forked from lijiext/lammps
283 lines
8.6 KiB
FortranFixed
283 lines
8.6 KiB
FortranFixed
|
SUBROUTINE DTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER INCX,LDA,N
|
||
|
CHARACTER DIAG,TRANS,UPLO
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
DOUBLE PRECISION A(LDA,*),X(*)
|
||
|
* ..
|
||
|
*
|
||
|
* Purpose
|
||
|
* =======
|
||
|
*
|
||
|
* DTRSV solves one of the systems of equations
|
||
|
*
|
||
|
* A*x = b, or A'*x = b,
|
||
|
*
|
||
|
* where b and x are n element vectors and A is an n by n unit, or
|
||
|
* non-unit, upper or lower triangular matrix.
|
||
|
*
|
||
|
* No test for singularity or near-singularity is included in this
|
||
|
* routine. Such tests must be performed before calling this routine.
|
||
|
*
|
||
|
* Arguments
|
||
|
* ==========
|
||
|
*
|
||
|
* UPLO - CHARACTER*1.
|
||
|
* On entry, UPLO specifies whether the matrix is an upper or
|
||
|
* lower triangular matrix as follows:
|
||
|
*
|
||
|
* UPLO = 'U' or 'u' A is an upper triangular matrix.
|
||
|
*
|
||
|
* UPLO = 'L' or 'l' A is a lower triangular matrix.
|
||
|
*
|
||
|
* Unchanged on exit.
|
||
|
*
|
||
|
* TRANS - CHARACTER*1.
|
||
|
* On entry, TRANS specifies the equations to be solved as
|
||
|
* follows:
|
||
|
*
|
||
|
* TRANS = 'N' or 'n' A*x = b.
|
||
|
*
|
||
|
* TRANS = 'T' or 't' A'*x = b.
|
||
|
*
|
||
|
* TRANS = 'C' or 'c' A'*x = b.
|
||
|
*
|
||
|
* Unchanged on exit.
|
||
|
*
|
||
|
* DIAG - CHARACTER*1.
|
||
|
* On entry, DIAG specifies whether or not A is unit
|
||
|
* triangular as follows:
|
||
|
*
|
||
|
* DIAG = 'U' or 'u' A is assumed to be unit triangular.
|
||
|
*
|
||
|
* DIAG = 'N' or 'n' A is not assumed to be unit
|
||
|
* triangular.
|
||
|
*
|
||
|
* Unchanged on exit.
|
||
|
*
|
||
|
* N - INTEGER.
|
||
|
* On entry, N specifies the order of the matrix A.
|
||
|
* N must be at least zero.
|
||
|
* Unchanged on exit.
|
||
|
*
|
||
|
* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
|
||
|
* Before entry with UPLO = 'U' or 'u', the leading n by n
|
||
|
* upper triangular part of the array A must contain the upper
|
||
|
* triangular matrix and the strictly lower triangular part of
|
||
|
* A is not referenced.
|
||
|
* Before entry with UPLO = 'L' or 'l', the leading n by n
|
||
|
* lower triangular part of the array A must contain the lower
|
||
|
* triangular matrix and the strictly upper triangular part of
|
||
|
* A is not referenced.
|
||
|
* Note that when DIAG = 'U' or 'u', the diagonal elements of
|
||
|
* A are not referenced either, but are assumed to be unity.
|
||
|
* Unchanged on exit.
|
||
|
*
|
||
|
* LDA - INTEGER.
|
||
|
* On entry, LDA specifies the first dimension of A as declared
|
||
|
* in the calling (sub) program. LDA must be at least
|
||
|
* max( 1, n ).
|
||
|
* Unchanged on exit.
|
||
|
*
|
||
|
* X - DOUBLE PRECISION array of dimension at least
|
||
|
* ( 1 + ( n - 1 )*abs( INCX ) ).
|
||
|
* Before entry, the incremented array X must contain the n
|
||
|
* element right-hand side vector b. On exit, X is overwritten
|
||
|
* with the solution vector x.
|
||
|
*
|
||
|
* INCX - INTEGER.
|
||
|
* On entry, INCX specifies the increment for the elements of
|
||
|
* X. INCX must not be zero.
|
||
|
* Unchanged on exit.
|
||
|
*
|
||
|
*
|
||
|
* Level 2 Blas routine.
|
||
|
*
|
||
|
* -- Written on 22-October-1986.
|
||
|
* Jack Dongarra, Argonne National Lab.
|
||
|
* Jeremy Du Croz, Nag Central Office.
|
||
|
* Sven Hammarling, Nag Central Office.
|
||
|
* Richard Hanson, Sandia National Labs.
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ZERO
|
||
|
PARAMETER (ZERO=0.0D+0)
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
DOUBLE PRECISION TEMP
|
||
|
INTEGER I,INFO,IX,J,JX,KX
|
||
|
LOGICAL NOUNIT
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
EXTERNAL LSAME
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL XERBLA
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC MAX
|
||
|
* ..
|
||
|
*
|
||
|
* Test the input parameters.
|
||
|
*
|
||
|
INFO = 0
|
||
|
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
|
||
|
INFO = 1
|
||
|
ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
|
||
|
+ .NOT.LSAME(TRANS,'C')) THEN
|
||
|
INFO = 2
|
||
|
ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
|
||
|
INFO = 3
|
||
|
ELSE IF (N.LT.0) THEN
|
||
|
INFO = 4
|
||
|
ELSE IF (LDA.LT.MAX(1,N)) THEN
|
||
|
INFO = 6
|
||
|
ELSE IF (INCX.EQ.0) THEN
|
||
|
INFO = 8
|
||
|
END IF
|
||
|
IF (INFO.NE.0) THEN
|
||
|
CALL XERBLA('DTRSV ',INFO)
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Quick return if possible.
|
||
|
*
|
||
|
IF (N.EQ.0) RETURN
|
||
|
*
|
||
|
NOUNIT = LSAME(DIAG,'N')
|
||
|
*
|
||
|
* Set up the start point in X if the increment is not unity. This
|
||
|
* will be ( N - 1 )*INCX too small for descending loops.
|
||
|
*
|
||
|
IF (INCX.LE.0) THEN
|
||
|
KX = 1 - (N-1)*INCX
|
||
|
ELSE IF (INCX.NE.1) THEN
|
||
|
KX = 1
|
||
|
END IF
|
||
|
*
|
||
|
* Start the operations. In this version the elements of A are
|
||
|
* accessed sequentially with one pass through A.
|
||
|
*
|
||
|
IF (LSAME(TRANS,'N')) THEN
|
||
|
*
|
||
|
* Form x := inv( A )*x.
|
||
|
*
|
||
|
IF (LSAME(UPLO,'U')) THEN
|
||
|
IF (INCX.EQ.1) THEN
|
||
|
DO 20 J = N,1,-1
|
||
|
IF (X(J).NE.ZERO) THEN
|
||
|
IF (NOUNIT) X(J) = X(J)/A(J,J)
|
||
|
TEMP = X(J)
|
||
|
DO 10 I = J - 1,1,-1
|
||
|
X(I) = X(I) - TEMP*A(I,J)
|
||
|
10 CONTINUE
|
||
|
END IF
|
||
|
20 CONTINUE
|
||
|
ELSE
|
||
|
JX = KX + (N-1)*INCX
|
||
|
DO 40 J = N,1,-1
|
||
|
IF (X(JX).NE.ZERO) THEN
|
||
|
IF (NOUNIT) X(JX) = X(JX)/A(J,J)
|
||
|
TEMP = X(JX)
|
||
|
IX = JX
|
||
|
DO 30 I = J - 1,1,-1
|
||
|
IX = IX - INCX
|
||
|
X(IX) = X(IX) - TEMP*A(I,J)
|
||
|
30 CONTINUE
|
||
|
END IF
|
||
|
JX = JX - INCX
|
||
|
40 CONTINUE
|
||
|
END IF
|
||
|
ELSE
|
||
|
IF (INCX.EQ.1) THEN
|
||
|
DO 60 J = 1,N
|
||
|
IF (X(J).NE.ZERO) THEN
|
||
|
IF (NOUNIT) X(J) = X(J)/A(J,J)
|
||
|
TEMP = X(J)
|
||
|
DO 50 I = J + 1,N
|
||
|
X(I) = X(I) - TEMP*A(I,J)
|
||
|
50 CONTINUE
|
||
|
END IF
|
||
|
60 CONTINUE
|
||
|
ELSE
|
||
|
JX = KX
|
||
|
DO 80 J = 1,N
|
||
|
IF (X(JX).NE.ZERO) THEN
|
||
|
IF (NOUNIT) X(JX) = X(JX)/A(J,J)
|
||
|
TEMP = X(JX)
|
||
|
IX = JX
|
||
|
DO 70 I = J + 1,N
|
||
|
IX = IX + INCX
|
||
|
X(IX) = X(IX) - TEMP*A(I,J)
|
||
|
70 CONTINUE
|
||
|
END IF
|
||
|
JX = JX + INCX
|
||
|
80 CONTINUE
|
||
|
END IF
|
||
|
END IF
|
||
|
ELSE
|
||
|
*
|
||
|
* Form x := inv( A' )*x.
|
||
|
*
|
||
|
IF (LSAME(UPLO,'U')) THEN
|
||
|
IF (INCX.EQ.1) THEN
|
||
|
DO 100 J = 1,N
|
||
|
TEMP = X(J)
|
||
|
DO 90 I = 1,J - 1
|
||
|
TEMP = TEMP - A(I,J)*X(I)
|
||
|
90 CONTINUE
|
||
|
IF (NOUNIT) TEMP = TEMP/A(J,J)
|
||
|
X(J) = TEMP
|
||
|
100 CONTINUE
|
||
|
ELSE
|
||
|
JX = KX
|
||
|
DO 120 J = 1,N
|
||
|
TEMP = X(JX)
|
||
|
IX = KX
|
||
|
DO 110 I = 1,J - 1
|
||
|
TEMP = TEMP - A(I,J)*X(IX)
|
||
|
IX = IX + INCX
|
||
|
110 CONTINUE
|
||
|
IF (NOUNIT) TEMP = TEMP/A(J,J)
|
||
|
X(JX) = TEMP
|
||
|
JX = JX + INCX
|
||
|
120 CONTINUE
|
||
|
END IF
|
||
|
ELSE
|
||
|
IF (INCX.EQ.1) THEN
|
||
|
DO 140 J = N,1,-1
|
||
|
TEMP = X(J)
|
||
|
DO 130 I = N,J + 1,-1
|
||
|
TEMP = TEMP - A(I,J)*X(I)
|
||
|
130 CONTINUE
|
||
|
IF (NOUNIT) TEMP = TEMP/A(J,J)
|
||
|
X(J) = TEMP
|
||
|
140 CONTINUE
|
||
|
ELSE
|
||
|
KX = KX + (N-1)*INCX
|
||
|
JX = KX
|
||
|
DO 160 J = N,1,-1
|
||
|
TEMP = X(JX)
|
||
|
IX = KX
|
||
|
DO 150 I = N,J + 1,-1
|
||
|
TEMP = TEMP - A(I,J)*X(IX)
|
||
|
IX = IX - INCX
|
||
|
150 CONTINUE
|
||
|
IF (NOUNIT) TEMP = TEMP/A(J,J)
|
||
|
X(JX) = TEMP
|
||
|
JX = JX - INCX
|
||
|
160 CONTINUE
|
||
|
END IF
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of DTRSV .
|
||
|
*
|
||
|
END
|