2014-10-30 23:22:01 +08:00
*> \brief \b DSYGS2 reduces a symmetric definite generalized eigenproblem to standard form, using the factorization results obtained from spotrf (unblocked algorithm).
*
* =========== DOCUMENTATION ===========
*
2018-05-19 05:17:13 +08:00
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
2014-10-30 23:22:01 +08:00
*
*> \htmlonly
2018-05-19 05:17:13 +08:00
*> Download DSYGS2 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsygs2.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsygs2.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsygs2.f">
2014-10-30 23:22:01 +08:00
*> [TXT]</a>
2018-05-19 05:17:13 +08:00
*> \endhtmlonly
2014-10-30 23:22:01 +08:00
*
* Definition:
* ===========
*
* SUBROUTINE DSYGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
2018-05-19 05:17:13 +08:00
*
2014-10-30 23:22:01 +08:00
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER INFO, ITYPE, LDA, LDB, N
* ..
* .. Array Arguments ..
* DOUBLE PRECISION A( LDA, * ), B( LDB, * )
* ..
2018-05-19 05:17:13 +08:00
*
2014-10-30 23:22:01 +08:00
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DSYGS2 reduces a real symmetric-definite generalized eigenproblem
*> to standard form.
*>
*> If ITYPE = 1, the problem is A*x = lambda*B*x,
*> and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
*>
*> If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
*> B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T *A*L.
*>
*> B must have been previously factorized as U**T *U or L*L**T by DPOTRF.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] ITYPE
*> \verbatim
*> ITYPE is INTEGER
*> = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
*> = 2 or 3: compute U*A*U**T or L**T *A*L.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the upper or lower triangular part of the
*> symmetric matrix A is stored, and how B has been factorized.
*> = 'U': Upper triangular
*> = 'L': Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrices A and B. N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA,N)
*> On entry, the symmetric matrix A. If UPLO = 'U', the leading
*> n by n upper triangular part of A contains the upper
*> triangular part of the matrix A, and the strictly lower
*> triangular part of A is not referenced. If UPLO = 'L', the
*> leading n by n lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
*>
*> On exit, if INFO = 0, the transformed matrix, stored in the
*> same format as A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*> B is DOUBLE PRECISION array, dimension (LDB,N)
*> The triangular factor from the Cholesky factorization of B,
*> as returned by DPOTRF.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit.
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> \endverbatim
*
* Authors:
* ========
*
2018-05-19 05:17:13 +08:00
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
2014-10-30 23:22:01 +08:00
*
2018-05-19 05:17:13 +08:00
*> \date December 2016
2014-10-30 23:22:01 +08:00
*
*> \ingroup doubleSYcomputational
*
* =====================================================================
SUBROUTINE DSYGS2 ( ITYPE , UPLO , N , A , LDA , B , LDB , INFO )
*
2018-05-19 05:17:13 +08:00
* -- LAPACK computational routine (version 3.7.0) --
2014-10-30 23:22:01 +08:00
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
2018-05-19 05:17:13 +08:00
* December 2016
2014-10-30 23:22:01 +08:00
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO , ITYPE , LDA , LDB , N
* ..
* .. Array Arguments ..
DOUBLE PRECISION A ( LDA , * ) , B ( LDB , * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE , HALF
PARAMETER ( ONE = 1.0D0 , HALF = 0.5D0 )
* ..
* .. Local Scalars ..
LOGICAL UPPER
INTEGER K
DOUBLE PRECISION AKK , BKK , CT
* ..
* .. External Subroutines ..
EXTERNAL DAXPY , DSCAL , DSYR2 , DTRMV , DTRSV , XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
UPPER = LSAME ( UPLO , 'U' )
IF ( ITYPE . LT . 1 . OR . ITYPE . GT . 3 ) THEN
INFO = - 1
ELSE IF ( . NOT . UPPER . AND . . NOT . LSAME ( UPLO , 'L' ) ) THEN
INFO = - 2
ELSE IF ( N . LT . 0 ) THEN
INFO = - 3
ELSE IF ( LDA . LT . MAX ( 1 , N ) ) THEN
INFO = - 5
ELSE IF ( LDB . LT . MAX ( 1 , N ) ) THEN
INFO = - 7
END IF
IF ( INFO . NE . 0 ) THEN
CALL XERBLA ( 'DSYGS2' , - INFO )
RETURN
END IF
*
IF ( ITYPE . EQ . 1 ) THEN
IF ( UPPER ) THEN
*
* Compute inv(U**T)*A*inv(U)
*
DO 10 K = 1 , N
*
* Update the upper triangle of A(k:n,k:n)
*
AKK = A ( K , K )
BKK = B ( K , K )
AKK = AKK / BKK ** 2
A ( K , K ) = AKK
IF ( K . LT . N ) THEN
CALL DSCAL ( N - K , ONE / BKK , A ( K , K + 1 ) , LDA )
CT = - HALF * AKK
CALL DAXPY ( N - K , CT , B ( K , K + 1 ) , LDB , A ( K , K + 1 ) ,
$ LDA )
CALL DSYR2 ( UPLO , N - K , - ONE , A ( K , K + 1 ) , LDA ,
$ B ( K , K + 1 ) , LDB , A ( K + 1 , K + 1 ) , LDA )
CALL DAXPY ( N - K , CT , B ( K , K + 1 ) , LDB , A ( K , K + 1 ) ,
$ LDA )
CALL DTRSV ( UPLO , 'Transpose' , 'Non-unit' , N - K ,
$ B ( K + 1 , K + 1 ) , LDB , A ( K , K + 1 ) , LDA )
END IF
10 CONTINUE
ELSE
*
* Compute inv(L)*A*inv(L**T)
*
DO 20 K = 1 , N
*
* Update the lower triangle of A(k:n,k:n)
*
AKK = A ( K , K )
BKK = B ( K , K )
AKK = AKK / BKK ** 2
A ( K , K ) = AKK
IF ( K . LT . N ) THEN
CALL DSCAL ( N - K , ONE / BKK , A ( K + 1 , K ) , 1 )
CT = - HALF * AKK
CALL DAXPY ( N - K , CT , B ( K + 1 , K ) , 1 , A ( K + 1 , K ) , 1 )
CALL DSYR2 ( UPLO , N - K , - ONE , A ( K + 1 , K ) , 1 ,
$ B ( K + 1 , K ) , 1 , A ( K + 1 , K + 1 ) , LDA )
CALL DAXPY ( N - K , CT , B ( K + 1 , K ) , 1 , A ( K + 1 , K ) , 1 )
CALL DTRSV ( UPLO , 'No transpose' , 'Non-unit' , N - K ,
$ B ( K + 1 , K + 1 ) , LDB , A ( K + 1 , K ) , 1 )
END IF
20 CONTINUE
END IF
ELSE
IF ( UPPER ) THEN
*
* Compute U*A*U**T
*
DO 30 K = 1 , N
*
* Update the upper triangle of A(1:k,1:k)
*
AKK = A ( K , K )
BKK = B ( K , K )
CALL DTRMV ( UPLO , 'No transpose' , 'Non-unit' , K - 1 , B ,
$ LDB , A ( 1 , K ) , 1 )
CT = HALF * AKK
CALL DAXPY ( K - 1 , CT , B ( 1 , K ) , 1 , A ( 1 , K ) , 1 )
CALL DSYR2 ( UPLO , K - 1 , ONE , A ( 1 , K ) , 1 , B ( 1 , K ) , 1 ,
$ A , LDA )
CALL DAXPY ( K - 1 , CT , B ( 1 , K ) , 1 , A ( 1 , K ) , 1 )
CALL DSCAL ( K - 1 , BKK , A ( 1 , K ) , 1 )
A ( K , K ) = AKK * BKK ** 2
30 CONTINUE
ELSE
*
* Compute L**T *A*L
*
DO 40 K = 1 , N
*
* Update the lower triangle of A(1:k,1:k)
*
AKK = A ( K , K )
BKK = B ( K , K )
CALL DTRMV ( UPLO , 'Transpose' , 'Non-unit' , K - 1 , B , LDB ,
$ A ( K , 1 ) , LDA )
CT = HALF * AKK
CALL DAXPY ( K - 1 , CT , B ( K , 1 ) , LDB , A ( K , 1 ) , LDA )
CALL DSYR2 ( UPLO , K - 1 , ONE , A ( K , 1 ) , LDA , B ( K , 1 ) ,
$ LDB , A , LDA )
CALL DAXPY ( K - 1 , CT , B ( K , 1 ) , LDB , A ( K , 1 ) , LDA )
CALL DSCAL ( K - 1 , BKK , A ( K , 1 ) , LDA )
A ( K , K ) = AKK * BKK ** 2
40 CONTINUE
END IF
END IF
RETURN
*
* End of DSYGS2
*
END