:30:51 +08:00
# certain rights in this software. This software is distributed under
# the GNU General Public License.
#
# See the README file in the top-level LAMMPS directory.
# -------------------------------------------------------------------------
# Python wrappers on LAMMPS library via ctypes
# for python3 compatibility
from __future__ import print_function
# imports for simple LAMMPS python wrapper module "lammps"
import sys,traceback,types
from ctypes import *
from os.path import dirname,abspath,join
from inspect import getsourcefile
# imports for advanced LAMMPS python wrapper modules "PyLammps" and "IPyLammps"
from collections import namedtuple
import os
import select
import re
import sys
LAMMPS_INT = 0
LAMMPS_DOUBLE = 1
LAMMPS_BIGINT = 2
LAMMPS_TAGINT = 3
def get_ctypes_int(size):
if size == 4:
return c_int32
elif size == 8:
return c_int64
2018-04-20 06:30:51 +08:00
return c_int
class MPIAbortException(Exception):
def __init__(self, message):
self.message = message
def __str__(self):
return repr(self.message)
class NeighList:
2019-11-14 04:53:25 +08:00
"""This is a wrapper class that exposes the contents of a neighbor list
It can be used like a regular Python list.
Internally it uses the lower-level LAMMPS C-library interface.
:param lmp: reference to instance of :class:`lammps`
:type lmp: lammps
:param idx: neighbor list index
:type idx: int
"""
def __init__(self, lmp, idx):
self.lmp = lmp
self.idx = idx
def __str__(self):
return "Neighbor List ({} atoms)".format(self.size)
def __repr__(self):
return self.__str__()
@property
def size(self):
2019-11-14 04:53:25 +08:00
"""
:return: number of elements in neighbor list
"""
return self.lmp.get_neighlist_size(self.idx)
def get(self, element):
2019-11-14 04:53:25 +08:00
"""
:return: tuple with atom local index, number of neighbors and array of neighbor local atom indices
:rtype: (int, int, numpy.array)
"""
iatom, numneigh, neighbors = self.lmp.get_neighlist_element_neighbors(self.idx, element)
return iatom, numneigh, neighbors
2019-11-14 04:53:25 +08:00
# the methods below implement the iterator interface, so NeighList can be used like a regular Python list
def __getitem__(self, element):
return self.get(element)
2019-11-14 04:53:25 +08:00
def __len__(self):
return self.size
def __iter__(self):
inum = self.size
for ii in range(inum):
yield self.get(ii)
class lammps(object):
2018-04-20 06:30:51 +08:00
# detect if Python is using version of mpi4py that can pass a communicator
has_mpi4py = False
try:
from mpi4py import MPI
from mpi4py import __version__ as mpi4py_version
if mpi4py_version.split('.')[0] in ['2','3']: has_mpi4py = True
except:
pass
# create instance of LAMMPS
def __init__(self,name="",cmdargs=None,ptr=None,comm=None):
self.comm = comm
self.opened = 0
# determine module location
modpath = dirname(abspath(getsourcefile(lambda:0)))
self.lib = None
self.lmp = None
# if a pointer to a LAMMPS object is handed in,
# all symbols should already be available
2018-04-20 06:30:51 +08:00
try:
if ptr: self.lib = CDLL("",RTLD_GLOBAL)
except:
self.lib = None
# load liblammps.so unless name is given
# if name = "g++", load liblammps_g++.so
# try loading the LAMMPS shared object from the location
# of lammps.py with an absolute path,
# so that LD_LIBRARY_PATH does not need to be set for regular install
# fall back to loading with a relative path,
# typically requires LD_LIBRARY_PATH to be set appropriately
2018-04-20 06:30:51 +08:00
2019-02-12 15:20:54 +08:00
if any([f.startswith('liblammps') and f.endswith('.dylib') for f in os.listdir(modpath)]):
2019-02-04 16:23:29 +08:00
lib_ext = ".dylib"
else:
lib_ext = ".so"
if not self.lib:
try:
2019-02-04 16:23:29 +08:00
if not name: self.lib = CDLL(join(modpath,"liblammps" + lib_ext),RTLD_GLOBAL)
else: self.lib = CDLL(join(modpath,"liblammps_%s" % name + lib_ext),
RTLD_GLOBAL)
except:
2019-02-04 16:23:29 +08:00
if not name: self.lib = CDLL("liblammps" + lib_ext,RTLD_GLOBAL)
else: self.lib = CDLL("liblammps_%s" % name + lib_ext,RTLD_GLOBAL)
2018-03-24 03:34:22 +08:00
# define ctypes API for each library method
# NOTE: should add one of these for each lib function
self.lib.lammps_extract_box.argtypes = \
[c_void_p,POINTER(c_double),POINTER(c_double),
POINTER(c_double),POINTER(c_double),POINTER(c_double),
POINTER(c_int),POINTER(c_int)]
self.lib.lammps_extract_box.restype = None
self.lib.lammps_reset_box.argtypes = \
[c_void_p,POINTER(c_double),POINTER(c_double),c_double,c_double,c_double]
self.lib.lammps_reset_box.restype = None
self.lib.lammps_gather_atoms.argtypes = \
[c_void_p,c_char_p,c_int,c_int,c_void_p]
self.lib.lammps_gather_atoms.restype = None
2018-04-20 06:30:51 +08:00
2018-03-24 03:34:22 +08:00
self.lib.lammps_gather_atoms_concat.argtypes = \
[c_void_p,c_char_p,c_int,c_int,c_void_p]
self.lib.lammps_gather_atoms_concat.restype = None
2018-04-20 06:30:51 +08:00
2018-03-24 03:34:22 +08:00
self.lib.lammps_gather_atoms_subset.argtypes = \
[c_void_p,c_char_p,c_int,c_int,c_int,POINTER(c_int),c_void_p]
self.lib.lammps_gather_atoms_subset.restype = None
2018-04-20 06:30:51 +08:00
2018-03-24 03:34:22 +08:00
self.lib.lammps_scatter_atoms.argtypes = \
[c_void_p,c_char_p,c_int,c_int,c_void_p]
self.lib.lammps_scatter_atoms.restype = None
self.lib.lammps_scatter_atoms_subset.argtypes = \
[c_void_p,c_char_p,c_int,c_int,c_int,POINTER(c_int),c_void_p]
self.lib.lammps_scatter_atoms_subset.restype = None
2019-11-14 04:53:25 +08:00
self.lib.lammps_find_pair_neighlist.argtypes = [c_void_p, c_char_p, c_int, c_int, c_int]
self.lib.lammps_find_pair_neighlist.restype = c_int
self.lib.lammps_find_fix_neighlist.argtypes = [c_void_p, c_char_p, c_int]
self.lib.lammps_find_fix_neighlist.restype = c_int
self.lib.lammps_find_compute_neighlist.argtypes = [c_void_p, c_char_p, c_int]
self.lib.lammps_find_compute_neighlist.restype = c_int
self.lib.lammps_neighlist_num_elements.argtypes = [c_void_p, c_int]
self.lib.lammps_neighlist_num_elements.restype = c_int
self.lib.lammps_neighlist_element_neighbors.argtypes = [c_void_p, c_int, c_int, POINTER(c_int), POINTER(c_int), POINTER(POINTER(c_int))]
self.lib.lammps_neighlist_element_neighbors.restype = None
# if no ptr provided, create an instance of LAMMPS
# don't know how to pass an MPI communicator from PyPar
# but we can pass an MPI communicator from mpi4py v2.0.0 and later
# no_mpi call lets LAMMPS use MPI_COMM_WORLD
# cargs = array of C strings from args
# if ptr, then are embedding Python in LAMMPS input script
# ptr is the desired instance of LAMMPS
# just convert it to ctypes ptr and store in self.lmp
if not ptr:
2018-04-20 06:30:51 +08:00
# with mpi4py v2, can pass MPI communicator to LAMMPS
# need to adjust for type of MPI communicator object
# allow for int (like MPICH) or void* (like OpenMPI)
if comm:
if not lammps.has_mpi4py:
raise Exception('Python mpi4py version is not 2 or 3')
if lammps.MPI._sizeof(lammps.MPI.Comm) == sizeof(c_int):
MPI_Comm = c_int
else:
MPI_Comm = c_void_p
narg = 0
cargs = 0
if cmdargs:
cmdargs.insert(0,"lammps.py")
narg = len(cmdargs)
for i in range(narg):
if type(cmdargs[i]) is str:
cmdargs[i] = cmdargs[i].encode()
cargs = (c_char_p*narg)(*cmdargs)
self.lib.lammps_open.argtypes = [c_int, c_char_p*narg, \
MPI_Comm, c_void_p()]
else:
self.lib.lammps_open.argtypes = [c_int, c_int, \
MPI_Comm, c_void_p()]
self.lib.lammps_open.restype = None
self.opened = 1
self.lmp = c_void_p()
comm_ptr = lammps.MPI._addressof(comm)
comm_val = MPI_Comm.from_address(comm_ptr)
self.lib.lammps_open(narg,cargs,comm_val,byref(self.lmp))
else:
2018-08-22 02:45:01 +08:00
if lammps.has_mpi4py:
from mpi4py import MPI
self.comm = MPI.COMM_WORLD
self.opened = 1
if cmdargs:
cmdargs.insert(0,"lammps.py")
narg = len(cmdargs)
for i in range(narg):
if type(cmdargs[i]) is str:
cmdargs[i] = cmdargs[i].encode()
cargs = (c_char_p*narg)(*cmdargs)
self.lmp = c_void_p()
self.lib.lammps_open_no_mpi(narg,cargs,byref(self.lmp))
else:
self.lmp = c_void_p()
self.lib.lammps_open_no_mpi(0,None,byref(self.lmp))
# could use just this if LAMMPS lib interface supported it
# self.lmp = self.lib.lammps_open_no_mpi(0,None)
else:
# magic to convert ptr to ctypes ptr
if sys.version_info >= (3, 0):
# Python 3 (uses PyCapsule API)
pythonapi.PyCapsule_GetPointer.restype = c_void_p
pythonapi.PyCapsule_GetPointer.argtypes = [py_object, c_char_p]
self.lmp = c_void_p(pythonapi.PyCapsule_GetPointer(ptr, None))
else:
# Python 2 (uses PyCObject API)
pythonapi.PyCObject_AsVoidPtr.restype = c_void_p
pythonapi.PyCObject_AsVoidPtr.argtypes = [py_object]
self.lmp = c_void_p(pythonapi.PyCObject_AsVoidPtr(ptr))
2017-07-12 23:53:36 +08:00
# optional numpy support (lazy loading)
self._numpy = None
# set default types
self.c_bigint = get_ctypes_int(self.extract_setting("bigint"))
self.c_tagint = get_ctypes_int(self.extract_setting("tagint"))
self.c_imageint = get_ctypes_int(self.extract_setting("imageint"))
self._installed_packages = None
self._available_styles = None
# add way to insert Python callback for fix external
self.callback = {}
2019-08-23 00:41:35 +08:00
self.FIX_EXTERNAL_CALLBACK_FUNC = CFUNCTYPE(None, py_object, self.c_bigint, c_int, POINTER(self.c_tagint), POINTER(POINTER(c_double)), POINTER(POINTER(c_double)))
self.lib.lammps_set_fix_external_callback.argtypes = [c_void_p, c_char_p, self.FIX_EXTERNAL_CALLBACK_FUNC, py_object]
self.lib.lammps_set_fix_external_callback.restype = None
2018-03-24 03:34:22 +08:00
# shut-down LAMMPS instance
2018-04-20 06:30:51 +08:00
def __del__(self):
if self.lmp and self.opened:
self.lib.lammps_close(self.lmp)
self.opened = 0
def close(self):
if self.opened: self.lib.lammps_close(self.lmp)
self.lmp = None
self.opened = 0
def version(self):
return self.lib.lammps_version(self.lmp)
def file(self,file):
if file: file = file.encode()
self.lib.lammps_file(self.lmp,file)
2016-10-27 23:34:04 +08:00
# send a single command
2018-04-20 06:30:51 +08:00
def command(self,cmd):
if cmd: cmd = cmd.encode()
self.lib.lammps_command(self.lmp,cmd)
2018-06-30 07:07:14 +08:00
if self.has_exceptions and self.lib.lammps_has_error(self.lmp):
sb = create_string_buffer(100)
error_type = self.lib.lammps_get_last_error_message(self.lmp, sb, 100)
error_msg = sb.value.decode().strip()
if error_type == 2:
raise MPIAbortException(error_msg)
raise Exception(error_msg)
2016-10-27 23:34:04 +08:00
# send a list of commands
def commands_list(self,cmdlist):
cmds = [x.encode() for x in cmdlist if type(x) is str]
args = (c_char_p * len(cmdlist))(*cmds)
2016-10-27 23:34:04 +08:00
self.lib.lammps_commands_list(self.lmp,len(cmdlist),args)
2018-04-20 06:30:51 +08:00
2016-10-27 23:34:04 +08:00
# send a string of commands
def commands_string(self,multicmd):
2018-03-24 03:34:22 +08:00
if type(multicmd) is str: multicmd = multicmd.encode()
2016-10-27 23:34:04 +08:00
self.lib.lammps_commands_string(self.lmp,c_char_p(multicmd))
2018-04-20 06:30:51 +08:00
2018-03-24 03:34:22 +08:00
# extract lammps type byte sizes
def extract_setting(self, name):
if name: name = name.encode()
self.lib.lammps_extract_setting.restype = c_int
2018-03-24 03:34:22 +08:00
return int(self.lib.lammps_extract_setting(self.lmp,name))
2016-10-27 23:34:04 +08:00
# extract global info
2018-04-20 06:30:51 +08:00
def extract_global(self,name,type):
if name: name = name.encode()
if type == LAMMPS_INT:
self.lib.lammps_extract_global.restype = POINTER(c_int)
elif type == LAMMPS_DOUBLE:
self.lib.lammps_extract_global.restype = POINTER(c_double)
elif type == LAMMPS_BIGINT:
self.lib.lammps_extract_global.restype = POINTER(self.c_bigint)
elif type == LAMMPS_TAGINT:
self.lib.lammps_extract_global.restype = POINTER(self.c_tagint)
else: return None
ptr = self.lib.lammps_extract_global(self.lmp,name)
return ptr[0]
2018-03-24 03:34:22 +08:00
# extract global info
2018-04-20 06:30:51 +08:00
2018-03-24 03:34:22 +08:00
def extract_box(self):
boxlo = (3*c_double)()
boxhi = (3*c_double)()
xy = c_double()
yz = c_double()
xz = c_double()
periodicity = (3*c_int)()
box_change = c_int()
2018-04-20 06:30:51 +08:00
2018-03-24 03:34:22 +08:00
self.lib.lammps_extract_box(self.lmp,boxlo,boxhi,
byref(xy),byref(yz),byref(xz),
periodicity,byref(box_change))
2018-04-20 06:30:51 +08:00
2018-03-24 03:34:22 +08:00
boxlo = boxlo[:3]
boxhi = boxhi[:3]
xy = xy.value
yz = yz.value
xz = xz.value
periodicity = periodicity[:3]
box_change = box_change.value
2018-04-20 06:30:51 +08:00
2018-03-24 03:34:22 +08:00
return boxlo,boxhi,xy,yz,xz,periodicity,box_change
2018-04-20 06:30:51 +08:00
2016-10-27 23:34:04 +08:00
# extract per-atom info
2018-03-24 03:34:22 +08:00
# NOTE: need to insure are converting to/from correct Python type
# e.g. for Python list or NumPy or ctypes
def extract_atom(self,name,type):
if name: name = name.encode()
if type == 0:
self.lib.lammps_extract_atom.restype = POINTER(c_int)
elif type == 1:
self.lib.lammps_extract_atom.restype = POINTER(POINTER(c_int))
elif type == 2:
self.lib.lammps_extract_atom.restype = POINTER(c_double)
elif type == 3:
self.lib.lammps_extract_atom.restype = POINTER(POINTER(c_double))
else: return None
ptr = self.lib.lammps_extract_atom(self.lmp,name)
return ptr
2018-04-20 06:30:51 +08:00
@property
def numpy(self):
if not self._numpy:
import numpy as np
class LammpsNumpyWrapper:
def __init__(self, lmp):
self.lmp = lmp
def _ctype_to_numpy_int(self, ctype_int):
if ctype_int == c_int32:
return np.int32
elif ctype_int == c_int64:
return np.int64
return np.intc
def extract_atom_iarray(self, name, nelem, dim=1):
if name in ['id', 'molecule']:
c_int_type = self.lmp.c_tagint
elif name in ['image']:
c_int_type = self.lmp.c_imageint
else:
c_int_type = c_int
2019-08-23 00:41:35 +08:00
if dim == 1:
raw_ptr = self.lmp.extract_atom(name, 0)
else:
raw_ptr = self.lmp.extract_atom(name, 1)
return self.iarray(c_int_type, raw_ptr, nelem, dim)
def extract_atom_darray(self, name, nelem, dim=1):
if dim == 1:
raw_ptr = self.lmp.extract_atom(name, 2)
else:
raw_ptr = self.lmp.extract_atom(name, 3)
return self.darray(raw_ptr, nelem, dim)
def iarray(self, c_int_type, raw_ptr, nelem, dim=1):
np_int_type = self._ctype_to_numpy_int(c_int_type)
if dim == 1:
2019-08-23 00:41:35 +08:00
ptr = cast(raw_ptr, POINTER(c_int_type * nelem))
else:
2019-08-23 00:41:35 +08:00
ptr = cast(raw_ptr[0], POINTER(c_int_type * nelem * dim))
a = np.frombuffer(ptr.contents, dtype=np_int_type)
a.shape = (nelem, dim)
return a
2019-08-23 00:41:35 +08:00
def darray(self, raw_ptr, nelem, dim=1):
if dim == 1:
2019-08-23 00:41:35 +08:00
ptr = cast(raw_ptr, POINTER(c_double * nelem))
else:
2019-08-23 00:41:35 +08:00
ptr = cast(raw_ptr[0], POINTER(c_double * nelem * dim))
a = np.frombuffer(ptr.contents)
a.shape = (nelem, dim)
return a
self._numpy = LammpsNumpyWrapper(self)
return self._numpy
2016-10-27 23:34:04 +08:00
# extract compute info
2018-04-20 06:30:51 +08:00
def extract_compute(self,id,style,type):
if id: id = id.encode()
if type == 0:
if style == 0:
self.lib.lammps_extract_compute.restype = POINTER(c_double)
ptr = self.lib.lammps_extract_compute(self.lmp,id,style,type)
return ptr[0]
2019-10-26 17:14:55 +08:00
elif style == 1:
return None
2019-10-26 17:14:55 +08:00
elif style == 2:
self.lib.lammps_extract_compute.restype = POINTER(c_int)
ptr = self.lib.lammps_extract_compute(self.lmp,id,style,type)
return ptr[0]
if type == 1:
self.lib.lammps_extract_compute.restype = POINTER(c_double)
ptr = self.lib.lammps_extract_compute(self.lmp,id,style,type)
return ptr
if type == 2:
self.lib.lammps_extract_compute.restype = POINTER(POINTER(c_double))
ptr = self.lib.lammps_extract_compute(self.lmp,id,style,type)
return ptr
return None
2016-10-27 23:34:04 +08:00
# extract fix info
# in case of global datum, free memory for 1 double via lammps_free()
# double was allocated by library interface function
def extract_fix(self,id,style,type,i=0,j=0):
if id: id = id.encode()
if style == 0:
self.lib.lammps_extract_fix.restype = POINTER(c_double)
ptr = self.lib.lammps_extract_fix(self.lmp,id,style,type,i,j)
result = ptr[0]
self.lib.lammps_free(ptr)
return result
elif (style == 2) and (type == 0):
self.lib.lammps_extract_fix.restype = POINTER(c_int)
ptr = self.lib.lammps_extract_fix(self.lmp,id,style,type,i,j)
return ptr[0]
elif (style == 1) or (style == 2):
if type == 1:
self.lib.lammps_extract_fix.restype = POINTER(c_double)
elif type == 2:
self.lib.lammps_extract_fix.restype = POINTER(POINTER(c_double))
else:
return None
ptr = self.lib.lammps_extract_fix(self.lmp,id,style,type,i,j)
return ptr
else:
return None
2016-10-27 23:34:04 +08:00
# extract variable info
# free memory for 1 double or 1 vector of doubles via lammps_free()
# for vector, must copy nlocal returned values to local c_double vector
# memory was allocated by library interface function
def extract_variable(self,name,group,type):
if name: name = name.encode()
if group: group = group.encode()
if type == 0:
self.lib.lammps_extract_variable.restype = POINTER(c_double)
ptr = self.lib.lammps_extract_variable(self.lmp,name,group)
result = ptr[0]
self.lib.lammps_free(ptr)
return result
if type == 1:
self.lib.lammps_extract_global.restype = POINTER(c_int)
nlocalptr = self.lib.lammps_extract_global(self.lmp,"nlocal".encode())
nlocal = nlocalptr[0]
result = (c_double*nlocal)()
self.lib.lammps_extract_variable.restype = POINTER(c_double)
ptr = self.lib.lammps_extract_variable(self.lmp,name,group)
for i in range(nlocal): result[i] = ptr[i]
self.lib.lammps_free(ptr)
return result
return None
# return current value of thermo keyword
def get_thermo(self,name):
if name: name = name.encode()
self.lib.lammps_get_thermo.restype = c_double
return self.lib.lammps_get_thermo(self.lmp,name)
# return total number of atoms in system
def get_natoms(self):
return self.lib.lammps_get_natoms(self.lmp)
2018-03-24 03:34:22 +08:00
# set variable value
# value is converted to string
# returns 0 for success, -1 if failed
def set_variable(self,name,value):
if name: name = name.encode()
if value: value = str(value).encode()
return self.lib.lammps_set_variable(self.lmp,name,value)
# reset simulation box size
def reset_box(self,boxlo,boxhi,xy,yz,xz):
cboxlo = (3*c_double)(*boxlo)
cboxhi = (3*c_double)(*boxhi)
self.lib.lammps_reset_box(self.lmp,cboxlo,cboxhi,xy,yz,xz)
2018-04-20 06:30:51 +08:00
2018-03-24 03:34:22 +08:00
# return vector of atom properties gathered across procs
# 3 variants to match src/library.cpp
2016-10-27 23:34:04 +08:00
# name = atom property recognized by LAMMPS in atom->extract()
# type = 0 for integer values, 1 for double values
# count = number of per-atom valus, 1 for type or charge, 3 for x or f
# returned data is a 1d vector - doc how it is ordered?
2018-03-24 03:34:22 +08:00
# NOTE: need to insure are converting to/from correct Python type
# e.g. for Python list or NumPy or ctypes
2018-04-20 06:30:51 +08:00
def gather_atoms(self,name,type,count):
if name: name = name.encode()
natoms = self.lib.lammps_get_natoms(self.lmp)
if type == 0:
data = ((count*natoms)*c_int)()
self.lib.lammps_gather_atoms(self.lmp,name,type,count,data)
elif type == 1:
data = ((count*natoms)*c_double)()
self.lib.lammps_gather_atoms(self.lmp,name,type,count,data)
else: return None
return data
2018-04-20 06:30:51 +08:00
2018-03-24 03:34:22 +08:00
def gather_atoms_concat(self,name,type,count):
if name: name = name.encode()
natoms = self.lib.lammps_get_natoms(self.lmp)
if type == 0:
data = ((count*natoms)*c_int)()
self.lib.lammps_gather_atoms_concat(self.lmp,name,type,count,data)
elif type == 1:
data = ((count*natoms)*c_double)()
self.lib.lammps_gather_atoms_concat(self.lmp,name,type,count,data)
else: return None
return data
def gather_atoms_subset(self,name,type,count,ndata,ids):
if name: name = name.encode()
if type == 0:
data = ((count*ndata)*c_int)()
self.lib.lammps_gather_atoms_subset(self.lmp,name,type,count,ndata,ids,data)
elif type == 1:
data = ((count*ndata)*c_double)()
self.lib.lammps_gather_atoms_subset(self.lmp,name,type,count,ndata,ids,data)
else: return None
return data
2018-03-24 03:34:22 +08:00
# scatter vector of atom properties across procs
# 2 variants to match src/library.cpp
2016-10-27 23:34:04 +08:00
# name = atom property recognized by LAMMPS in atom->extract()
# type = 0 for integer values, 1 for double values
# count = number of per-atom valus, 1 for type or charge, 3 for x or f
# assume data is of correct type and length, as created by gather_atoms()
2018-03-24 03:34:22 +08:00
# NOTE: need to insure are converting to/from correct Python type
# e.g. for Python list or NumPy or ctypes
2018-04-20 06:30:51 +08:00
def scatter_atoms(self,name,type,count,data):
if name: name = name.encode()
self.lib.lammps_scatter_atoms(self.lmp,name,type,count,data)
2018-03-24 03:34:22 +08:00
def scatter_atoms_subset(self,name,type,count,ndata,ids,data):
if name: name = name.encode()
self.lib.lammps_scatter_atoms_subset(self.lmp,name,type,count,ndata,ids,data)
2016-10-27 23:34:04 +08:00
# create N atoms on all procs
# N = global number of atoms
# id = ID of each atom (optional, can be None)
# type = type of each atom (1 to Ntypes) (required)
# x = coords of each atom as (N,3) array (required)
# v = velocity of each atom as (N,3) array (optional, can be None)
# NOTE: how could we insure are passing correct type to LAMMPS
# e.g. for Python list or NumPy, etc
# ditto for gather_atoms() above
def create_atoms(self,n,id,type,x,v,image=None,shrinkexceed=False):
2016-10-27 23:34:04 +08:00
if id:
id_lmp = (c_int * n)()
id_lmp[:] = id
else:
id_lmp = id
if image:
image_lmp = (c_int * n)()
image_lmp[:] = image
else:
image_lmp = image
2016-10-27 23:34:04 +08:00
type_lmp = (c_int * n)()
type_lmp[:] = type
2018-03-24 03:34:22 +08:00
self.lib.lammps_create_atoms(self.lmp,n,id_lmp,type_lmp,x,v,image_lmp,
shrinkexceed)
@property
def has_exceptions(self):
""" Return whether the LAMMPS shared library was compiled with C++ exceptions handling enabled """
return self.lib.lammps_config_has_exceptions() != 0
@property
def has_gzip_support(self):
return self.lib.lammps_config_has_gzip_support() != 0
@property
def has_png_support(self):
return self.lib.lammps_config_has_png_support() != 0
@property
def has_jpeg_support(self):
return self.lib.lammps_config_has_jpeg_support() != 0
@property
def has_ffmpeg_support(self):
return self.lib.lammps_config_has_ffmpeg_support() != 0
@property
def installed_packages(self):
if self._installed_packages is None:
self._installed_packages = []
npackages = self.lib.lammps_config_package_count()
sb = create_string_buffer(100)
for idx in range(npackages):
self.lib.lammps_config_package_name(idx, sb, 100)
self._installed_packages.append(sb.value.decode())
return self._installed_packages
def has_style(self, category, name):
"""Returns whether a given style name is available in a given category
:param category: name of category
:type category: string
:param name: name of the style
:type name: string
:return: true if style is available in given category
:rtype: bool
"""
return self.lib.lammps_has_style(self.lmp, category.encode(), name.encode()) != 0
def available_styles(self, category):
"""Returns a list of styles available for a given category
:param category: name of category
:type category: string
:return: list of style names in given category
:rtype: list
"""
if self._available_styles is None:
self._available_styles = {}
if category not in self._available_styles:
self._available_styles[category] = []
nstyles = self.lib.lammps_style_count(self.lmp, category.encode())
sb = create_string_buffer(100)
for idx in range(nstyles):
self.lib.lammps_style_name(self.lmp, category.encode(), idx, sb, 100)
self._available_styles[category].append(sb.value.decode())
return self._available_styles[category]
def set_fix_external_callback(self, fix_name, callback, caller=None):
import numpy as np
def _ctype_to_numpy_int(ctype_int):
if ctype_int == c_int32:
return np.int32
elif ctype_int == c_int64:
return np.int64
return np.intc
2019-08-23 00:41:35 +08:00
def callback_wrapper(caller, ntimestep, nlocal, tag_ptr, x_ptr, fext_ptr):
tag = self.numpy.iarray(self.c_tagint, tag_ptr, nlocal, 1)
x = self.numpy.darray(x_ptr, nlocal, 3)
f = self.numpy.darray(fext_ptr, nlocal, 3)
callback(caller, ntimestep, nlocal, tag, x, f)
cFunc = self.FIX_EXTERNAL_CALLBACK_FUNC(callback_wrapper)
2019-08-23 00:41:35 +08:00
cCaller = caller
self.callback[fix_name] = { 'function': cFunc, 'caller': caller }
self.lib.lammps_set_fix_external_callback(self.lmp, fix_name.encode(), cFunc, cCaller)
def get_neighlist(self, idx):
2019-11-14 04:53:25 +08:00
"""Returns an instance of :class:`NeighList` which wraps access to the neighbor list with the given index
:param idx: index of neighbor list
:type idx: int
:return: an instance of :class:`NeighList` wrapping access to neighbor list data
:rtype: NeighList
"""
if idx < 0:
return None
return NeighList(self, idx)
2019-11-14 04:53:25 +08:00
def find_pair_neighlist(self, style, exact=True, nsub=0, request=0):
"""Find neighbor list index of pair style neighbor list
Try finding pair instance that matches style. If exact is set, the pair must
match style exactly. If exact is 0, style must only be contained. If pair is
of style pair/hybrid, style is instead matched the nsub-th hybrid sub-style.
Once the pair instance has been identified, multiple neighbor list requests
may be found. Every neighbor list is uniquely identified by its request
index. Thus, providing this request index ensures that the correct neighbor
list index is returned.
:param style: name of pair style that should be searched for
:type style: string
:param exact: controls whether style should match exactly or only must be contained in pair style name, defaults to True
:type exact: bool, optional
:param nsub: match nsub-th hybrid sub-style, defaults to 0
:type nsub: int, optional
:param request: index of neighbor list request, in case there are more than one, defaults to 0
:type request: int, optional
:return: neighbor list index if found, otherwise -1
:rtype: int
"""
style = style.encode()
2019-11-14 04:53:25 +08:00
exact = int(exact)
idx = self.lib.lammps_find_pair_neighlist(self.lmp, style, exact, nsub, request)
return self.get_neighlist(idx)
def find_fix_neighlist(self, fixid, request=0):
2019-11-14 04:53:25 +08:00
"""Find neighbor list index of fix neighbor list
:param fixid: name of fix
:type fixid: string
:param request: index of neighbor list request, in case there are more than one, defaults to 0
:type request: int, optional
:return: neighbor list index if found, otherwise -1
:rtype: int
"""
fixid = fixid.encode()
idx = self.lib.lammps_find_fix_neighlist(self.lmp, fixid, request)
return self.get_neighlist(idx)
2019-09-13 02:44:56 +08:00
def find_compute_neighlist(self, computeid, request=0):
2019-11-14 04:53:25 +08:00
"""Find neighbor list index of compute neighbor list
:param computeid: name of compute
:type computeid: string
:param request: index of neighbor list request, in case there are more than one, defaults to 0
:type request: int, optional
:return: neighbor list index if found, otherwise -1
:rtype: int
"""
computeid = computeid.encode()
idx = self.lib.lammps_find_compute_neighlist(self.lmp, computeid, request)
return self.get_neighlist(idx)
def get_neighlist_size(self, idx):
2019-11-14 04:53:25 +08:00
"""Return the number of elements in neighbor list with the given index
:param idx: neighbor list index
:type idx: int
:return: number of elements in neighbor list with index idx
:rtype: int
"""
return self.lib.lammps_neighlist_num_elements(self.lmp, idx)
def get_neighlist_element_neighbors(self, idx, element):
2019-11-14 04:53:25 +08:00
"""Return data of neighbor list entry
:param element: neighbor list index
:type element: int
:param element: neighbor list element index
:type element: int
:return: tuple with atom local index, number of neighbors and array of neighbor local atom indices
:rtype: (int, int, numpy.array)
"""
c_iatom = c_int()
c_numneigh = c_int()
c_neighbors = POINTER(c_int)()
self.lib.lammps_neighlist_element_neighbors(self.lmp, idx, element, byref(c_iatom), byref(c_numneigh), byref(c_neighbors))
neighbors = self.numpy.iarray(c_int, c_neighbors, c_numneigh.value, 1)
return c_iatom.value, c_numneigh.value, neighbors
# -------------------------------------------------------------------------
# -------------------------------------------------------------------------
# -------------------------------------------------------------------------
################################################################################
# Alternative Python Wrapper
# Written by Richard Berger <richard.berger@temple.edu>
################################################################################
class OutputCapture(object):
""" Utility class to capture LAMMPS library output """
def __init__(self):
self.stdout_pipe_read, self.stdout_pipe_write = os.pipe()
self.stdout_fd = 1
def __enter__(self):
self.stdout = os.dup(self.stdout_fd)
os.dup2(self.stdout_pipe_write, self.stdout_fd)
return self
def __exit__(self, type, value, tracebac):
os.dup2(self.stdout, self.stdout_fd)
os.close(self.stdout)
os.close(self.stdout_pipe_read)
os.close(self.stdout_pipe_write)
# check if we have more to read from the pipe
def more_data(self, pipe):
r, _, _ = select.select([pipe], [], [], 0)
return bool(r)
# read the whole pipe
def read_pipe(self, pipe):
out = ""
while self.more_data(pipe):
out += os.read(pipe, 1024).decode()
return out
@property
def output(self):
return self.read_pipe(self.stdout_pipe_read)
class Variable(object):
def __init__(self, lammps_wrapper_instance, name, style, definition):
self.wrapper = lammps_wrapper_instance
self.name = name
self.style = style
self.definition = definition.split()
@property
def value(self):
if self.style == 'atom':
return list(self.wrapper.lmp.extract_variable(self.name, "all", 1))
else:
value = self.wrapper.lmp_print('"${%s}"' % self.name).strip()
try:
return float(value)
except ValueError:
return value
class AtomList(object):
def __init__(self, lammps_wrapper_instance):
self.lmp = lammps_wrapper_instance
self.natoms = self.lmp.system.natoms
self.dimensions = self.lmp.system.dimensions
def __getitem__(self, index):
if self.dimensions == 2:
return Atom2D(self.lmp, index + 1)
return Atom(self.lmp, index + 1)
class Atom(object):
def __init__(self, lammps_wrapper_instance, index):
self.lmp = lammps_wrapper_instance
self.index = index
@property
def id(self):
return int(self.lmp.eval("id[%d]" % self.index))
@property
def type(self):
return int(self.lmp.eval("type[%d]" % self.index))
@property
def mol(self):
return self.lmp.eval("mol[%d]" % self.index)
@property
def mass(self):
return self.lmp.eval("mass[%d]" % self.index)
@property
def position(self):
return (self.lmp.eval("x[%d]" % self.index),
self.lmp.eval("y[%d]" % self.index),
self.lmp.eval("z[%d]" % self.index))
@position.setter
def position(self, value):
self.lmp.set("atom", self.index, "x", value[0])
self.lmp.set("atom", self.index, "y", value[1])
self.lmp.set("atom", self.index, "z", value[2])
@property
def velocity(self):
return (self.lmp.eval("vx[%d]" % self.index),
self.lmp.eval("vy[%d]" % self.index),
self.lmp.eval("vz[%d]" % self.index))
@velocity.setter
def velocity(self, value):
self.lmp.set("atom", self.index, "vx", value[0])
self.lmp.set("atom", self.index, "vy", value[1])
self.lmp.set("atom", self.index, "vz", value[2])
@property
def force(self):
return (self.lmp.eval("fx[%d]" % self.index),
self.lmp.eval("fy[%d]" % self.index),
self.lmp.eval("fz[%d]" % self.index))
@property
def charge(self):
return self.lmp.eval("q[%d]" % self.index)
class Atom2D(Atom):
def __init__(self, lammps_wrapper_instance, index):
super(Atom2D, self).__init__(lammps_wrapper_instance, index)
@property
def position(self):
return (self.lmp.eval("x[%d]" % self.index),
self.lmp.eval("y[%d]" % self.index))
@position.setter
def position(self, value):
self.lmp.set("atom", self.index, "x", value[0])
self.lmp.set("atom", self.index, "y", value[1])
@property
def velocity(self):
return (self.lmp.eval("vx[%d]" % self.index),
self.lmp.eval("vy[%d]" % self.index))
@velocity.setter
def velocity(self, value):
self.lmp.set("atom", self.index, "vx", value[0])
self.lmp.set("atom", self.index, "vy", value[1])
@property
def force(self):
return (self.lmp.eval("fx[%d]" % self.index),
self.lmp.eval("fy[%d]" % self.index))
class variable_set:
def __init__(self, name, variable_dict):
self._name = name
array_pattern = re.compile(r"(?P<arr>.+)\[(?P<index>[0-9]+)\]")
for key, value in variable_dict.items():
m = array_pattern.match(key)
if m:
g = m.groupdict()
varname = g['arr']
idx = int(g['index'])
if varname not in self.__dict__:
self.__dict__[varname] = {}
self.__dict__[varname][idx] = value
else:
self.__dict__[key] = value
def __str__(self):
return "{}({})".format(self._name, ','.join(["{}={}".format(k, self.__dict__[k]) for k in self.__dict__.keys() if not k.startswith('_')]))
def __repr__(self):
return self.__str__()
def get_thermo_data(output):
""" traverse output of runs and extract thermo data columns """
if isinstance(output, str):
lines = output.splitlines()
else:
lines = output
runs = []
columns = []
in_run = False
current_run = {}
for line in lines:
if line.startswith("Per MPI rank memory allocation"):
in_run = True
elif in_run and len(columns) == 0:
# first line after memory usage are column names
columns = line.split()
current_run = {}
for col in columns:
current_run[col] = []
elif line.startswith("Loop time of "):
in_run = False
columns = None
thermo_data = variable_set('ThermoData', current_run)
r = {'thermo' : thermo_data }
runs.append(namedtuple('Run', list(r.keys()))(*list(r.values())))
elif in_run and len(columns) > 0:
items = line.split()
# Convert thermo output and store it.
# It must have the same number of columns and
2020-03-14 11:38:28 +08:00
# all of them must be convertible to floats.
# Otherwise we ignore the line
if len(items) == len(columns):
try:
values = [float(x) for x in items]
for i, col in enumerate(columns):
current_run[col].append(values[i])
except ValueError:
pass
return runs
class PyLammps(object):
"""
More Python-like wrapper for LAMMPS (e.g., for iPython)
See examples/ipython for usage
"""
def __init__(self,name="",cmdargs=None,ptr=None,comm=None):
if ptr:
if isinstance(ptr,PyLammps):
self.lmp = ptr.lmp
elif isinstance(ptr,lammps):
self.lmp = ptr
else:
self.lmp = lammps(name=name,cmdargs=cmdargs,ptr=ptr,comm=comm)
else:
self.lmp = lammps(name=name,cmdargs=cmdargs,ptr=None,comm=comm)
print("LAMMPS output is captured by PyLammps wrapper")
self._cmd_history = []
self.runs = []
def __del__(self):
if self.lmp: self.lmp.close()
self.lmp = None
def close(self):
if self.lmp: self.lmp.close()
self.lmp = None
def version(self):
return self.lmp.version()
def file(self,file):
self.lmp.file(file)
def write_script(self,filename):
""" Write LAMMPS script file containing all commands executed up until now """
with open(filename, "w") as f:
for cmd in self._cmd_history:
f.write("%s\n" % cmd)
def command(self,cmd):
self.lmp.command(cmd)
self._cmd_history.append(cmd)
def run(self, *args, **kwargs):
output = self.__getattr__('run')(*args, **kwargs)
2018-08-22 02:45:01 +08:00
if(lammps.has_mpi4py):
output = self.lmp.comm.bcast(output, root=0)
self.runs += get_thermo_data(output)
return output
@property
def last_run(self):
if len(self.runs) > 0:
return self.runs[-1]
return None
@property
def atoms(self):
return AtomList(self)
@property
def system(self):
output = self.info("system")
d = self._parse_info_system(output)
return namedtuple('System', d.keys())(*d.values())
@property
def communication(self):
output = self.info("communication")
d = self._parse_info_communication(output)
return namedtuple('Communication', d.keys())(*d.values())
@property
def computes(self):
output = self.info("computes")
return self._parse_element_list(output)
@property
def dumps(self):
output = self.info("dumps")
return self._parse_element_list(output)
@property
def fixes(self):
output = self.info("fixes")
return self._parse_element_list(output)
@property
def groups(self):
output = self.info("groups")
return self._parse_groups(output)
@property
def variables(self):
output = self.info("variables")
vars = {}
for v in self._parse_element_list(output):
vars[v['name']] = Variable(self, v['name'], v['style'], v['def'])
return vars
def eval(self, expr):
value = self.lmp_print('"$(%s)"' % expr).strip()
try:
return float(value)
except ValueError:
return value
def _split_values(self, line):
return [x.strip() for x in line.split(',')]
def _get_pair(self, value):
return [x.strip() for x in value.split('=')]
def _parse_info_system(self, output):
lines = output[6:-2]
system = {}
for line in lines:
if line.startswith("Units"):
system['units'] = self._get_pair(line)[1]
elif line.startswith("Atom style"):
system['atom_style'] = self._get_pair(line)[1]
elif line.startswith("Atom map"):
system['atom_map'] = self._get_pair(line)[1]
elif line.startswith("Atoms"):
parts = self._split_values(line)
system['natoms'] = int(self._get_pair(parts[0])[1])
system['ntypes'] = int(self._get_pair(parts[1])[1])
system['style'] = self._get_pair(parts[2])[1]
elif line.startswith("Kspace style"):
system['kspace_style'] = self._get_pair(line)[1]
elif line.startswith("Dimensions"):
system['dimensions'] = int(self._get_pair(line)[1])
elif line.startswith("Orthogonal box"):
system['orthogonal_box'] = [float(x) for x in self._get_pair(line)[1].split('x')]
elif line.startswith("Boundaries"):
system['boundaries'] = self._get_pair(line)[1]
elif line.startswith("xlo"):
keys, values = [self._split_values(x) for x in self._get_pair(line)]
for key, value in zip(keys, values):
system[key] = float(value)
elif line.startswith("ylo"):
keys, values = [self._split_values(x) for x in self._get_pair(line)]
for key, value in zip(keys, values):
system[key] = float(value)
elif line.startswith("zlo"):
keys, values = [self._split_values(x) for x in self._get_pair(line)]
for key, value in zip(keys, values):
system[key] = float(value)
elif line.startswith("Molecule type"):
system['molecule_type'] = self._get_pair(line)[1]
elif line.startswith("Bonds"):
parts = self._split_values(line)
system['nbonds'] = int(self._get_pair(parts[0])[1])
system['nbondtypes'] = int(self._get_pair(parts[1])[1])
system['bond_style'] = self._get_pair(parts[2])[1]
elif line.startswith("Angles"):
parts = self._split_values(line)
system['nangles'] = int(self._get_pair(parts[0])[1])
system['nangletypes'] = int(self._get_pair(parts[1])[1])
system['angle_style'] = self._get_pair(parts[2])[1]
elif line.startswith("Dihedrals"):
parts = self._split_values(line)
system['ndihedrals'] = int(self._get_pair(parts[0])[1])
system['ndihedraltypes'] = int(self._get_pair(parts[1])[1])
system['dihedral_style'] = self._get_pair(parts[2])[1]
elif line.startswith("Impropers"):
parts = self._split_values(line)
system['nimpropers'] = int(self._get_pair(parts[0])[1])
system['nimpropertypes'] = int(self._get_pair(parts[1])[1])
system['improper_style'] = self._get_pair(parts[2])[1]
return system
def _parse_info_communication(self, output):
lines = output[6:-3]
comm = {}
for line in lines:
if line.startswith("MPI library"):
comm['mpi_version'] = line.split(':')[1].strip()
elif line.startswith("Comm style"):
parts = self._split_values(line)
comm['comm_style'] = self._get_pair(parts[0])[1]
comm['comm_layout'] = self._get_pair(parts[1])[1]
elif line.startswith("Processor grid"):
comm['proc_grid'] = [int(x) for x in self._get_pair(line)[1].split('x')]
elif line.startswith("Communicate velocities for ghost atoms"):
comm['ghost_velocity'] = (self._get_pair(line)[1] == "yes")
elif line.startswith("Nprocs"):
parts = self._split_values(line)
comm['nprocs'] = int(self._get_pair(parts[0])[1])
comm['nthreads'] = int(self._get_pair(parts[1])[1])
return comm
def _parse_element_list(self, output):
lines = output[6:-3]
elements = []
for line in lines:
element_info = self._split_values(line.split(':')[1].strip())
element = {'name': element_info[0]}
for key, value in [self._get_pair(x) for x in element_info[1:]]:
element[key] = value
elements.append(element)
return elements
def _parse_groups(self, output):
lines = output[6:-3]
groups = []
group_pattern = re.compile(r"(?P<name>.+) \((?P<type>.+)\)")
for line in lines:
m = group_pattern.match(line.split(':')[1].strip())
group = {'name': m.group('name'), 'type': m.group('type')}
groups.append(group)
return groups
def lmp_print(self, s):
""" needed for Python2 compatibility, since print is a reserved keyword """
return self.__getattr__("print")(s)
def __dir__(self):
return ['angle_coeff', 'angle_style', 'atom_modify', 'atom_style', 'atom_style',
'bond_coeff', 'bond_style', 'boundary', 'change_box', 'communicate', 'compute',
'create_atoms', 'create_box', 'delete_atoms', 'delete_bonds', 'dielectric',
'dihedral_coeff', 'dihedral_style', 'dimension', 'dump', 'fix', 'fix_modify',
'group', 'improper_coeff', 'improper_style', 'include', 'kspace_modify',
'kspace_style', 'lattice', 'mass', 'minimize', 'min_style', 'neighbor',
'neigh_modify', 'newton', 'nthreads', 'pair_coeff', 'pair_modify',
'pair_style', 'processors', 'read', 'read_data', 'read_restart', 'region',
'replicate', 'reset_timestep', 'restart', 'run', 'run_style', 'thermo',
'thermo_modify', 'thermo_style', 'timestep', 'undump', 'unfix', 'units',
'variable', 'velocity', 'write_restart']
def __getattr__(self, name):
def handler(*args, **kwargs):
cmd_args = [name] + [str(x) for x in args]
with OutputCapture() as capture:
self.command(' '.join(cmd_args))
output = capture.output
if 'verbose' in kwargs and kwargs['verbose']:
print(output)
lines = output.splitlines()
if len(lines) > 1:
return lines
elif len(lines) == 1:
return lines[0]
return None
return handler
class IPyLammps(PyLammps):
"""
iPython wrapper for LAMMPS which adds embedded graphics capabilities
"""
def __init__(self,name="",cmdargs=None,ptr=None,comm=None):
super(IPyLammps, self).__init__(name=name,cmdargs=cmdargs,ptr=ptr,comm=comm)
def image(self, filename="snapshot.png", group="all", color="type", diameter="type",
size=None, view=None, center=None, up=None, zoom=1.0):
cmd_args = [group, "image", filename, color, diameter]
if size:
width = size[0]
height = size[1]
cmd_args += ["size", width, height]
if view:
theta = view[0]
phi = view[1]
cmd_args += ["view", theta, phi]
if center:
flag = center[0]
Cx = center[1]
Cy = center[2]
Cz = center[3]
cmd_args += ["center", flag, Cx, Cy, Cz]
if up:
Ux = up[0]
Uy = up[1]
Uz = up[2]
cmd_args += ["up", Ux, Uy, Uz]
if zoom:
cmd_args += ["zoom", zoom]
cmd_args.append("modify backcolor white")
self.write_dump(*cmd_args)
from IPython.core.display import Image
return Image('snapshot.png')
def video(self, filename):
from IPython.display import HTML
return HTML("<video controls><source src=\"" + filename + "\"></video>")