linux-sg2042/drivers/mfd/ucb1x00-core.c

783 lines
20 KiB
C

/*
* linux/drivers/mfd/ucb1x00-core.c
*
* Copyright (C) 2001 Russell King, All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License.
*
* The UCB1x00 core driver provides basic services for handling IO,
* the ADC, interrupts, and accessing registers. It is designed
* such that everything goes through this layer, thereby providing
* a consistent locking methodology, as well as allowing the drivers
* to be used on other non-MCP-enabled hardware platforms.
*
* Note that all locks are private to this file. Nothing else may
* touch them.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/device.h>
#include <linux/mutex.h>
#include <linux/mfd/ucb1x00.h>
#include <linux/pm.h>
#include <linux/gpio/driver.h>
static DEFINE_MUTEX(ucb1x00_mutex);
static LIST_HEAD(ucb1x00_drivers);
static LIST_HEAD(ucb1x00_devices);
/**
* ucb1x00_io_set_dir - set IO direction
* @ucb: UCB1x00 structure describing chip
* @in: bitfield of IO pins to be set as inputs
* @out: bitfield of IO pins to be set as outputs
*
* Set the IO direction of the ten general purpose IO pins on
* the UCB1x00 chip. The @in bitfield has priority over the
* @out bitfield, in that if you specify a pin as both input
* and output, it will end up as an input.
*
* ucb1x00_enable must have been called to enable the comms
* before using this function.
*
* This function takes a spinlock, disabling interrupts.
*/
void ucb1x00_io_set_dir(struct ucb1x00 *ucb, unsigned int in, unsigned int out)
{
unsigned long flags;
spin_lock_irqsave(&ucb->io_lock, flags);
ucb->io_dir |= out;
ucb->io_dir &= ~in;
ucb1x00_reg_write(ucb, UCB_IO_DIR, ucb->io_dir);
spin_unlock_irqrestore(&ucb->io_lock, flags);
}
/**
* ucb1x00_io_write - set or clear IO outputs
* @ucb: UCB1x00 structure describing chip
* @set: bitfield of IO pins to set to logic '1'
* @clear: bitfield of IO pins to set to logic '0'
*
* Set the IO output state of the specified IO pins. The value
* is retained if the pins are subsequently configured as inputs.
* The @clear bitfield has priority over the @set bitfield -
* outputs will be cleared.
*
* ucb1x00_enable must have been called to enable the comms
* before using this function.
*
* This function takes a spinlock, disabling interrupts.
*/
void ucb1x00_io_write(struct ucb1x00 *ucb, unsigned int set, unsigned int clear)
{
unsigned long flags;
spin_lock_irqsave(&ucb->io_lock, flags);
ucb->io_out |= set;
ucb->io_out &= ~clear;
ucb1x00_reg_write(ucb, UCB_IO_DATA, ucb->io_out);
spin_unlock_irqrestore(&ucb->io_lock, flags);
}
/**
* ucb1x00_io_read - read the current state of the IO pins
* @ucb: UCB1x00 structure describing chip
*
* Return a bitfield describing the logic state of the ten
* general purpose IO pins.
*
* ucb1x00_enable must have been called to enable the comms
* before using this function.
*
* This function does not take any mutexes or spinlocks.
*/
unsigned int ucb1x00_io_read(struct ucb1x00 *ucb)
{
return ucb1x00_reg_read(ucb, UCB_IO_DATA);
}
static void ucb1x00_gpio_set(struct gpio_chip *chip, unsigned offset, int value)
{
struct ucb1x00 *ucb = gpiochip_get_data(chip);
unsigned long flags;
spin_lock_irqsave(&ucb->io_lock, flags);
if (value)
ucb->io_out |= 1 << offset;
else
ucb->io_out &= ~(1 << offset);
ucb1x00_enable(ucb);
ucb1x00_reg_write(ucb, UCB_IO_DATA, ucb->io_out);
ucb1x00_disable(ucb);
spin_unlock_irqrestore(&ucb->io_lock, flags);
}
static int ucb1x00_gpio_get(struct gpio_chip *chip, unsigned offset)
{
struct ucb1x00 *ucb = gpiochip_get_data(chip);
unsigned val;
ucb1x00_enable(ucb);
val = ucb1x00_reg_read(ucb, UCB_IO_DATA);
ucb1x00_disable(ucb);
return !!(val & (1 << offset));
}
static int ucb1x00_gpio_direction_input(struct gpio_chip *chip, unsigned offset)
{
struct ucb1x00 *ucb = gpiochip_get_data(chip);
unsigned long flags;
spin_lock_irqsave(&ucb->io_lock, flags);
ucb->io_dir &= ~(1 << offset);
ucb1x00_enable(ucb);
ucb1x00_reg_write(ucb, UCB_IO_DIR, ucb->io_dir);
ucb1x00_disable(ucb);
spin_unlock_irqrestore(&ucb->io_lock, flags);
return 0;
}
static int ucb1x00_gpio_direction_output(struct gpio_chip *chip, unsigned offset
, int value)
{
struct ucb1x00 *ucb = gpiochip_get_data(chip);
unsigned long flags;
unsigned old, mask = 1 << offset;
spin_lock_irqsave(&ucb->io_lock, flags);
old = ucb->io_out;
if (value)
ucb->io_out |= mask;
else
ucb->io_out &= ~mask;
ucb1x00_enable(ucb);
if (old != ucb->io_out)
ucb1x00_reg_write(ucb, UCB_IO_DATA, ucb->io_out);
if (!(ucb->io_dir & mask)) {
ucb->io_dir |= mask;
ucb1x00_reg_write(ucb, UCB_IO_DIR, ucb->io_dir);
}
ucb1x00_disable(ucb);
spin_unlock_irqrestore(&ucb->io_lock, flags);
return 0;
}
static int ucb1x00_to_irq(struct gpio_chip *chip, unsigned offset)
{
struct ucb1x00 *ucb = gpiochip_get_data(chip);
return ucb->irq_base > 0 ? ucb->irq_base + offset : -ENXIO;
}
/*
* UCB1300 data sheet says we must:
* 1. enable ADC => 5us (including reference startup time)
* 2. select input => 51*tsibclk => 4.3us
* 3. start conversion => 102*tsibclk => 8.5us
* (tsibclk = 1/11981000)
* Period between SIB 128-bit frames = 10.7us
*/
/**
* ucb1x00_adc_enable - enable the ADC converter
* @ucb: UCB1x00 structure describing chip
*
* Enable the ucb1x00 and ADC converter on the UCB1x00 for use.
* Any code wishing to use the ADC converter must call this
* function prior to using it.
*
* This function takes the ADC mutex to prevent two or more
* concurrent uses, and therefore may sleep. As a result, it
* can only be called from process context, not interrupt
* context.
*
* You should release the ADC as soon as possible using
* ucb1x00_adc_disable.
*/
void ucb1x00_adc_enable(struct ucb1x00 *ucb)
{
mutex_lock(&ucb->adc_mutex);
ucb->adc_cr |= UCB_ADC_ENA;
ucb1x00_enable(ucb);
ucb1x00_reg_write(ucb, UCB_ADC_CR, ucb->adc_cr);
}
/**
* ucb1x00_adc_read - read the specified ADC channel
* @ucb: UCB1x00 structure describing chip
* @adc_channel: ADC channel mask
* @sync: wait for syncronisation pulse.
*
* Start an ADC conversion and wait for the result. Note that
* synchronised ADC conversions (via the ADCSYNC pin) must wait
* until the trigger is asserted and the conversion is finished.
*
* This function currently spins waiting for the conversion to
* complete (2 frames max without sync).
*
* If called for a synchronised ADC conversion, it may sleep
* with the ADC mutex held.
*/
unsigned int ucb1x00_adc_read(struct ucb1x00 *ucb, int adc_channel, int sync)
{
unsigned int val;
if (sync)
adc_channel |= UCB_ADC_SYNC_ENA;
ucb1x00_reg_write(ucb, UCB_ADC_CR, ucb->adc_cr | adc_channel);
ucb1x00_reg_write(ucb, UCB_ADC_CR, ucb->adc_cr | adc_channel | UCB_ADC_START);
for (;;) {
val = ucb1x00_reg_read(ucb, UCB_ADC_DATA);
if (val & UCB_ADC_DAT_VAL)
break;
/* yield to other processes */
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(1);
}
return UCB_ADC_DAT(val);
}
/**
* ucb1x00_adc_disable - disable the ADC converter
* @ucb: UCB1x00 structure describing chip
*
* Disable the ADC converter and release the ADC mutex.
*/
void ucb1x00_adc_disable(struct ucb1x00 *ucb)
{
ucb->adc_cr &= ~UCB_ADC_ENA;
ucb1x00_reg_write(ucb, UCB_ADC_CR, ucb->adc_cr);
ucb1x00_disable(ucb);
mutex_unlock(&ucb->adc_mutex);
}
/*
* UCB1x00 Interrupt handling.
*
* The UCB1x00 can generate interrupts when the SIBCLK is stopped.
* Since we need to read an internal register, we must re-enable
* SIBCLK to talk to the chip. We leave the clock running until
* we have finished processing all interrupts from the chip.
*/
static void ucb1x00_irq(struct irq_desc *desc)
{
struct ucb1x00 *ucb = irq_desc_get_handler_data(desc);
unsigned int isr, i;
ucb1x00_enable(ucb);
isr = ucb1x00_reg_read(ucb, UCB_IE_STATUS);
ucb1x00_reg_write(ucb, UCB_IE_CLEAR, isr);
ucb1x00_reg_write(ucb, UCB_IE_CLEAR, 0);
for (i = 0; i < 16 && isr; i++, isr >>= 1)
if (isr & 1)
generic_handle_irq(ucb->irq_base + i);
ucb1x00_disable(ucb);
}
static void ucb1x00_irq_update(struct ucb1x00 *ucb, unsigned mask)
{
ucb1x00_enable(ucb);
if (ucb->irq_ris_enbl & mask)
ucb1x00_reg_write(ucb, UCB_IE_RIS, ucb->irq_ris_enbl &
ucb->irq_mask);
if (ucb->irq_fal_enbl & mask)
ucb1x00_reg_write(ucb, UCB_IE_FAL, ucb->irq_fal_enbl &
ucb->irq_mask);
ucb1x00_disable(ucb);
}
static void ucb1x00_irq_noop(struct irq_data *data)
{
}
static void ucb1x00_irq_mask(struct irq_data *data)
{
struct ucb1x00 *ucb = irq_data_get_irq_chip_data(data);
unsigned mask = 1 << (data->irq - ucb->irq_base);
raw_spin_lock(&ucb->irq_lock);
ucb->irq_mask &= ~mask;
ucb1x00_irq_update(ucb, mask);
raw_spin_unlock(&ucb->irq_lock);
}
static void ucb1x00_irq_unmask(struct irq_data *data)
{
struct ucb1x00 *ucb = irq_data_get_irq_chip_data(data);
unsigned mask = 1 << (data->irq - ucb->irq_base);
raw_spin_lock(&ucb->irq_lock);
ucb->irq_mask |= mask;
ucb1x00_irq_update(ucb, mask);
raw_spin_unlock(&ucb->irq_lock);
}
static int ucb1x00_irq_set_type(struct irq_data *data, unsigned int type)
{
struct ucb1x00 *ucb = irq_data_get_irq_chip_data(data);
unsigned mask = 1 << (data->irq - ucb->irq_base);
raw_spin_lock(&ucb->irq_lock);
if (type & IRQ_TYPE_EDGE_RISING)
ucb->irq_ris_enbl |= mask;
else
ucb->irq_ris_enbl &= ~mask;
if (type & IRQ_TYPE_EDGE_FALLING)
ucb->irq_fal_enbl |= mask;
else
ucb->irq_fal_enbl &= ~mask;
if (ucb->irq_mask & mask) {
ucb1x00_reg_write(ucb, UCB_IE_RIS, ucb->irq_ris_enbl &
ucb->irq_mask);
ucb1x00_reg_write(ucb, UCB_IE_FAL, ucb->irq_fal_enbl &
ucb->irq_mask);
}
raw_spin_unlock(&ucb->irq_lock);
return 0;
}
static int ucb1x00_irq_set_wake(struct irq_data *data, unsigned int on)
{
struct ucb1x00 *ucb = irq_data_get_irq_chip_data(data);
struct ucb1x00_plat_data *pdata = ucb->mcp->attached_device.platform_data;
unsigned mask = 1 << (data->irq - ucb->irq_base);
if (!pdata || !pdata->can_wakeup)
return -EINVAL;
raw_spin_lock(&ucb->irq_lock);
if (on)
ucb->irq_wake |= mask;
else
ucb->irq_wake &= ~mask;
raw_spin_unlock(&ucb->irq_lock);
return 0;
}
static struct irq_chip ucb1x00_irqchip = {
.name = "ucb1x00",
.irq_ack = ucb1x00_irq_noop,
.irq_mask = ucb1x00_irq_mask,
.irq_unmask = ucb1x00_irq_unmask,
.irq_set_type = ucb1x00_irq_set_type,
.irq_set_wake = ucb1x00_irq_set_wake,
};
static int ucb1x00_add_dev(struct ucb1x00 *ucb, struct ucb1x00_driver *drv)
{
struct ucb1x00_dev *dev;
int ret;
dev = kmalloc(sizeof(struct ucb1x00_dev), GFP_KERNEL);
if (!dev)
return -ENOMEM;
dev->ucb = ucb;
dev->drv = drv;
ret = drv->add(dev);
if (ret) {
kfree(dev);
return ret;
}
list_add_tail(&dev->dev_node, &ucb->devs);
list_add_tail(&dev->drv_node, &drv->devs);
return ret;
}
static void ucb1x00_remove_dev(struct ucb1x00_dev *dev)
{
dev->drv->remove(dev);
list_del(&dev->dev_node);
list_del(&dev->drv_node);
kfree(dev);
}
/*
* Try to probe our interrupt, rather than relying on lots of
* hard-coded machine dependencies. For reference, the expected
* IRQ mappings are:
*
* Machine Default IRQ
* adsbitsy IRQ_GPCIN4
* cerf IRQ_GPIO_UCB1200_IRQ
* flexanet IRQ_GPIO_GUI
* freebird IRQ_GPIO_FREEBIRD_UCB1300_IRQ
* graphicsclient ADS_EXT_IRQ(8)
* graphicsmaster ADS_EXT_IRQ(8)
* lart LART_IRQ_UCB1200
* omnimeter IRQ_GPIO23
* pfs168 IRQ_GPIO_UCB1300_IRQ
* simpad IRQ_GPIO_UCB1300_IRQ
* shannon SHANNON_IRQ_GPIO_IRQ_CODEC
* yopy IRQ_GPIO_UCB1200_IRQ
*/
static int ucb1x00_detect_irq(struct ucb1x00 *ucb)
{
unsigned long mask;
mask = probe_irq_on();
/*
* Enable the ADC interrupt.
*/
ucb1x00_reg_write(ucb, UCB_IE_RIS, UCB_IE_ADC);
ucb1x00_reg_write(ucb, UCB_IE_FAL, UCB_IE_ADC);
ucb1x00_reg_write(ucb, UCB_IE_CLEAR, 0xffff);
ucb1x00_reg_write(ucb, UCB_IE_CLEAR, 0);
/*
* Cause an ADC interrupt.
*/
ucb1x00_reg_write(ucb, UCB_ADC_CR, UCB_ADC_ENA);
ucb1x00_reg_write(ucb, UCB_ADC_CR, UCB_ADC_ENA | UCB_ADC_START);
/*
* Wait for the conversion to complete.
*/
while ((ucb1x00_reg_read(ucb, UCB_ADC_DATA) & UCB_ADC_DAT_VAL) == 0);
ucb1x00_reg_write(ucb, UCB_ADC_CR, 0);
/*
* Disable and clear interrupt.
*/
ucb1x00_reg_write(ucb, UCB_IE_RIS, 0);
ucb1x00_reg_write(ucb, UCB_IE_FAL, 0);
ucb1x00_reg_write(ucb, UCB_IE_CLEAR, 0xffff);
ucb1x00_reg_write(ucb, UCB_IE_CLEAR, 0);
/*
* Read triggered interrupt.
*/
return probe_irq_off(mask);
}
static void ucb1x00_release(struct device *dev)
{
struct ucb1x00 *ucb = classdev_to_ucb1x00(dev);
kfree(ucb);
}
static struct class ucb1x00_class = {
.name = "ucb1x00",
.dev_release = ucb1x00_release,
};
static int ucb1x00_probe(struct mcp *mcp)
{
struct ucb1x00_plat_data *pdata = mcp->attached_device.platform_data;
struct ucb1x00_driver *drv;
struct ucb1x00 *ucb;
unsigned id, i, irq_base;
int ret = -ENODEV;
/* Tell the platform to deassert the UCB1x00 reset */
if (pdata && pdata->reset)
pdata->reset(UCB_RST_PROBE);
mcp_enable(mcp);
id = mcp_reg_read(mcp, UCB_ID);
mcp_disable(mcp);
if (id != UCB_ID_1200 && id != UCB_ID_1300 && id != UCB_ID_TC35143) {
printk(KERN_WARNING "UCB1x00 ID not found: %04x\n", id);
goto out;
}
ucb = kzalloc(sizeof(struct ucb1x00), GFP_KERNEL);
ret = -ENOMEM;
if (!ucb)
goto out;
device_initialize(&ucb->dev);
ucb->dev.class = &ucb1x00_class;
ucb->dev.parent = &mcp->attached_device;
dev_set_name(&ucb->dev, "ucb1x00");
raw_spin_lock_init(&ucb->irq_lock);
spin_lock_init(&ucb->io_lock);
mutex_init(&ucb->adc_mutex);
ucb->id = id;
ucb->mcp = mcp;
ret = device_add(&ucb->dev);
if (ret)
goto err_dev_add;
ucb1x00_enable(ucb);
ucb->irq = ucb1x00_detect_irq(ucb);
ucb1x00_disable(ucb);
if (!ucb->irq) {
dev_err(&ucb->dev, "IRQ probe failed\n");
ret = -ENODEV;
goto err_no_irq;
}
ucb->gpio.base = -1;
irq_base = pdata ? pdata->irq_base : 0;
ucb->irq_base = irq_alloc_descs(-1, irq_base, 16, -1);
if (ucb->irq_base < 0) {
dev_err(&ucb->dev, "unable to allocate 16 irqs: %d\n",
ucb->irq_base);
ret = ucb->irq_base;
goto err_irq_alloc;
}
for (i = 0; i < 16; i++) {
unsigned irq = ucb->irq_base + i;
irq_set_chip_and_handler(irq, &ucb1x00_irqchip, handle_edge_irq);
irq_set_chip_data(irq, ucb);
irq_clear_status_flags(irq, IRQ_NOREQUEST);
}
irq_set_irq_type(ucb->irq, IRQ_TYPE_EDGE_RISING);
irq_set_chained_handler_and_data(ucb->irq, ucb1x00_irq, ucb);
if (pdata && pdata->gpio_base) {
ucb->gpio.label = dev_name(&ucb->dev);
ucb->gpio.parent = &ucb->dev;
ucb->gpio.owner = THIS_MODULE;
ucb->gpio.base = pdata->gpio_base;
ucb->gpio.ngpio = 10;
ucb->gpio.set = ucb1x00_gpio_set;
ucb->gpio.get = ucb1x00_gpio_get;
ucb->gpio.direction_input = ucb1x00_gpio_direction_input;
ucb->gpio.direction_output = ucb1x00_gpio_direction_output;
ucb->gpio.to_irq = ucb1x00_to_irq;
ret = gpiochip_add_data(&ucb->gpio, ucb);
if (ret)
goto err_gpio_add;
} else
dev_info(&ucb->dev, "gpio_base not set so no gpiolib support");
mcp_set_drvdata(mcp, ucb);
if (pdata)
device_set_wakeup_capable(&ucb->dev, pdata->can_wakeup);
INIT_LIST_HEAD(&ucb->devs);
mutex_lock(&ucb1x00_mutex);
list_add_tail(&ucb->node, &ucb1x00_devices);
list_for_each_entry(drv, &ucb1x00_drivers, node) {
ucb1x00_add_dev(ucb, drv);
}
mutex_unlock(&ucb1x00_mutex);
return ret;
err_gpio_add:
irq_set_chained_handler(ucb->irq, NULL);
err_irq_alloc:
if (ucb->irq_base > 0)
irq_free_descs(ucb->irq_base, 16);
err_no_irq:
device_del(&ucb->dev);
err_dev_add:
put_device(&ucb->dev);
out:
if (pdata && pdata->reset)
pdata->reset(UCB_RST_PROBE_FAIL);
return ret;
}
static void ucb1x00_remove(struct mcp *mcp)
{
struct ucb1x00_plat_data *pdata = mcp->attached_device.platform_data;
struct ucb1x00 *ucb = mcp_get_drvdata(mcp);
struct list_head *l, *n;
mutex_lock(&ucb1x00_mutex);
list_del(&ucb->node);
list_for_each_safe(l, n, &ucb->devs) {
struct ucb1x00_dev *dev = list_entry(l, struct ucb1x00_dev, dev_node);
ucb1x00_remove_dev(dev);
}
mutex_unlock(&ucb1x00_mutex);
if (ucb->gpio.base != -1)
gpiochip_remove(&ucb->gpio);
irq_set_chained_handler(ucb->irq, NULL);
irq_free_descs(ucb->irq_base, 16);
device_unregister(&ucb->dev);
if (pdata && pdata->reset)
pdata->reset(UCB_RST_REMOVE);
}
int ucb1x00_register_driver(struct ucb1x00_driver *drv)
{
struct ucb1x00 *ucb;
INIT_LIST_HEAD(&drv->devs);
mutex_lock(&ucb1x00_mutex);
list_add_tail(&drv->node, &ucb1x00_drivers);
list_for_each_entry(ucb, &ucb1x00_devices, node) {
ucb1x00_add_dev(ucb, drv);
}
mutex_unlock(&ucb1x00_mutex);
return 0;
}
void ucb1x00_unregister_driver(struct ucb1x00_driver *drv)
{
struct list_head *n, *l;
mutex_lock(&ucb1x00_mutex);
list_del(&drv->node);
list_for_each_safe(l, n, &drv->devs) {
struct ucb1x00_dev *dev = list_entry(l, struct ucb1x00_dev, drv_node);
ucb1x00_remove_dev(dev);
}
mutex_unlock(&ucb1x00_mutex);
}
#ifdef CONFIG_PM_SLEEP
static int ucb1x00_suspend(struct device *dev)
{
struct ucb1x00_plat_data *pdata = dev_get_platdata(dev);
struct ucb1x00 *ucb = dev_get_drvdata(dev);
struct ucb1x00_dev *udev;
mutex_lock(&ucb1x00_mutex);
list_for_each_entry(udev, &ucb->devs, dev_node) {
if (udev->drv->suspend)
udev->drv->suspend(udev);
}
mutex_unlock(&ucb1x00_mutex);
if (ucb->irq_wake) {
unsigned long flags;
raw_spin_lock_irqsave(&ucb->irq_lock, flags);
ucb1x00_enable(ucb);
ucb1x00_reg_write(ucb, UCB_IE_RIS, ucb->irq_ris_enbl &
ucb->irq_wake);
ucb1x00_reg_write(ucb, UCB_IE_FAL, ucb->irq_fal_enbl &
ucb->irq_wake);
ucb1x00_disable(ucb);
raw_spin_unlock_irqrestore(&ucb->irq_lock, flags);
enable_irq_wake(ucb->irq);
} else if (pdata && pdata->reset)
pdata->reset(UCB_RST_SUSPEND);
return 0;
}
static int ucb1x00_resume(struct device *dev)
{
struct ucb1x00_plat_data *pdata = dev_get_platdata(dev);
struct ucb1x00 *ucb = dev_get_drvdata(dev);
struct ucb1x00_dev *udev;
if (!ucb->irq_wake && pdata && pdata->reset)
pdata->reset(UCB_RST_RESUME);
ucb1x00_enable(ucb);
ucb1x00_reg_write(ucb, UCB_IO_DATA, ucb->io_out);
ucb1x00_reg_write(ucb, UCB_IO_DIR, ucb->io_dir);
if (ucb->irq_wake) {
unsigned long flags;
raw_spin_lock_irqsave(&ucb->irq_lock, flags);
ucb1x00_reg_write(ucb, UCB_IE_RIS, ucb->irq_ris_enbl &
ucb->irq_mask);
ucb1x00_reg_write(ucb, UCB_IE_FAL, ucb->irq_fal_enbl &
ucb->irq_mask);
raw_spin_unlock_irqrestore(&ucb->irq_lock, flags);
disable_irq_wake(ucb->irq);
}
ucb1x00_disable(ucb);
mutex_lock(&ucb1x00_mutex);
list_for_each_entry(udev, &ucb->devs, dev_node) {
if (udev->drv->resume)
udev->drv->resume(udev);
}
mutex_unlock(&ucb1x00_mutex);
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(ucb1x00_pm_ops, ucb1x00_suspend, ucb1x00_resume);
static struct mcp_driver ucb1x00_driver = {
.drv = {
.name = "ucb1x00",
.owner = THIS_MODULE,
.pm = &ucb1x00_pm_ops,
},
.probe = ucb1x00_probe,
.remove = ucb1x00_remove,
};
static int __init ucb1x00_init(void)
{
int ret = class_register(&ucb1x00_class);
if (ret == 0) {
ret = mcp_driver_register(&ucb1x00_driver);
if (ret)
class_unregister(&ucb1x00_class);
}
return ret;
}
static void __exit ucb1x00_exit(void)
{
mcp_driver_unregister(&ucb1x00_driver);
class_unregister(&ucb1x00_class);
}
module_init(ucb1x00_init);
module_exit(ucb1x00_exit);
EXPORT_SYMBOL(ucb1x00_io_set_dir);
EXPORT_SYMBOL(ucb1x00_io_write);
EXPORT_SYMBOL(ucb1x00_io_read);
EXPORT_SYMBOL(ucb1x00_adc_enable);
EXPORT_SYMBOL(ucb1x00_adc_read);
EXPORT_SYMBOL(ucb1x00_adc_disable);
EXPORT_SYMBOL(ucb1x00_register_driver);
EXPORT_SYMBOL(ucb1x00_unregister_driver);
MODULE_ALIAS("mcp:ucb1x00");
MODULE_AUTHOR("Russell King <rmk@arm.linux.org.uk>");
MODULE_DESCRIPTION("UCB1x00 core driver");
MODULE_LICENSE("GPL");