From 0f2c5c32897570909ee5d5596f502bc1bbfd6557 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E9=A9=AC=E5=A4=A9=E5=A7=BF?= Date: Thu, 9 Jul 2020 23:17:15 +0800 Subject: [PATCH] test --- MindSpore/src/step1/step1_test.py | 86 +++++++++++++++++++++++++++++++ 1 file changed, 86 insertions(+) create mode 100644 MindSpore/src/step1/step1_test.py diff --git a/MindSpore/src/step1/step1_test.py b/MindSpore/src/step1/step1_test.py new file mode 100644 index 0000000..4e4b061 --- /dev/null +++ b/MindSpore/src/step1/step1_test.py @@ -0,0 +1,86 @@ +random_crop_op = C.RandomCrop((32, 32), (4, 4, 4, 4)) # padding_mode default CONSTANT + random_horizontal_op = C.RandomHorizontalFlip() + resize_op = C.Resize((resize_height, resize_width)) # interpolation default BILINEAR + rescale_op = C.Rescale(rescale, shift) + normalize_op = C.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) + changeswap_op = C.HWC2CHW() + type_cast_op = C2.TypeCast(mstype.int32) + + c_trans = [] + if training: + c_trans = [random_crop_op, random_horizontal_op] + c_trans += [resize_op, rescale_op, normalize_op, + changeswap_op] + + # apply map operations on images + cifar_ds = cifar_ds.map(input_columns="label", operations=type_cast_op) + cifar_ds = cifar_ds.map(input_columns="image", operations=c_trans) + + # apply shuffle operations + cifar_ds = cifar_ds.shuffle(buffer_size=10) + + # apply batch operations + cifar_ds = cifar_ds.batch(batch_size=args_opt.batch_size, drop_remainder=True) + + # apply repeat operations + cifar_ds = cifar_ds.repeat(repeat_num) + +ls = SoftmaxCrossEntropyWithLogits(sparse=True, is_grad=False, reduction="mean") +opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, 0.9) + +config_ck = CheckpointConfig(save_checkpoint_steps=batch_num, keep_checkpoint_max=35) + ckpoint_cb = ModelCheckpoint(prefix="train_resnet_cifar10", directory="./", config=config_ck) + loss_cb = LossMonitor() + model.train(epoch_size, dataset, callbacks=[ckpoint_cb, loss_cb]) + +if args_opt.checkpoint_path: + param_dict = load_checkpoint(args_opt.checkpoint_path) + load_param_into_net(net, param_dict) +eval_dataset = create_dataset(1, training=False) +res = model.eval(eval_dataset) +print("result: ", res) + + +import cifar_resnet50 +import object + +if __name__ == '__main__': + + # add objects for searching + objs = [ + + + "random_crop_op=C.RandomCrop((32,32),(4,4,4,4))", + "random_horizontal_op=C.RandomHorizontalFlip()", + "resize_op=C.Resize((resize_height,resize_width))", + "rescale_op=C.Rescale(rescale,shift)", + "normalize_op=C.Normalize((0.4914,0.4822,0.4465),(0.2023,0.1994,0.2010))", + "changeswap_op=C.HWC2CHW()", + "type_cast_op=C2.TypeCast(mstype.int32)", + "c_trans=[random_crop_op,random_horizontal_op]", + "cifar_ds=cifar_ds.map(input_columns=", + "cifar_ds=cifar_ds.shuffle(buffer_size=10)", + "cifar_ds=cifar_ds.batch(batch_size=args_opt.batch_size,drop_remainder=True)", + "cifar_ds=cifar_ds.repeat(repeat_num)", + "ls=SoftmaxCrossEntropyWithLogits(sparse=True,is_grad=False,reduction=", + "opt=Momentum(filter(lambda x:x.requires_grad,net.get_parameters()),0.01,0.9)", + "config_ck=CheckpointConfig(save_checkpoint_steps=batch_num,keep_checkpoint_max=35)", + "ckpoint_cb=ModelCheckpoint(prefix=", + "loss_cb=LossMonitor()", + "model.train(epoch_size,dataset,callbacks=[ckpoint_cb,loss_cb])", + "param_dict=load_checkpoint(args_opt.checkpoint_path)", + "load_param_into_net(net,param_dict)", + "eval_dataset=create_dataset(1,training=False)", + "res=model.eval(eval_dataset)", + + ] + + filepath = "./MindSpore/src/step1/cifar_resnet50.py" + + if (object.objectFind(objs, filepath)): + print("----------------") + print("ok!") + else: + print("object error!") + +