linux-sg2042/drivers/usb/early/xhci-dbc.c

1011 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0
/**
* xhci-dbc.c - xHCI debug capability early driver
*
* Copyright (C) 2016 Intel Corporation
*
* Author: Lu Baolu <baolu.lu@linux.intel.com>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ":%s: " fmt, __func__
#include <linux/console.h>
#include <linux/pci_regs.h>
#include <linux/pci_ids.h>
#include <linux/bootmem.h>
#include <linux/io.h>
#include <asm/pci-direct.h>
#include <asm/fixmap.h>
#include <linux/bcd.h>
#include <linux/export.h>
#include <linux/version.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/kthread.h>
#include "../host/xhci.h"
#include "xhci-dbc.h"
static struct xdbc_state xdbc;
static bool early_console_keep;
#ifdef XDBC_TRACE
#define xdbc_trace trace_printk
#else
static inline void xdbc_trace(const char *fmt, ...) { }
#endif /* XDBC_TRACE */
static void __iomem * __init xdbc_map_pci_mmio(u32 bus, u32 dev, u32 func)
{
u64 val64, sz64, mask64;
void __iomem *base;
u32 val, sz;
u8 byte;
val = read_pci_config(bus, dev, func, PCI_BASE_ADDRESS_0);
write_pci_config(bus, dev, func, PCI_BASE_ADDRESS_0, ~0);
sz = read_pci_config(bus, dev, func, PCI_BASE_ADDRESS_0);
write_pci_config(bus, dev, func, PCI_BASE_ADDRESS_0, val);
if (val == 0xffffffff || sz == 0xffffffff) {
pr_notice("invalid mmio bar\n");
return NULL;
}
val64 = val & PCI_BASE_ADDRESS_MEM_MASK;
sz64 = sz & PCI_BASE_ADDRESS_MEM_MASK;
mask64 = PCI_BASE_ADDRESS_MEM_MASK;
if ((val & PCI_BASE_ADDRESS_MEM_TYPE_MASK) == PCI_BASE_ADDRESS_MEM_TYPE_64) {
val = read_pci_config(bus, dev, func, PCI_BASE_ADDRESS_0 + 4);
write_pci_config(bus, dev, func, PCI_BASE_ADDRESS_0 + 4, ~0);
sz = read_pci_config(bus, dev, func, PCI_BASE_ADDRESS_0 + 4);
write_pci_config(bus, dev, func, PCI_BASE_ADDRESS_0 + 4, val);
val64 |= (u64)val << 32;
sz64 |= (u64)sz << 32;
mask64 |= ~0ULL << 32;
}
sz64 &= mask64;
if (!sz64) {
pr_notice("invalid mmio address\n");
return NULL;
}
sz64 = 1ULL << __ffs64(sz64);
/* Check if the mem space is enabled: */
byte = read_pci_config_byte(bus, dev, func, PCI_COMMAND);
if (!(byte & PCI_COMMAND_MEMORY)) {
byte |= PCI_COMMAND_MEMORY;
write_pci_config_byte(bus, dev, func, PCI_COMMAND, byte);
}
xdbc.xhci_start = val64;
xdbc.xhci_length = sz64;
base = early_ioremap(val64, sz64);
return base;
}
static void * __init xdbc_get_page(dma_addr_t *dma_addr)
{
void *virt;
virt = alloc_bootmem_pages_nopanic(PAGE_SIZE);
if (!virt)
return NULL;
if (dma_addr)
*dma_addr = (dma_addr_t)__pa(virt);
return virt;
}
static u32 __init xdbc_find_dbgp(int xdbc_num, u32 *b, u32 *d, u32 *f)
{
u32 bus, dev, func, class;
for (bus = 0; bus < XDBC_PCI_MAX_BUSES; bus++) {
for (dev = 0; dev < XDBC_PCI_MAX_DEVICES; dev++) {
for (func = 0; func < XDBC_PCI_MAX_FUNCTION; func++) {
class = read_pci_config(bus, dev, func, PCI_CLASS_REVISION);
if ((class >> 8) != PCI_CLASS_SERIAL_USB_XHCI)
continue;
if (xdbc_num-- != 0)
continue;
*b = bus;
*d = dev;
*f = func;
return 0;
}
}
}
return -1;
}
static int handshake(void __iomem *ptr, u32 mask, u32 done, int wait, int delay)
{
u32 result;
do {
result = readl(ptr);
result &= mask;
if (result == done)
return 0;
udelay(delay);
wait -= delay;
} while (wait > 0);
return -ETIMEDOUT;
}
static void __init xdbc_bios_handoff(void)
{
int offset, timeout;
u32 val;
offset = xhci_find_next_ext_cap(xdbc.xhci_base, 0, XHCI_EXT_CAPS_LEGACY);
val = readl(xdbc.xhci_base + offset);
if (val & XHCI_HC_BIOS_OWNED) {
writel(val | XHCI_HC_OS_OWNED, xdbc.xhci_base + offset);
timeout = handshake(xdbc.xhci_base + offset, XHCI_HC_BIOS_OWNED, 0, 5000, 10);
if (timeout) {
pr_notice("failed to hand over xHCI control from BIOS\n");
writel(val & ~XHCI_HC_BIOS_OWNED, xdbc.xhci_base + offset);
}
}
/* Disable BIOS SMIs and clear all SMI events: */
val = readl(xdbc.xhci_base + offset + XHCI_LEGACY_CONTROL_OFFSET);
val &= XHCI_LEGACY_DISABLE_SMI;
val |= XHCI_LEGACY_SMI_EVENTS;
writel(val, xdbc.xhci_base + offset + XHCI_LEGACY_CONTROL_OFFSET);
}
static int __init
xdbc_alloc_ring(struct xdbc_segment *seg, struct xdbc_ring *ring)
{
seg->trbs = xdbc_get_page(&seg->dma);
if (!seg->trbs)
return -ENOMEM;
ring->segment = seg;
return 0;
}
static void __init xdbc_free_ring(struct xdbc_ring *ring)
{
struct xdbc_segment *seg = ring->segment;
if (!seg)
return;
free_bootmem(seg->dma, PAGE_SIZE);
ring->segment = NULL;
}
static void xdbc_reset_ring(struct xdbc_ring *ring)
{
struct xdbc_segment *seg = ring->segment;
struct xdbc_trb *link_trb;
memset(seg->trbs, 0, PAGE_SIZE);
ring->enqueue = seg->trbs;
ring->dequeue = seg->trbs;
ring->cycle_state = 1;
if (ring != &xdbc.evt_ring) {
link_trb = &seg->trbs[XDBC_TRBS_PER_SEGMENT - 1];
link_trb->field[0] = cpu_to_le32(lower_32_bits(seg->dma));
link_trb->field[1] = cpu_to_le32(upper_32_bits(seg->dma));
link_trb->field[3] = cpu_to_le32(TRB_TYPE(TRB_LINK)) | cpu_to_le32(LINK_TOGGLE);
}
}
static inline void xdbc_put_utf16(u16 *s, const char *c, size_t size)
{
int i;
for (i = 0; i < size; i++)
s[i] = cpu_to_le16(c[i]);
}
static void xdbc_mem_init(void)
{
struct xdbc_ep_context *ep_in, *ep_out;
struct usb_string_descriptor *s_desc;
struct xdbc_erst_entry *entry;
struct xdbc_strings *strings;
struct xdbc_context *ctx;
unsigned int max_burst;
u32 string_length;
int index = 0;
u32 dev_info;
xdbc_reset_ring(&xdbc.evt_ring);
xdbc_reset_ring(&xdbc.in_ring);
xdbc_reset_ring(&xdbc.out_ring);
memset(xdbc.table_base, 0, PAGE_SIZE);
memset(xdbc.out_buf, 0, PAGE_SIZE);
/* Initialize event ring segment table: */
xdbc.erst_size = 16;
xdbc.erst_base = xdbc.table_base + index * XDBC_TABLE_ENTRY_SIZE;
xdbc.erst_dma = xdbc.table_dma + index * XDBC_TABLE_ENTRY_SIZE;
index += XDBC_ERST_ENTRY_NUM;
entry = (struct xdbc_erst_entry *)xdbc.erst_base;
entry->seg_addr = cpu_to_le64(xdbc.evt_seg.dma);
entry->seg_size = cpu_to_le32(XDBC_TRBS_PER_SEGMENT);
entry->__reserved_0 = 0;
/* Initialize ERST registers: */
writel(1, &xdbc.xdbc_reg->ersts);
xdbc_write64(xdbc.erst_dma, &xdbc.xdbc_reg->erstba);
xdbc_write64(xdbc.evt_seg.dma, &xdbc.xdbc_reg->erdp);
/* Debug capability contexts: */
xdbc.dbcc_size = 64 * 3;
xdbc.dbcc_base = xdbc.table_base + index * XDBC_TABLE_ENTRY_SIZE;
xdbc.dbcc_dma = xdbc.table_dma + index * XDBC_TABLE_ENTRY_SIZE;
index += XDBC_DBCC_ENTRY_NUM;
/* Popluate the strings: */
xdbc.string_size = sizeof(struct xdbc_strings);
xdbc.string_base = xdbc.table_base + index * XDBC_TABLE_ENTRY_SIZE;
xdbc.string_dma = xdbc.table_dma + index * XDBC_TABLE_ENTRY_SIZE;
strings = (struct xdbc_strings *)xdbc.string_base;
index += XDBC_STRING_ENTRY_NUM;
/* Serial string: */
s_desc = (struct usb_string_descriptor *)strings->serial;
s_desc->bLength = (strlen(XDBC_STRING_SERIAL) + 1) * 2;
s_desc->bDescriptorType = USB_DT_STRING;
xdbc_put_utf16(s_desc->wData, XDBC_STRING_SERIAL, strlen(XDBC_STRING_SERIAL));
string_length = s_desc->bLength;
string_length <<= 8;
/* Product string: */
s_desc = (struct usb_string_descriptor *)strings->product;
s_desc->bLength = (strlen(XDBC_STRING_PRODUCT) + 1) * 2;
s_desc->bDescriptorType = USB_DT_STRING;
xdbc_put_utf16(s_desc->wData, XDBC_STRING_PRODUCT, strlen(XDBC_STRING_PRODUCT));
string_length += s_desc->bLength;
string_length <<= 8;
/* Manufacture string: */
s_desc = (struct usb_string_descriptor *)strings->manufacturer;
s_desc->bLength = (strlen(XDBC_STRING_MANUFACTURER) + 1) * 2;
s_desc->bDescriptorType = USB_DT_STRING;
xdbc_put_utf16(s_desc->wData, XDBC_STRING_MANUFACTURER, strlen(XDBC_STRING_MANUFACTURER));
string_length += s_desc->bLength;
string_length <<= 8;
/* String0: */
strings->string0[0] = 4;
strings->string0[1] = USB_DT_STRING;
strings->string0[2] = 0x09;
strings->string0[3] = 0x04;
string_length += 4;
/* Populate info Context: */
ctx = (struct xdbc_context *)xdbc.dbcc_base;
ctx->info.string0 = cpu_to_le64(xdbc.string_dma);
ctx->info.manufacturer = cpu_to_le64(xdbc.string_dma + XDBC_MAX_STRING_LENGTH);
ctx->info.product = cpu_to_le64(xdbc.string_dma + XDBC_MAX_STRING_LENGTH * 2);
ctx->info.serial = cpu_to_le64(xdbc.string_dma + XDBC_MAX_STRING_LENGTH * 3);
ctx->info.length = cpu_to_le32(string_length);
/* Populate bulk out endpoint context: */
max_burst = DEBUG_MAX_BURST(readl(&xdbc.xdbc_reg->control));
ep_out = (struct xdbc_ep_context *)&ctx->out;
ep_out->ep_info1 = 0;
ep_out->ep_info2 = cpu_to_le32(EP_TYPE(BULK_OUT_EP) | MAX_PACKET(1024) | MAX_BURST(max_burst));
ep_out->deq = cpu_to_le64(xdbc.out_seg.dma | xdbc.out_ring.cycle_state);
/* Populate bulk in endpoint context: */
ep_in = (struct xdbc_ep_context *)&ctx->in;
ep_in->ep_info1 = 0;
ep_in->ep_info2 = cpu_to_le32(EP_TYPE(BULK_IN_EP) | MAX_PACKET(1024) | MAX_BURST(max_burst));
ep_in->deq = cpu_to_le64(xdbc.in_seg.dma | xdbc.in_ring.cycle_state);
/* Set DbC context and info registers: */
xdbc_write64(xdbc.dbcc_dma, &xdbc.xdbc_reg->dccp);
dev_info = cpu_to_le32((XDBC_VENDOR_ID << 16) | XDBC_PROTOCOL);
writel(dev_info, &xdbc.xdbc_reg->devinfo1);
dev_info = cpu_to_le32((XDBC_DEVICE_REV << 16) | XDBC_PRODUCT_ID);
writel(dev_info, &xdbc.xdbc_reg->devinfo2);
xdbc.in_buf = xdbc.out_buf + XDBC_MAX_PACKET;
xdbc.in_dma = xdbc.out_dma + XDBC_MAX_PACKET;
}
static void xdbc_do_reset_debug_port(u32 id, u32 count)
{
void __iomem *ops_reg;
void __iomem *portsc;
u32 val, cap_length;
int i;
cap_length = readl(xdbc.xhci_base) & 0xff;
ops_reg = xdbc.xhci_base + cap_length;
id--;
for (i = id; i < (id + count); i++) {
portsc = ops_reg + 0x400 + i * 0x10;
val = readl(portsc);
if (!(val & PORT_CONNECT))
writel(val | PORT_RESET, portsc);
}
}
static void xdbc_reset_debug_port(void)
{
u32 val, port_offset, port_count;
int offset = 0;
do {
offset = xhci_find_next_ext_cap(xdbc.xhci_base, offset, XHCI_EXT_CAPS_PROTOCOL);
if (!offset)
break;
val = readl(xdbc.xhci_base + offset);
if (XHCI_EXT_PORT_MAJOR(val) != 0x3)
continue;
val = readl(xdbc.xhci_base + offset + 8);
port_offset = XHCI_EXT_PORT_OFF(val);
port_count = XHCI_EXT_PORT_COUNT(val);
xdbc_do_reset_debug_port(port_offset, port_count);
} while (1);
}
static void
xdbc_queue_trb(struct xdbc_ring *ring, u32 field1, u32 field2, u32 field3, u32 field4)
{
struct xdbc_trb *trb, *link_trb;
trb = ring->enqueue;
trb->field[0] = cpu_to_le32(field1);
trb->field[1] = cpu_to_le32(field2);
trb->field[2] = cpu_to_le32(field3);
trb->field[3] = cpu_to_le32(field4);
++(ring->enqueue);
if (ring->enqueue >= &ring->segment->trbs[TRBS_PER_SEGMENT - 1]) {
link_trb = ring->enqueue;
if (ring->cycle_state)
link_trb->field[3] |= cpu_to_le32(TRB_CYCLE);
else
link_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
ring->enqueue = ring->segment->trbs;
ring->cycle_state ^= 1;
}
}
static void xdbc_ring_doorbell(int target)
{
writel(DOOR_BELL_TARGET(target), &xdbc.xdbc_reg->doorbell);
}
static int xdbc_start(void)
{
u32 ctrl, status;
int ret;
ctrl = readl(&xdbc.xdbc_reg->control);
writel(ctrl | CTRL_DBC_ENABLE | CTRL_PORT_ENABLE, &xdbc.xdbc_reg->control);
ret = handshake(&xdbc.xdbc_reg->control, CTRL_DBC_ENABLE, CTRL_DBC_ENABLE, 100000, 100);
if (ret) {
xdbc_trace("failed to initialize hardware\n");
return ret;
}
/* Reset port to avoid bus hang: */
if (xdbc.vendor == PCI_VENDOR_ID_INTEL)
xdbc_reset_debug_port();
/* Wait for port connection: */
ret = handshake(&xdbc.xdbc_reg->portsc, PORTSC_CONN_STATUS, PORTSC_CONN_STATUS, 5000000, 100);
if (ret) {
xdbc_trace("waiting for connection timed out\n");
return ret;
}
/* Wait for debug device to be configured: */
ret = handshake(&xdbc.xdbc_reg->control, CTRL_DBC_RUN, CTRL_DBC_RUN, 5000000, 100);
if (ret) {
xdbc_trace("waiting for device configuration timed out\n");
return ret;
}
/* Check port number: */
status = readl(&xdbc.xdbc_reg->status);
if (!DCST_DEBUG_PORT(status)) {
xdbc_trace("invalid root hub port number\n");
return -ENODEV;
}
xdbc.port_number = DCST_DEBUG_PORT(status);
xdbc_trace("DbC is running now, control 0x%08x port ID %d\n",
readl(&xdbc.xdbc_reg->control), xdbc.port_number);
return 0;
}
static int xdbc_bulk_transfer(void *data, int size, bool read)
{
struct xdbc_ring *ring;
struct xdbc_trb *trb;
u32 length, control;
u32 cycle;
u64 addr;
if (size > XDBC_MAX_PACKET) {
xdbc_trace("bad parameter, size %d\n", size);
return -EINVAL;
}
if (!(xdbc.flags & XDBC_FLAGS_INITIALIZED) ||
!(xdbc.flags & XDBC_FLAGS_CONFIGURED) ||
(!read && (xdbc.flags & XDBC_FLAGS_OUT_STALL)) ||
(read && (xdbc.flags & XDBC_FLAGS_IN_STALL))) {
xdbc_trace("connection not ready, flags %08x\n", xdbc.flags);
return -EIO;
}
ring = (read ? &xdbc.in_ring : &xdbc.out_ring);
trb = ring->enqueue;
cycle = ring->cycle_state;
length = TRB_LEN(size);
control = TRB_TYPE(TRB_NORMAL) | TRB_IOC;
if (cycle)
control &= cpu_to_le32(~TRB_CYCLE);
else
control |= cpu_to_le32(TRB_CYCLE);
if (read) {
memset(xdbc.in_buf, 0, XDBC_MAX_PACKET);
addr = xdbc.in_dma;
xdbc.flags |= XDBC_FLAGS_IN_PROCESS;
} else {
memset(xdbc.out_buf, 0, XDBC_MAX_PACKET);
memcpy(xdbc.out_buf, data, size);
addr = xdbc.out_dma;
xdbc.flags |= XDBC_FLAGS_OUT_PROCESS;
}
xdbc_queue_trb(ring, lower_32_bits(addr), upper_32_bits(addr), length, control);
/*
* Add a barrier between writes of trb fields and flipping
* the cycle bit:
*/
wmb();
if (cycle)
trb->field[3] |= cpu_to_le32(cycle);
else
trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
xdbc_ring_doorbell(read ? IN_EP_DOORBELL : OUT_EP_DOORBELL);
return size;
}
static int xdbc_handle_external_reset(void)
{
int ret = 0;
xdbc.flags = 0;
writel(0, &xdbc.xdbc_reg->control);
ret = handshake(&xdbc.xdbc_reg->control, CTRL_DBC_ENABLE, 0, 100000, 10);
if (ret)
goto reset_out;
xdbc_mem_init();
mmiowb();
ret = xdbc_start();
if (ret < 0)
goto reset_out;
xdbc_trace("dbc recovered\n");
xdbc.flags |= XDBC_FLAGS_INITIALIZED | XDBC_FLAGS_CONFIGURED;
xdbc_bulk_transfer(NULL, XDBC_MAX_PACKET, true);
return 0;
reset_out:
xdbc_trace("failed to recover from external reset\n");
return ret;
}
static int __init xdbc_early_setup(void)
{
int ret;
writel(0, &xdbc.xdbc_reg->control);
ret = handshake(&xdbc.xdbc_reg->control, CTRL_DBC_ENABLE, 0, 100000, 100);
if (ret)
return ret;
/* Allocate the table page: */
xdbc.table_base = xdbc_get_page(&xdbc.table_dma);
if (!xdbc.table_base)
return -ENOMEM;
/* Get and store the transfer buffer: */
xdbc.out_buf = xdbc_get_page(&xdbc.out_dma);
if (!xdbc.out_buf)
return -ENOMEM;
/* Allocate the event ring: */
ret = xdbc_alloc_ring(&xdbc.evt_seg, &xdbc.evt_ring);
if (ret < 0)
return ret;
/* Allocate IN/OUT endpoint transfer rings: */
ret = xdbc_alloc_ring(&xdbc.in_seg, &xdbc.in_ring);
if (ret < 0)
return ret;
ret = xdbc_alloc_ring(&xdbc.out_seg, &xdbc.out_ring);
if (ret < 0)
return ret;
xdbc_mem_init();
mmiowb();
ret = xdbc_start();
if (ret < 0) {
writel(0, &xdbc.xdbc_reg->control);
return ret;
}
xdbc.flags |= XDBC_FLAGS_INITIALIZED | XDBC_FLAGS_CONFIGURED;
xdbc_bulk_transfer(NULL, XDBC_MAX_PACKET, true);
return 0;
}
int __init early_xdbc_parse_parameter(char *s)
{
unsigned long dbgp_num = 0;
u32 bus, dev, func, offset;
int ret;
if (!early_pci_allowed())
return -EPERM;
if (strstr(s, "keep"))
early_console_keep = true;
if (xdbc.xdbc_reg)
return 0;
if (*s && kstrtoul(s, 0, &dbgp_num))
dbgp_num = 0;
pr_notice("dbgp_num: %lu\n", dbgp_num);
/* Locate the host controller: */
ret = xdbc_find_dbgp(dbgp_num, &bus, &dev, &func);
if (ret) {
pr_notice("failed to locate xhci host\n");
return -ENODEV;
}
xdbc.vendor = read_pci_config_16(bus, dev, func, PCI_VENDOR_ID);
xdbc.device = read_pci_config_16(bus, dev, func, PCI_DEVICE_ID);
xdbc.bus = bus;
xdbc.dev = dev;
xdbc.func = func;
/* Map the IO memory: */
xdbc.xhci_base = xdbc_map_pci_mmio(bus, dev, func);
if (!xdbc.xhci_base)
return -EINVAL;
/* Locate DbC registers: */
offset = xhci_find_next_ext_cap(xdbc.xhci_base, 0, XHCI_EXT_CAPS_DEBUG);
if (!offset) {
pr_notice("xhci host doesn't support debug capability\n");
early_iounmap(xdbc.xhci_base, xdbc.xhci_length);
xdbc.xhci_base = NULL;
xdbc.xhci_length = 0;
return -ENODEV;
}
xdbc.xdbc_reg = (struct xdbc_regs __iomem *)(xdbc.xhci_base + offset);
return 0;
}
int __init early_xdbc_setup_hardware(void)
{
int ret;
if (!xdbc.xdbc_reg)
return -ENODEV;
xdbc_bios_handoff();
raw_spin_lock_init(&xdbc.lock);
ret = xdbc_early_setup();
if (ret) {
pr_notice("failed to setup the connection to host\n");
xdbc_free_ring(&xdbc.evt_ring);
xdbc_free_ring(&xdbc.out_ring);
xdbc_free_ring(&xdbc.in_ring);
if (xdbc.table_dma)
free_bootmem(xdbc.table_dma, PAGE_SIZE);
if (xdbc.out_dma)
free_bootmem(xdbc.out_dma, PAGE_SIZE);
xdbc.table_base = NULL;
xdbc.out_buf = NULL;
}
return ret;
}
static void xdbc_handle_port_status(struct xdbc_trb *evt_trb)
{
u32 port_reg;
port_reg = readl(&xdbc.xdbc_reg->portsc);
if (port_reg & PORTSC_CONN_CHANGE) {
xdbc_trace("connect status change event\n");
/* Check whether cable unplugged: */
if (!(port_reg & PORTSC_CONN_STATUS)) {
xdbc.flags = 0;
xdbc_trace("cable unplugged\n");
}
}
if (port_reg & PORTSC_RESET_CHANGE)
xdbc_trace("port reset change event\n");
if (port_reg & PORTSC_LINK_CHANGE)
xdbc_trace("port link status change event\n");
if (port_reg & PORTSC_CONFIG_CHANGE)
xdbc_trace("config error change\n");
/* Write back the value to clear RW1C bits: */
writel(port_reg, &xdbc.xdbc_reg->portsc);
}
static void xdbc_handle_tx_event(struct xdbc_trb *evt_trb)
{
size_t remain_length;
u32 comp_code;
int ep_id;
comp_code = GET_COMP_CODE(le32_to_cpu(evt_trb->field[2]));
remain_length = EVENT_TRB_LEN(le32_to_cpu(evt_trb->field[2]));
ep_id = TRB_TO_EP_ID(le32_to_cpu(evt_trb->field[3]));
switch (comp_code) {
case COMP_SUCCESS:
remain_length = 0;
case COMP_SHORT_PACKET:
break;
case COMP_TRB_ERROR:
case COMP_BABBLE_DETECTED_ERROR:
case COMP_USB_TRANSACTION_ERROR:
case COMP_STALL_ERROR:
default:
if (ep_id == XDBC_EPID_OUT)
xdbc.flags |= XDBC_FLAGS_OUT_STALL;
if (ep_id == XDBC_EPID_IN)
xdbc.flags |= XDBC_FLAGS_IN_STALL;
xdbc_trace("endpoint %d stalled\n", ep_id);
break;
}
if (ep_id == XDBC_EPID_IN) {
xdbc.flags &= ~XDBC_FLAGS_IN_PROCESS;
xdbc_bulk_transfer(NULL, XDBC_MAX_PACKET, true);
} else if (ep_id == XDBC_EPID_OUT) {
xdbc.flags &= ~XDBC_FLAGS_OUT_PROCESS;
} else {
xdbc_trace("invalid endpoint id %d\n", ep_id);
}
}
static void xdbc_handle_events(void)
{
struct xdbc_trb *evt_trb;
bool update_erdp = false;
u32 reg;
u8 cmd;
cmd = read_pci_config_byte(xdbc.bus, xdbc.dev, xdbc.func, PCI_COMMAND);
if (!(cmd & PCI_COMMAND_MASTER)) {
cmd |= PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY;
write_pci_config_byte(xdbc.bus, xdbc.dev, xdbc.func, PCI_COMMAND, cmd);
}
if (!(xdbc.flags & XDBC_FLAGS_INITIALIZED))
return;
/* Handle external reset events: */
reg = readl(&xdbc.xdbc_reg->control);
if (!(reg & CTRL_DBC_ENABLE)) {
if (xdbc_handle_external_reset()) {
xdbc_trace("failed to recover connection\n");
return;
}
}
/* Handle configure-exit event: */
reg = readl(&xdbc.xdbc_reg->control);
if (reg & CTRL_DBC_RUN_CHANGE) {
writel(reg, &xdbc.xdbc_reg->control);
if (reg & CTRL_DBC_RUN)
xdbc.flags |= XDBC_FLAGS_CONFIGURED;
else
xdbc.flags &= ~XDBC_FLAGS_CONFIGURED;
}
/* Handle endpoint stall event: */
reg = readl(&xdbc.xdbc_reg->control);
if (reg & CTRL_HALT_IN_TR) {
xdbc.flags |= XDBC_FLAGS_IN_STALL;
} else {
xdbc.flags &= ~XDBC_FLAGS_IN_STALL;
if (!(xdbc.flags & XDBC_FLAGS_IN_PROCESS))
xdbc_bulk_transfer(NULL, XDBC_MAX_PACKET, true);
}
if (reg & CTRL_HALT_OUT_TR)
xdbc.flags |= XDBC_FLAGS_OUT_STALL;
else
xdbc.flags &= ~XDBC_FLAGS_OUT_STALL;
/* Handle the events in the event ring: */
evt_trb = xdbc.evt_ring.dequeue;
while ((le32_to_cpu(evt_trb->field[3]) & TRB_CYCLE) == xdbc.evt_ring.cycle_state) {
/*
* Add a barrier between reading the cycle flag and any
* reads of the event's flags/data below:
*/
rmb();
switch ((le32_to_cpu(evt_trb->field[3]) & TRB_TYPE_BITMASK)) {
case TRB_TYPE(TRB_PORT_STATUS):
xdbc_handle_port_status(evt_trb);
break;
case TRB_TYPE(TRB_TRANSFER):
xdbc_handle_tx_event(evt_trb);
break;
default:
break;
}
++(xdbc.evt_ring.dequeue);
if (xdbc.evt_ring.dequeue == &xdbc.evt_seg.trbs[TRBS_PER_SEGMENT]) {
xdbc.evt_ring.dequeue = xdbc.evt_seg.trbs;
xdbc.evt_ring.cycle_state ^= 1;
}
evt_trb = xdbc.evt_ring.dequeue;
update_erdp = true;
}
/* Update event ring dequeue pointer: */
if (update_erdp)
xdbc_write64(__pa(xdbc.evt_ring.dequeue), &xdbc.xdbc_reg->erdp);
}
static int xdbc_bulk_write(const char *bytes, int size)
{
int ret, timeout = 0;
unsigned long flags;
retry:
if (in_nmi()) {
if (!raw_spin_trylock_irqsave(&xdbc.lock, flags))
return -EAGAIN;
} else {
raw_spin_lock_irqsave(&xdbc.lock, flags);
}
xdbc_handle_events();
/* Check completion of the previous request: */
if ((xdbc.flags & XDBC_FLAGS_OUT_PROCESS) && (timeout < 2000000)) {
raw_spin_unlock_irqrestore(&xdbc.lock, flags);
udelay(100);
timeout += 100;
goto retry;
}
if (xdbc.flags & XDBC_FLAGS_OUT_PROCESS) {
raw_spin_unlock_irqrestore(&xdbc.lock, flags);
xdbc_trace("previous transfer not completed yet\n");
return -ETIMEDOUT;
}
ret = xdbc_bulk_transfer((void *)bytes, size, false);
raw_spin_unlock_irqrestore(&xdbc.lock, flags);
return ret;
}
static void early_xdbc_write(struct console *con, const char *str, u32 n)
{
static char buf[XDBC_MAX_PACKET];
int chunk, ret;
int use_cr = 0;
if (!xdbc.xdbc_reg)
return;
memset(buf, 0, XDBC_MAX_PACKET);
while (n > 0) {
for (chunk = 0; chunk < XDBC_MAX_PACKET && n > 0; str++, chunk++, n--) {
if (!use_cr && *str == '\n') {
use_cr = 1;
buf[chunk] = '\r';
str--;
n++;
continue;
}
if (use_cr)
use_cr = 0;
buf[chunk] = *str;
}
if (chunk > 0) {
ret = xdbc_bulk_write(buf, chunk);
if (ret < 0)
xdbc_trace("missed message {%s}\n", buf);
}
}
}
static struct console early_xdbc_console = {
.name = "earlyxdbc",
.write = early_xdbc_write,
.flags = CON_PRINTBUFFER,
.index = -1,
};
void __init early_xdbc_register_console(void)
{
if (early_console)
return;
early_console = &early_xdbc_console;
if (early_console_keep)
early_console->flags &= ~CON_BOOT;
else
early_console->flags |= CON_BOOT;
register_console(early_console);
}
static void xdbc_unregister_console(void)
{
if (early_xdbc_console.flags & CON_ENABLED)
unregister_console(&early_xdbc_console);
}
static int xdbc_scrub_function(void *ptr)
{
unsigned long flags;
while (true) {
raw_spin_lock_irqsave(&xdbc.lock, flags);
xdbc_handle_events();
if (!(xdbc.flags & XDBC_FLAGS_INITIALIZED)) {
raw_spin_unlock_irqrestore(&xdbc.lock, flags);
break;
}
raw_spin_unlock_irqrestore(&xdbc.lock, flags);
schedule_timeout_interruptible(1);
}
xdbc_unregister_console();
writel(0, &xdbc.xdbc_reg->control);
xdbc_trace("dbc scrub function exits\n");
return 0;
}
static int __init xdbc_init(void)
{
unsigned long flags;
void __iomem *base;
int ret = 0;
u32 offset;
if (!(xdbc.flags & XDBC_FLAGS_INITIALIZED))
return 0;
/*
* It's time to shut down the DbC, so that the debug
* port can be reused by the host controller:
*/
if (early_xdbc_console.index == -1 ||
(early_xdbc_console.flags & CON_BOOT)) {
xdbc_trace("hardware not used anymore\n");
goto free_and_quit;
}
base = ioremap_nocache(xdbc.xhci_start, xdbc.xhci_length);
if (!base) {
xdbc_trace("failed to remap the io address\n");
ret = -ENOMEM;
goto free_and_quit;
}
raw_spin_lock_irqsave(&xdbc.lock, flags);
early_iounmap(xdbc.xhci_base, xdbc.xhci_length);
xdbc.xhci_base = base;
offset = xhci_find_next_ext_cap(xdbc.xhci_base, 0, XHCI_EXT_CAPS_DEBUG);
xdbc.xdbc_reg = (struct xdbc_regs __iomem *)(xdbc.xhci_base + offset);
raw_spin_unlock_irqrestore(&xdbc.lock, flags);
kthread_run(xdbc_scrub_function, NULL, "%s", "xdbc");
return 0;
free_and_quit:
xdbc_free_ring(&xdbc.evt_ring);
xdbc_free_ring(&xdbc.out_ring);
xdbc_free_ring(&xdbc.in_ring);
free_bootmem(xdbc.table_dma, PAGE_SIZE);
free_bootmem(xdbc.out_dma, PAGE_SIZE);
writel(0, &xdbc.xdbc_reg->control);
early_iounmap(xdbc.xhci_base, xdbc.xhci_length);
return ret;
}
subsys_initcall(xdbc_init);