commit
dd6f6f5cf3
|
@ -0,0 +1,102 @@
|
|||
Global:
|
||||
use_gpu: true
|
||||
epoch_num: 72
|
||||
log_smooth_window: 20
|
||||
print_batch_step: 10
|
||||
save_model_dir: ./output/rec/rec_mv3_tps_bilstm_att/
|
||||
save_epoch_step: 3
|
||||
# evaluation is run every 5000 iterations after the 4000th iteration
|
||||
eval_batch_step: [0, 2000]
|
||||
# if pretrained_model is saved in static mode, load_static_weights must set to True
|
||||
cal_metric_during_train: True
|
||||
pretrained_model:
|
||||
checkpoints:
|
||||
save_inference_dir:
|
||||
use_visualdl: False
|
||||
infer_img: doc/imgs_words/ch/word_1.jpg
|
||||
# for data or label process
|
||||
character_dict_path:
|
||||
character_type: en
|
||||
max_text_length: 25
|
||||
infer_mode: False
|
||||
use_space_char: False
|
||||
|
||||
|
||||
Optimizer:
|
||||
name: Adam
|
||||
beta1: 0.9
|
||||
beta2: 0.999
|
||||
lr:
|
||||
learning_rate: 0.0005
|
||||
regularizer:
|
||||
name: 'L2'
|
||||
factor: 0.00001
|
||||
|
||||
Architecture:
|
||||
model_type: rec
|
||||
algorithm: RARE
|
||||
Transform:
|
||||
name: TPS
|
||||
num_fiducial: 20
|
||||
loc_lr: 0.1
|
||||
model_name: small
|
||||
Backbone:
|
||||
name: MobileNetV3
|
||||
scale: 0.5
|
||||
model_name: large
|
||||
Neck:
|
||||
name: SequenceEncoder
|
||||
encoder_type: rnn
|
||||
hidden_size: 96
|
||||
Head:
|
||||
name: AttentionHead
|
||||
hidden_size: 96
|
||||
|
||||
|
||||
Loss:
|
||||
name: AttentionLoss
|
||||
|
||||
PostProcess:
|
||||
name: AttnLabelDecode
|
||||
|
||||
Metric:
|
||||
name: RecMetric
|
||||
main_indicator: acc
|
||||
|
||||
Train:
|
||||
dataset:
|
||||
name: LMDBDateSet
|
||||
data_dir: ../training/
|
||||
transforms:
|
||||
- DecodeImage: # load image
|
||||
img_mode: BGR
|
||||
channel_first: False
|
||||
- AttnLabelEncode: # Class handling label
|
||||
- RecResizeImg:
|
||||
image_shape: [3, 32, 100]
|
||||
- KeepKeys:
|
||||
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
|
||||
loader:
|
||||
shuffle: True
|
||||
batch_size_per_card: 256
|
||||
drop_last: True
|
||||
num_workers: 8
|
||||
|
||||
Eval:
|
||||
dataset:
|
||||
name: LMDBDateSet
|
||||
data_dir: ../validation/
|
||||
transforms:
|
||||
- DecodeImage: # load image
|
||||
img_mode: BGR
|
||||
channel_first: False
|
||||
- AttnLabelEncode: # Class handling label
|
||||
- RecResizeImg:
|
||||
image_shape: [3, 32, 100]
|
||||
- KeepKeys:
|
||||
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
|
||||
loader:
|
||||
shuffle: False
|
||||
drop_last: False
|
||||
batch_size_per_card: 256
|
||||
num_workers: 1
|
|
@ -0,0 +1,101 @@
|
|||
Global:
|
||||
use_gpu: true
|
||||
epoch_num: 400
|
||||
log_smooth_window: 20
|
||||
print_batch_step: 10
|
||||
save_model_dir: ./output/rec/b3_rare_r34_none_gru/
|
||||
save_epoch_step: 3
|
||||
# evaluation is run every 5000 iterations after the 4000th iteration
|
||||
eval_batch_step: [0, 2000]
|
||||
# if pretrained_model is saved in static mode, load_static_weights must set to True
|
||||
cal_metric_during_train: True
|
||||
pretrained_model:
|
||||
checkpoints:
|
||||
save_inference_dir:
|
||||
use_visualdl: False
|
||||
infer_img: doc/imgs_words/ch/word_1.jpg
|
||||
# for data or label process
|
||||
character_dict_path:
|
||||
character_type: en
|
||||
max_text_length: 25
|
||||
infer_mode: False
|
||||
use_space_char: False
|
||||
|
||||
|
||||
Optimizer:
|
||||
name: Adam
|
||||
beta1: 0.9
|
||||
beta2: 0.999
|
||||
lr:
|
||||
learning_rate: 0.0005
|
||||
regularizer:
|
||||
name: 'L2'
|
||||
factor: 0.00000
|
||||
|
||||
Architecture:
|
||||
model_type: rec
|
||||
algorithm: RARE
|
||||
Transform:
|
||||
name: TPS
|
||||
num_fiducial: 20
|
||||
loc_lr: 0.1
|
||||
model_name: large
|
||||
Backbone:
|
||||
name: ResNet
|
||||
layers: 34
|
||||
Neck:
|
||||
name: SequenceEncoder
|
||||
encoder_type: rnn
|
||||
hidden_size: 256 #96
|
||||
Head:
|
||||
name: AttentionHead # AttentionHead
|
||||
hidden_size: 256 #
|
||||
l2_decay: 0.00001
|
||||
|
||||
Loss:
|
||||
name: AttentionLoss
|
||||
|
||||
PostProcess:
|
||||
name: AttnLabelDecode
|
||||
|
||||
Metric:
|
||||
name: RecMetric
|
||||
main_indicator: acc
|
||||
|
||||
Train:
|
||||
dataset:
|
||||
name: LMDBDateSet
|
||||
data_dir: ../training/
|
||||
transforms:
|
||||
- DecodeImage: # load image
|
||||
img_mode: BGR
|
||||
channel_first: False
|
||||
- AttnLabelEncode: # Class handling label
|
||||
- RecResizeImg:
|
||||
image_shape: [3, 32, 100]
|
||||
- KeepKeys:
|
||||
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
|
||||
loader:
|
||||
shuffle: True
|
||||
batch_size_per_card: 256
|
||||
drop_last: True
|
||||
num_workers: 8
|
||||
|
||||
Eval:
|
||||
dataset:
|
||||
name: LMDBDateSet
|
||||
data_dir: ../validation/
|
||||
transforms:
|
||||
- DecodeImage: # load image
|
||||
img_mode: BGR
|
||||
channel_first: False
|
||||
- AttnLabelEncode: # Class handling label
|
||||
- RecResizeImg:
|
||||
image_shape: [3, 32, 100]
|
||||
- KeepKeys:
|
||||
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
|
||||
loader:
|
||||
shuffle: False
|
||||
drop_last: False
|
||||
batch_size_per_card: 256
|
||||
num_workers: 8
|
|
@ -40,7 +40,7 @@ PaddleOCR基于动态图开源的文本识别算法列表:
|
|||
- [x] CRNN([paper](https://arxiv.org/abs/1507.05717))[7](ppocr推荐)
|
||||
- [x] Rosetta([paper](https://arxiv.org/abs/1910.05085))[10]
|
||||
- [x] STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html))[11]
|
||||
- [ ] RARE([paper](https://arxiv.org/abs/1603.03915v1))[12] coming soon
|
||||
- [x] RARE([paper](https://arxiv.org/abs/1603.03915v1))[12]
|
||||
- [x] SRN([paper](https://arxiv.org/abs/2003.12294))[5]
|
||||
|
||||
参考[DTRB][3](https://arxiv.org/abs/1904.01906)文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下:
|
||||
|
@ -53,6 +53,9 @@ PaddleOCR基于动态图开源的文本识别算法列表:
|
|||
|CRNN|MobileNetV3|79.97%|rec_mv3_none_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_bilstm_ctc_v2.0_train.tar)|
|
||||
|StarNet|Resnet34_vd|84.44%|rec_r34_vd_tps_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_tps_bilstm_ctc_v2.0_train.tar)|
|
||||
|StarNet|MobileNetV3|81.42%|rec_mv3_tps_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_tps_bilstm_ctc_v2.0_train.tar)|
|
||||
|RARE|MobileNetV3|82.5|rec_mv3_tps_bilstm_att||[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_tps_bilstm_att_v2.0_train.tar)|
|
||||
|RARE|Resnet34_vd|83.6|rec_r34_vd_tps_bilstm_att||[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_tps_bilstm_att_v2.0_train.tar)|
|
||||
|SRN|Resnet50_vd_fpn| 88.52% | rec_r50fpn_vd_none_srn | [下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r50_vd_srn_train.tar) |
|
||||
|
||||
|
||||
PaddleOCR文本识别算法的训练和使用请参考文档教程中[模型训练/评估中的文本识别部分](./recognition.md)。
|
||||
|
|
|
@ -201,6 +201,8 @@ PaddleOCR支持训练和评估交替进行, 可以在 `configs/rec/rec_icdar15_t
|
|||
| rec_mv3_none_none_ctc.yml | Rosetta | Mobilenet_v3 large 0.5 | None | None | ctc |
|
||||
| rec_r34_vd_none_bilstm_ctc.yml | CRNN | Resnet34_vd | None | BiLSTM | ctc |
|
||||
| rec_r34_vd_none_none_ctc.yml | Rosetta | Resnet34_vd | None | None | ctc |
|
||||
| rec_mv3_tps_bilstm_att.yml | CRNN | Mobilenet_v3 | TPS | BiLSTM | att |
|
||||
| rec_r34_vd_tps_bilstm_att.yml | CRNN | Resnet34_vd | TPS | BiLSTM | att |
|
||||
| rec_r50fpn_vd_none_srn.yml | SRN | Resnet50_fpn_vd | None | rnn | srn |
|
||||
|
||||
训练中文数据,推荐使用[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml),如您希望尝试其他算法在中文数据集上的效果,请参考下列说明修改配置文件:
|
||||
|
|
|
@ -42,7 +42,7 @@ PaddleOCR open-source text recognition algorithms list:
|
|||
- [x] CRNN([paper](https://arxiv.org/abs/1507.05717))[7]
|
||||
- [x] Rosetta([paper](https://arxiv.org/abs/1910.05085))[10]
|
||||
- [x] STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html))[11]
|
||||
- [ ] RARE([paper](https://arxiv.org/abs/1603.03915v1))[12] coming soon
|
||||
- [x] RARE([paper](https://arxiv.org/abs/1603.03915v1))[12]
|
||||
- [x] SRN([paper](https://arxiv.org/abs/2003.12294))[5]
|
||||
|
||||
Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation result of these above text recognition (using MJSynth and SynthText for training, evaluate on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE) is as follow:
|
||||
|
@ -55,6 +55,8 @@ Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation r
|
|||
|CRNN|MobileNetV3|79.97%|rec_mv3_none_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_bilstm_ctc_v2.0_train.tar)|
|
||||
|StarNet|Resnet34_vd|84.44%|rec_r34_vd_tps_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_tps_bilstm_ctc_v2.0_train.tar)|
|
||||
|StarNet|MobileNetV3|81.42%|rec_mv3_tps_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_tps_bilstm_ctc_v2.0_train.tar)|
|
||||
|RARE|MobileNetV3|82.5|rec_mv3_tps_bilstm_att||[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_tps_bilstm_att_v2.0_train.tar)|
|
||||
|RARE|Resnet34_vd|83.6|rec_r34_vd_tps_bilstm_att||[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_tps_bilstm_att_v2.0_train.tar)|
|
||||
|SRN|Resnet50_vd_fpn| 88.52% | rec_r50fpn_vd_none_srn |[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r50_vd_srn_train.tar)|
|
||||
|
||||
Please refer to the document for training guide and use of PaddleOCR text recognition algorithms [Text recognition model training/evaluation/prediction](./recognition_en.md)
|
||||
|
|
|
@ -195,8 +195,11 @@ If the evaluation set is large, the test will be time-consuming. It is recommend
|
|||
| rec_mv3_none_none_ctc.yml | Rosetta | Mobilenet_v3 large 0.5 | None | None | ctc |
|
||||
| rec_r34_vd_none_bilstm_ctc.yml | CRNN | Resnet34_vd | None | BiLSTM | ctc |
|
||||
| rec_r34_vd_none_none_ctc.yml | Rosetta | Resnet34_vd | None | None | ctc |
|
||||
| rec_mv3_tps_bilstm_att.yml | CRNN | Mobilenet_v3 | TPS | BiLSTM | att |
|
||||
| rec_r34_vd_tps_bilstm_att.yml | CRNN | Resnet34_vd | TPS | BiLSTM | att |
|
||||
| rec_r50fpn_vd_none_srn.yml | SRN | Resnet50_fpn_vd | None | rnn | srn |
|
||||
|
||||
|
||||
For training Chinese data, it is recommended to use
|
||||
[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml). If you want to try the result of other algorithms on the Chinese data set, please refer to the following instructions to modify the configuration file:
|
||||
co
|
||||
|
|
|
@ -199,16 +199,30 @@ class AttnLabelEncode(BaseRecLabelEncode):
|
|||
super(AttnLabelEncode,
|
||||
self).__init__(max_text_length, character_dict_path,
|
||||
character_type, use_space_char)
|
||||
self.beg_str = "sos"
|
||||
self.end_str = "eos"
|
||||
|
||||
def add_special_char(self, dict_character):
|
||||
dict_character = [self.beg_str, self.end_str] + dict_character
|
||||
self.beg_str = "sos"
|
||||
self.end_str = "eos"
|
||||
dict_character = [self.beg_str] + dict_character + [self.end_str]
|
||||
return dict_character
|
||||
|
||||
def __call__(self, text):
|
||||
def __call__(self, data):
|
||||
text = data['label']
|
||||
text = self.encode(text)
|
||||
return text
|
||||
if text is None:
|
||||
return None
|
||||
if len(text) >= self.max_text_len:
|
||||
return None
|
||||
data['length'] = np.array(len(text))
|
||||
text = [0] + text + [len(self.character) - 1] + [0] * (self.max_text_len
|
||||
- len(text) - 1)
|
||||
data['label'] = np.array(text)
|
||||
return data
|
||||
|
||||
def get_ignored_tokens(self):
|
||||
beg_idx = self.get_beg_end_flag_idx("beg")
|
||||
end_idx = self.get_beg_end_flag_idx("end")
|
||||
return [beg_idx, end_idx]
|
||||
|
||||
def get_beg_end_flag_idx(self, beg_or_end):
|
||||
if beg_or_end == "beg":
|
||||
|
|
|
@ -23,13 +23,15 @@ def build_loss(config):
|
|||
|
||||
# rec loss
|
||||
from .rec_ctc_loss import CTCLoss
|
||||
from .rec_att_loss import AttentionLoss
|
||||
from .rec_srn_loss import SRNLoss
|
||||
|
||||
# cls loss
|
||||
from .cls_loss import ClsLoss
|
||||
|
||||
support_dict = [
|
||||
'DBLoss', 'EASTLoss', 'SASTLoss', 'CTCLoss', 'ClsLoss', 'SRNLoss'
|
||||
'DBLoss', 'EASTLoss', 'SASTLoss', 'CTCLoss', 'ClsLoss', 'AttentionLoss',
|
||||
'SRNLoss'
|
||||
]
|
||||
|
||||
config = copy.deepcopy(config)
|
||||
|
|
|
@ -0,0 +1,39 @@
|
|||
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import paddle
|
||||
from paddle import nn
|
||||
|
||||
|
||||
class AttentionLoss(nn.Layer):
|
||||
def __init__(self, **kwargs):
|
||||
super(AttentionLoss, self).__init__()
|
||||
self.loss_func = nn.CrossEntropyLoss(weight=None, reduction='none')
|
||||
|
||||
def forward(self, predicts, batch):
|
||||
targets = batch[1].astype("int64")
|
||||
label_lengths = batch[2].astype('int64')
|
||||
batch_size, num_steps, num_classes = predicts.shape[0], predicts.shape[
|
||||
1], predicts.shape[2]
|
||||
assert len(targets.shape) == len(list(predicts.shape)) - 1, \
|
||||
"The target's shape and inputs's shape is [N, d] and [N, num_steps]"
|
||||
|
||||
inputs = paddle.reshape(predicts, [-1, predicts.shape[-1]])
|
||||
targets = paddle.reshape(targets, [-1])
|
||||
|
||||
return {'loss': paddle.sum(self.loss_func(inputs, targets))}
|
|
@ -23,12 +23,14 @@ def build_head(config):
|
|||
|
||||
# rec head
|
||||
from .rec_ctc_head import CTCHead
|
||||
from .rec_att_head import AttentionHead
|
||||
from .rec_srn_head import SRNHead
|
||||
|
||||
# cls head
|
||||
from .cls_head import ClsHead
|
||||
support_dict = [
|
||||
'DBHead', 'EASTHead', 'SASTHead', 'CTCHead', 'ClsHead', 'SRNHead'
|
||||
'DBHead', 'EASTHead', 'SASTHead', 'CTCHead', 'ClsHead', 'AttentionHead',
|
||||
'SRNHead'
|
||||
]
|
||||
|
||||
module_name = config.pop('name')
|
||||
|
|
|
@ -0,0 +1,199 @@
|
|||
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import paddle
|
||||
import paddle.nn as nn
|
||||
import paddle.nn.functional as F
|
||||
import numpy as np
|
||||
|
||||
|
||||
class AttentionHead(nn.Layer):
|
||||
def __init__(self, in_channels, out_channels, hidden_size, **kwargs):
|
||||
super(AttentionHead, self).__init__()
|
||||
self.input_size = in_channels
|
||||
self.hidden_size = hidden_size
|
||||
self.num_classes = out_channels
|
||||
|
||||
self.attention_cell = AttentionGRUCell(
|
||||
in_channels, hidden_size, out_channels, use_gru=False)
|
||||
self.generator = nn.Linear(hidden_size, out_channels)
|
||||
|
||||
def _char_to_onehot(self, input_char, onehot_dim):
|
||||
input_ont_hot = F.one_hot(input_char, onehot_dim)
|
||||
return input_ont_hot
|
||||
|
||||
def forward(self, inputs, targets=None, batch_max_length=25):
|
||||
batch_size = inputs.shape[0]
|
||||
num_steps = batch_max_length
|
||||
|
||||
hidden = paddle.zeros((batch_size, self.hidden_size))
|
||||
output_hiddens = []
|
||||
|
||||
if targets is not None:
|
||||
for i in range(num_steps):
|
||||
char_onehots = self._char_to_onehot(
|
||||
targets[:, i], onehot_dim=self.num_classes)
|
||||
(outputs, hidden), alpha = self.attention_cell(hidden, inputs,
|
||||
char_onehots)
|
||||
output_hiddens.append(paddle.unsqueeze(outputs, axis=1))
|
||||
output = paddle.concat(output_hiddens, axis=1)
|
||||
probs = self.generator(output)
|
||||
|
||||
else:
|
||||
targets = paddle.zeros(shape=[batch_size], dtype="int32")
|
||||
probs = None
|
||||
|
||||
for i in range(num_steps):
|
||||
char_onehots = self._char_to_onehot(
|
||||
targets, onehot_dim=self.num_classes)
|
||||
(outputs, hidden), alpha = self.attention_cell(hidden, inputs,
|
||||
char_onehots)
|
||||
probs_step = self.generator(outputs)
|
||||
if probs is None:
|
||||
probs = paddle.unsqueeze(probs_step, axis=1)
|
||||
else:
|
||||
probs = paddle.concat(
|
||||
[probs, paddle.unsqueeze(
|
||||
probs_step, axis=1)], axis=1)
|
||||
next_input = probs_step.argmax(axis=1)
|
||||
targets = next_input
|
||||
|
||||
return probs
|
||||
|
||||
|
||||
class AttentionGRUCell(nn.Layer):
|
||||
def __init__(self, input_size, hidden_size, num_embeddings, use_gru=False):
|
||||
super(AttentionGRUCell, self).__init__()
|
||||
self.i2h = nn.Linear(input_size, hidden_size, bias_attr=False)
|
||||
self.h2h = nn.Linear(hidden_size, hidden_size)
|
||||
self.score = nn.Linear(hidden_size, 1, bias_attr=False)
|
||||
|
||||
self.rnn = nn.GRUCell(
|
||||
input_size=input_size + num_embeddings, hidden_size=hidden_size)
|
||||
|
||||
self.hidden_size = hidden_size
|
||||
|
||||
def forward(self, prev_hidden, batch_H, char_onehots):
|
||||
|
||||
batch_H_proj = self.i2h(batch_H)
|
||||
prev_hidden_proj = paddle.unsqueeze(self.h2h(prev_hidden), axis=1)
|
||||
|
||||
res = paddle.add(batch_H_proj, prev_hidden_proj)
|
||||
res = paddle.tanh(res)
|
||||
e = self.score(res)
|
||||
|
||||
alpha = F.softmax(e, axis=1)
|
||||
alpha = paddle.transpose(alpha, [0, 2, 1])
|
||||
context = paddle.squeeze(paddle.mm(alpha, batch_H), axis=1)
|
||||
concat_context = paddle.concat([context, char_onehots], 1)
|
||||
|
||||
cur_hidden = self.rnn(concat_context, prev_hidden)
|
||||
|
||||
return cur_hidden, alpha
|
||||
|
||||
|
||||
class AttentionLSTM(nn.Layer):
|
||||
def __init__(self, in_channels, out_channels, hidden_size, **kwargs):
|
||||
super(AttentionLSTM, self).__init__()
|
||||
self.input_size = in_channels
|
||||
self.hidden_size = hidden_size
|
||||
self.num_classes = out_channels
|
||||
|
||||
self.attention_cell = AttentionLSTMCell(
|
||||
in_channels, hidden_size, out_channels, use_gru=False)
|
||||
self.generator = nn.Linear(hidden_size, out_channels)
|
||||
|
||||
def _char_to_onehot(self, input_char, onehot_dim):
|
||||
input_ont_hot = F.one_hot(input_char, onehot_dim)
|
||||
return input_ont_hot
|
||||
|
||||
def forward(self, inputs, targets=None, batch_max_length=25):
|
||||
batch_size = inputs.shape[0]
|
||||
num_steps = batch_max_length
|
||||
|
||||
hidden = (paddle.zeros((batch_size, self.hidden_size)), paddle.zeros(
|
||||
(batch_size, self.hidden_size)))
|
||||
output_hiddens = []
|
||||
|
||||
if targets is not None:
|
||||
for i in range(num_steps):
|
||||
# one-hot vectors for a i-th char
|
||||
char_onehots = self._char_to_onehot(
|
||||
targets[:, i], onehot_dim=self.num_classes)
|
||||
hidden, alpha = self.attention_cell(hidden, inputs,
|
||||
char_onehots)
|
||||
|
||||
hidden = (hidden[1][0], hidden[1][1])
|
||||
output_hiddens.append(paddle.unsqueeze(hidden[0], axis=1))
|
||||
output = paddle.concat(output_hiddens, axis=1)
|
||||
probs = self.generator(output)
|
||||
|
||||
else:
|
||||
targets = paddle.zeros(shape=[batch_size], dtype="int32")
|
||||
probs = None
|
||||
|
||||
for i in range(num_steps):
|
||||
char_onehots = self._char_to_onehot(
|
||||
targets, onehot_dim=self.num_classes)
|
||||
hidden, alpha = self.attention_cell(hidden, inputs,
|
||||
char_onehots)
|
||||
probs_step = self.generator(hidden[0])
|
||||
hidden = (hidden[1][0], hidden[1][1])
|
||||
if probs is None:
|
||||
probs = paddle.unsqueeze(probs_step, axis=1)
|
||||
else:
|
||||
probs = paddle.concat(
|
||||
[probs, paddle.unsqueeze(
|
||||
probs_step, axis=1)], axis=1)
|
||||
|
||||
next_input = probs_step.argmax(axis=1)
|
||||
|
||||
targets = next_input
|
||||
|
||||
return probs
|
||||
|
||||
|
||||
class AttentionLSTMCell(nn.Layer):
|
||||
def __init__(self, input_size, hidden_size, num_embeddings, use_gru=False):
|
||||
super(AttentionLSTMCell, self).__init__()
|
||||
self.i2h = nn.Linear(input_size, hidden_size, bias_attr=False)
|
||||
self.h2h = nn.Linear(hidden_size, hidden_size)
|
||||
self.score = nn.Linear(hidden_size, 1, bias_attr=False)
|
||||
if not use_gru:
|
||||
self.rnn = nn.LSTMCell(
|
||||
input_size=input_size + num_embeddings, hidden_size=hidden_size)
|
||||
else:
|
||||
self.rnn = nn.GRUCell(
|
||||
input_size=input_size + num_embeddings, hidden_size=hidden_size)
|
||||
|
||||
self.hidden_size = hidden_size
|
||||
|
||||
def forward(self, prev_hidden, batch_H, char_onehots):
|
||||
batch_H_proj = self.i2h(batch_H)
|
||||
prev_hidden_proj = paddle.unsqueeze(self.h2h(prev_hidden[0]), axis=1)
|
||||
res = paddle.add(batch_H_proj, prev_hidden_proj)
|
||||
res = paddle.tanh(res)
|
||||
e = self.score(res)
|
||||
|
||||
alpha = F.softmax(e, axis=1)
|
||||
alpha = paddle.transpose(alpha, [0, 2, 1])
|
||||
context = paddle.squeeze(paddle.mm(alpha, batch_H), axis=1)
|
||||
concat_context = paddle.concat([context, char_onehots], 1)
|
||||
cur_hidden = self.rnn(concat_context, prev_hidden)
|
||||
|
||||
return cur_hidden, alpha
|
|
@ -135,16 +135,62 @@ class AttnLabelDecode(BaseRecLabelDecode):
|
|||
**kwargs):
|
||||
super(AttnLabelDecode, self).__init__(character_dict_path,
|
||||
character_type, use_space_char)
|
||||
self.beg_str = "sos"
|
||||
self.end_str = "eos"
|
||||
|
||||
def add_special_char(self, dict_character):
|
||||
dict_character = [self.beg_str, self.end_str] + dict_character
|
||||
self.beg_str = "sos"
|
||||
self.end_str = "eos"
|
||||
dict_character = dict_character
|
||||
dict_character = [self.beg_str] + dict_character + [self.end_str]
|
||||
return dict_character
|
||||
|
||||
def __call__(self, text):
|
||||
def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
|
||||
""" convert text-index into text-label. """
|
||||
result_list = []
|
||||
ignored_tokens = self.get_ignored_tokens()
|
||||
[beg_idx, end_idx] = self.get_ignored_tokens()
|
||||
batch_size = len(text_index)
|
||||
for batch_idx in range(batch_size):
|
||||
char_list = []
|
||||
conf_list = []
|
||||
for idx in range(len(text_index[batch_idx])):
|
||||
if text_index[batch_idx][idx] in ignored_tokens:
|
||||
continue
|
||||
if int(text_index[batch_idx][idx]) == int(end_idx):
|
||||
break
|
||||
if is_remove_duplicate:
|
||||
# only for predict
|
||||
if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
|
||||
batch_idx][idx]:
|
||||
continue
|
||||
char_list.append(self.character[int(text_index[batch_idx][
|
||||
idx])])
|
||||
if text_prob is not None:
|
||||
conf_list.append(text_prob[batch_idx][idx])
|
||||
else:
|
||||
conf_list.append(1)
|
||||
text = ''.join(char_list)
|
||||
result_list.append((text, np.mean(conf_list)))
|
||||
return result_list
|
||||
|
||||
def __call__(self, preds, label=None, *args, **kwargs):
|
||||
"""
|
||||
text = self.decode(text)
|
||||
return text
|
||||
if label is None:
|
||||
return text
|
||||
else:
|
||||
label = self.decode(label, is_remove_duplicate=False)
|
||||
return text, label
|
||||
"""
|
||||
if isinstance(preds, paddle.Tensor):
|
||||
preds = preds.numpy()
|
||||
|
||||
preds_idx = preds.argmax(axis=2)
|
||||
preds_prob = preds.max(axis=2)
|
||||
text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
|
||||
if label is None:
|
||||
return text
|
||||
label = self.decode(label, is_remove_duplicate=False)
|
||||
return text, label
|
||||
|
||||
def get_ignored_tokens(self):
|
||||
beg_idx = self.get_beg_end_flag_idx("beg")
|
||||
|
|
|
@ -184,4 +184,4 @@ def main(args):
|
|||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main(utility.parse_args())
|
||||
main(utility.parse_args())
|
||||
|
|
Loading…
Reference in New Issue