linux-sg2042/drivers/media/i2c/mt9m001.c

884 lines
23 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Driver for MT9M001 CMOS Image Sensor from Micron
*
* Copyright (C) 2008, Guennadi Liakhovetski <kernel@pengutronix.de>
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/log2.h>
#include <linux/module.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include <linux/videodev2.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-device.h>
#include <media/v4l2-event.h>
#include <media/v4l2-subdev.h>
/*
* mt9m001 i2c address 0x5d
*/
/* mt9m001 selected register addresses */
#define MT9M001_CHIP_VERSION 0x00
#define MT9M001_ROW_START 0x01
#define MT9M001_COLUMN_START 0x02
#define MT9M001_WINDOW_HEIGHT 0x03
#define MT9M001_WINDOW_WIDTH 0x04
#define MT9M001_HORIZONTAL_BLANKING 0x05
#define MT9M001_VERTICAL_BLANKING 0x06
#define MT9M001_OUTPUT_CONTROL 0x07
#define MT9M001_SHUTTER_WIDTH 0x09
#define MT9M001_FRAME_RESTART 0x0b
#define MT9M001_SHUTTER_DELAY 0x0c
#define MT9M001_RESET 0x0d
#define MT9M001_READ_OPTIONS1 0x1e
#define MT9M001_READ_OPTIONS2 0x20
#define MT9M001_GLOBAL_GAIN 0x35
#define MT9M001_CHIP_ENABLE 0xF1
#define MT9M001_MAX_WIDTH 1280
#define MT9M001_MAX_HEIGHT 1024
#define MT9M001_MIN_WIDTH 48
#define MT9M001_MIN_HEIGHT 32
#define MT9M001_COLUMN_SKIP 20
#define MT9M001_ROW_SKIP 12
#define MT9M001_DEFAULT_HBLANK 9
#define MT9M001_DEFAULT_VBLANK 25
/* MT9M001 has only one fixed colorspace per pixelcode */
struct mt9m001_datafmt {
u32 code;
enum v4l2_colorspace colorspace;
};
/* Find a data format by a pixel code in an array */
static const struct mt9m001_datafmt *mt9m001_find_datafmt(
u32 code, const struct mt9m001_datafmt *fmt,
int n)
{
int i;
for (i = 0; i < n; i++)
if (fmt[i].code == code)
return fmt + i;
return NULL;
}
static const struct mt9m001_datafmt mt9m001_colour_fmts[] = {
/*
* Order important: first natively supported,
* second supported with a GPIO extender
*/
{MEDIA_BUS_FMT_SBGGR10_1X10, V4L2_COLORSPACE_SRGB},
{MEDIA_BUS_FMT_SBGGR8_1X8, V4L2_COLORSPACE_SRGB},
};
static const struct mt9m001_datafmt mt9m001_monochrome_fmts[] = {
/* Order important - see above */
{MEDIA_BUS_FMT_Y10_1X10, V4L2_COLORSPACE_JPEG},
{MEDIA_BUS_FMT_Y8_1X8, V4L2_COLORSPACE_JPEG},
};
struct mt9m001 {
struct v4l2_subdev subdev;
struct v4l2_ctrl_handler hdl;
struct {
/* exposure/auto-exposure cluster */
struct v4l2_ctrl *autoexposure;
struct v4l2_ctrl *exposure;
};
bool streaming;
struct mutex mutex;
struct v4l2_rect rect; /* Sensor window */
struct clk *clk;
struct gpio_desc *standby_gpio;
struct gpio_desc *reset_gpio;
const struct mt9m001_datafmt *fmt;
const struct mt9m001_datafmt *fmts;
int num_fmts;
unsigned int total_h;
unsigned short y_skip_top; /* Lines to skip at the top */
struct media_pad pad;
};
static struct mt9m001 *to_mt9m001(const struct i2c_client *client)
{
return container_of(i2c_get_clientdata(client), struct mt9m001, subdev);
}
static int reg_read(struct i2c_client *client, const u8 reg)
{
return i2c_smbus_read_word_swapped(client, reg);
}
static int reg_write(struct i2c_client *client, const u8 reg,
const u16 data)
{
return i2c_smbus_write_word_swapped(client, reg, data);
}
static int reg_set(struct i2c_client *client, const u8 reg,
const u16 data)
{
int ret;
ret = reg_read(client, reg);
if (ret < 0)
return ret;
return reg_write(client, reg, ret | data);
}
static int reg_clear(struct i2c_client *client, const u8 reg,
const u16 data)
{
int ret;
ret = reg_read(client, reg);
if (ret < 0)
return ret;
return reg_write(client, reg, ret & ~data);
}
struct mt9m001_reg {
u8 reg;
u16 data;
};
static int multi_reg_write(struct i2c_client *client,
const struct mt9m001_reg *regs, int num)
{
int i;
for (i = 0; i < num; i++) {
int ret = reg_write(client, regs[i].reg, regs[i].data);
if (ret)
return ret;
}
return 0;
}
static int mt9m001_init(struct i2c_client *client)
{
static const struct mt9m001_reg init_regs[] = {
/*
* Issue a soft reset. This returns all registers to their
* default values.
*/
{ MT9M001_RESET, 1 },
{ MT9M001_RESET, 0 },
/* Disable chip, synchronous option update */
{ MT9M001_OUTPUT_CONTROL, 0 }
};
dev_dbg(&client->dev, "%s\n", __func__);
return multi_reg_write(client, init_regs, ARRAY_SIZE(init_regs));
}
static int mt9m001_apply_selection(struct v4l2_subdev *sd)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct mt9m001 *mt9m001 = to_mt9m001(client);
const struct mt9m001_reg regs[] = {
/* Blanking and start values - default... */
{ MT9M001_HORIZONTAL_BLANKING, MT9M001_DEFAULT_HBLANK },
{ MT9M001_VERTICAL_BLANKING, MT9M001_DEFAULT_VBLANK },
/*
* The caller provides a supported format, as verified per
* call to .set_fmt(FORMAT_TRY).
*/
{ MT9M001_COLUMN_START, mt9m001->rect.left },
{ MT9M001_ROW_START, mt9m001->rect.top },
{ MT9M001_WINDOW_WIDTH, mt9m001->rect.width - 1 },
{ MT9M001_WINDOW_HEIGHT,
mt9m001->rect.height + mt9m001->y_skip_top - 1 },
};
return multi_reg_write(client, regs, ARRAY_SIZE(regs));
}
static int mt9m001_s_stream(struct v4l2_subdev *sd, int enable)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct mt9m001 *mt9m001 = to_mt9m001(client);
int ret = 0;
mutex_lock(&mt9m001->mutex);
if (mt9m001->streaming == enable)
goto done;
if (enable) {
ret = pm_runtime_get_sync(&client->dev);
if (ret < 0)
goto put_unlock;
ret = mt9m001_apply_selection(sd);
if (ret)
goto put_unlock;
ret = __v4l2_ctrl_handler_setup(&mt9m001->hdl);
if (ret)
goto put_unlock;
/* Switch to master "normal" mode */
ret = reg_write(client, MT9M001_OUTPUT_CONTROL, 2);
if (ret < 0)
goto put_unlock;
} else {
/* Switch to master stop sensor readout */
reg_write(client, MT9M001_OUTPUT_CONTROL, 0);
pm_runtime_put(&client->dev);
}
mt9m001->streaming = enable;
done:
mutex_unlock(&mt9m001->mutex);
return 0;
put_unlock:
pm_runtime_put(&client->dev);
mutex_unlock(&mt9m001->mutex);
return ret;
}
static int mt9m001_set_selection(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_selection *sel)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct mt9m001 *mt9m001 = to_mt9m001(client);
struct v4l2_rect rect = sel->r;
if (sel->which != V4L2_SUBDEV_FORMAT_ACTIVE ||
sel->target != V4L2_SEL_TGT_CROP)
return -EINVAL;
if (mt9m001->fmts == mt9m001_colour_fmts)
/*
* Bayer format - even number of rows for simplicity,
* but let the user play with the top row.
*/
rect.height = ALIGN(rect.height, 2);
/* Datasheet requirement: see register description */
rect.width = ALIGN(rect.width, 2);
rect.left = ALIGN(rect.left, 2);
rect.width = clamp_t(u32, rect.width, MT9M001_MIN_WIDTH,
MT9M001_MAX_WIDTH);
rect.left = clamp_t(u32, rect.left, MT9M001_COLUMN_SKIP,
MT9M001_COLUMN_SKIP + MT9M001_MAX_WIDTH - rect.width);
rect.height = clamp_t(u32, rect.height, MT9M001_MIN_HEIGHT,
MT9M001_MAX_HEIGHT);
rect.top = clamp_t(u32, rect.top, MT9M001_ROW_SKIP,
MT9M001_ROW_SKIP + MT9M001_MAX_HEIGHT - rect.height);
mt9m001->total_h = rect.height + mt9m001->y_skip_top +
MT9M001_DEFAULT_VBLANK;
mt9m001->rect = rect;
return 0;
}
static int mt9m001_get_selection(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_selection *sel)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct mt9m001 *mt9m001 = to_mt9m001(client);
if (sel->which != V4L2_SUBDEV_FORMAT_ACTIVE)
return -EINVAL;
switch (sel->target) {
case V4L2_SEL_TGT_CROP_BOUNDS:
sel->r.left = MT9M001_COLUMN_SKIP;
sel->r.top = MT9M001_ROW_SKIP;
sel->r.width = MT9M001_MAX_WIDTH;
sel->r.height = MT9M001_MAX_HEIGHT;
return 0;
case V4L2_SEL_TGT_CROP:
sel->r = mt9m001->rect;
return 0;
default:
return -EINVAL;
}
}
static int mt9m001_get_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *format)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct mt9m001 *mt9m001 = to_mt9m001(client);
struct v4l2_mbus_framefmt *mf = &format->format;
if (format->pad)
return -EINVAL;
if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
mf = v4l2_subdev_get_try_format(sd, cfg, 0);
format->format = *mf;
return 0;
}
mf->width = mt9m001->rect.width;
mf->height = mt9m001->rect.height;
mf->code = mt9m001->fmt->code;
mf->colorspace = mt9m001->fmt->colorspace;
mf->field = V4L2_FIELD_NONE;
mf->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT;
mf->quantization = V4L2_QUANTIZATION_DEFAULT;
mf->xfer_func = V4L2_XFER_FUNC_DEFAULT;
return 0;
}
static int mt9m001_s_fmt(struct v4l2_subdev *sd,
const struct mt9m001_datafmt *fmt,
struct v4l2_mbus_framefmt *mf)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct mt9m001 *mt9m001 = to_mt9m001(client);
struct v4l2_subdev_selection sel = {
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
.target = V4L2_SEL_TGT_CROP,
.r.left = mt9m001->rect.left,
.r.top = mt9m001->rect.top,
.r.width = mf->width,
.r.height = mf->height,
};
int ret;
/* No support for scaling so far, just crop. TODO: use skipping */
ret = mt9m001_set_selection(sd, NULL, &sel);
if (!ret) {
mf->width = mt9m001->rect.width;
mf->height = mt9m001->rect.height;
mt9m001->fmt = fmt;
mf->colorspace = fmt->colorspace;
}
return ret;
}
static int mt9m001_set_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *format)
{
struct v4l2_mbus_framefmt *mf = &format->format;
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct mt9m001 *mt9m001 = to_mt9m001(client);
const struct mt9m001_datafmt *fmt;
if (format->pad)
return -EINVAL;
v4l_bound_align_image(&mf->width, MT9M001_MIN_WIDTH,
MT9M001_MAX_WIDTH, 1,
&mf->height, MT9M001_MIN_HEIGHT + mt9m001->y_skip_top,
MT9M001_MAX_HEIGHT + mt9m001->y_skip_top, 0, 0);
if (mt9m001->fmts == mt9m001_colour_fmts)
mf->height = ALIGN(mf->height - 1, 2);
fmt = mt9m001_find_datafmt(mf->code, mt9m001->fmts,
mt9m001->num_fmts);
if (!fmt) {
fmt = mt9m001->fmt;
mf->code = fmt->code;
}
mf->colorspace = fmt->colorspace;
mf->field = V4L2_FIELD_NONE;
mf->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT;
mf->quantization = V4L2_QUANTIZATION_DEFAULT;
mf->xfer_func = V4L2_XFER_FUNC_DEFAULT;
if (format->which == V4L2_SUBDEV_FORMAT_ACTIVE)
return mt9m001_s_fmt(sd, fmt, mf);
cfg->try_fmt = *mf;
return 0;
}
#ifdef CONFIG_VIDEO_ADV_DEBUG
static int mt9m001_g_register(struct v4l2_subdev *sd,
struct v4l2_dbg_register *reg)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
if (reg->reg > 0xff)
return -EINVAL;
reg->size = 2;
reg->val = reg_read(client, reg->reg);
if (reg->val > 0xffff)
return -EIO;
return 0;
}
static int mt9m001_s_register(struct v4l2_subdev *sd,
const struct v4l2_dbg_register *reg)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
if (reg->reg > 0xff)
return -EINVAL;
if (reg_write(client, reg->reg, reg->val) < 0)
return -EIO;
return 0;
}
#endif
static int mt9m001_power_on(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct mt9m001 *mt9m001 = to_mt9m001(client);
int ret;
ret = clk_prepare_enable(mt9m001->clk);
if (ret)
return ret;
if (mt9m001->standby_gpio) {
gpiod_set_value_cansleep(mt9m001->standby_gpio, 0);
usleep_range(1000, 2000);
}
if (mt9m001->reset_gpio) {
gpiod_set_value_cansleep(mt9m001->reset_gpio, 1);
usleep_range(1000, 2000);
gpiod_set_value_cansleep(mt9m001->reset_gpio, 0);
usleep_range(1000, 2000);
}
return 0;
}
static int mt9m001_power_off(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct mt9m001 *mt9m001 = to_mt9m001(client);
gpiod_set_value_cansleep(mt9m001->standby_gpio, 1);
clk_disable_unprepare(mt9m001->clk);
return 0;
}
static int mt9m001_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
{
struct mt9m001 *mt9m001 = container_of(ctrl->handler,
struct mt9m001, hdl);
s32 min, max;
switch (ctrl->id) {
case V4L2_CID_EXPOSURE_AUTO:
min = mt9m001->exposure->minimum;
max = mt9m001->exposure->maximum;
mt9m001->exposure->val =
(524 + (mt9m001->total_h - 1) * (max - min)) / 1048 + min;
break;
}
return 0;
}
static int mt9m001_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct mt9m001 *mt9m001 = container_of(ctrl->handler,
struct mt9m001, hdl);
struct v4l2_subdev *sd = &mt9m001->subdev;
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct v4l2_ctrl *exp = mt9m001->exposure;
int data;
int ret;
if (!pm_runtime_get_if_in_use(&client->dev))
return 0;
switch (ctrl->id) {
case V4L2_CID_VFLIP:
if (ctrl->val)
ret = reg_set(client, MT9M001_READ_OPTIONS2, 0x8000);
else
ret = reg_clear(client, MT9M001_READ_OPTIONS2, 0x8000);
break;
case V4L2_CID_GAIN:
/* See Datasheet Table 7, Gain settings. */
if (ctrl->val <= ctrl->default_value) {
/* Pack it into 0..1 step 0.125, register values 0..8 */
unsigned long range = ctrl->default_value - ctrl->minimum;
data = ((ctrl->val - (s32)ctrl->minimum) * 8 + range / 2) / range;
dev_dbg(&client->dev, "Setting gain %d\n", data);
ret = reg_write(client, MT9M001_GLOBAL_GAIN, data);
} else {
/* Pack it into 1.125..15 variable step, register values 9..67 */
/* We assume qctrl->maximum - qctrl->default_value - 1 > 0 */
unsigned long range = ctrl->maximum - ctrl->default_value - 1;
unsigned long gain = ((ctrl->val - (s32)ctrl->default_value - 1) *
111 + range / 2) / range + 9;
if (gain <= 32)
data = gain;
else if (gain <= 64)
data = ((gain - 32) * 16 + 16) / 32 + 80;
else
data = ((gain - 64) * 7 + 28) / 56 + 96;
dev_dbg(&client->dev, "Setting gain from %d to %d\n",
reg_read(client, MT9M001_GLOBAL_GAIN), data);
ret = reg_write(client, MT9M001_GLOBAL_GAIN, data);
}
break;
case V4L2_CID_EXPOSURE_AUTO:
if (ctrl->val == V4L2_EXPOSURE_MANUAL) {
unsigned long range = exp->maximum - exp->minimum;
unsigned long shutter = ((exp->val - (s32)exp->minimum) * 1048 +
range / 2) / range + 1;
dev_dbg(&client->dev,
"Setting shutter width from %d to %lu\n",
reg_read(client, MT9M001_SHUTTER_WIDTH), shutter);
ret = reg_write(client, MT9M001_SHUTTER_WIDTH, shutter);
} else {
mt9m001->total_h = mt9m001->rect.height +
mt9m001->y_skip_top + MT9M001_DEFAULT_VBLANK;
ret = reg_write(client, MT9M001_SHUTTER_WIDTH,
mt9m001->total_h);
}
break;
default:
ret = -EINVAL;
break;
}
pm_runtime_put(&client->dev);
return ret;
}
/*
* Interface active, can use i2c. If it fails, it can indeed mean, that
* this wasn't our capture interface, so, we wait for the right one
*/
static int mt9m001_video_probe(struct i2c_client *client)
{
struct mt9m001 *mt9m001 = to_mt9m001(client);
s32 data;
int ret;
/* Enable the chip */
data = reg_write(client, MT9M001_CHIP_ENABLE, 1);
dev_dbg(&client->dev, "write: %d\n", data);
/* Read out the chip version register */
data = reg_read(client, MT9M001_CHIP_VERSION);
/* must be 0x8411 or 0x8421 for colour sensor and 8431 for bw */
switch (data) {
case 0x8411:
case 0x8421:
mt9m001->fmts = mt9m001_colour_fmts;
mt9m001->num_fmts = ARRAY_SIZE(mt9m001_colour_fmts);
break;
case 0x8431:
mt9m001->fmts = mt9m001_monochrome_fmts;
mt9m001->num_fmts = ARRAY_SIZE(mt9m001_monochrome_fmts);
break;
default:
dev_err(&client->dev,
"No MT9M001 chip detected, register read %x\n", data);
ret = -ENODEV;
goto done;
}
mt9m001->fmt = &mt9m001->fmts[0];
dev_info(&client->dev, "Detected a MT9M001 chip ID %x (%s)\n", data,
data == 0x8431 ? "C12STM" : "C12ST");
ret = mt9m001_init(client);
if (ret < 0) {
dev_err(&client->dev, "Failed to initialise the camera\n");
goto done;
}
/* mt9m001_init() has reset the chip, returning registers to defaults */
ret = v4l2_ctrl_handler_setup(&mt9m001->hdl);
done:
return ret;
}
static int mt9m001_g_skip_top_lines(struct v4l2_subdev *sd, u32 *lines)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct mt9m001 *mt9m001 = to_mt9m001(client);
*lines = mt9m001->y_skip_top;
return 0;
}
static const struct v4l2_ctrl_ops mt9m001_ctrl_ops = {
.g_volatile_ctrl = mt9m001_g_volatile_ctrl,
.s_ctrl = mt9m001_s_ctrl,
};
static const struct v4l2_subdev_core_ops mt9m001_subdev_core_ops = {
.log_status = v4l2_ctrl_subdev_log_status,
.subscribe_event = v4l2_ctrl_subdev_subscribe_event,
.unsubscribe_event = v4l2_event_subdev_unsubscribe,
#ifdef CONFIG_VIDEO_ADV_DEBUG
.g_register = mt9m001_g_register,
.s_register = mt9m001_s_register,
#endif
};
static int mt9m001_init_cfg(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct mt9m001 *mt9m001 = to_mt9m001(client);
struct v4l2_mbus_framefmt *try_fmt =
v4l2_subdev_get_try_format(sd, cfg, 0);
try_fmt->width = MT9M001_MAX_WIDTH;
try_fmt->height = MT9M001_MAX_HEIGHT;
try_fmt->code = mt9m001->fmts[0].code;
try_fmt->colorspace = mt9m001->fmts[0].colorspace;
try_fmt->field = V4L2_FIELD_NONE;
try_fmt->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT;
try_fmt->quantization = V4L2_QUANTIZATION_DEFAULT;
try_fmt->xfer_func = V4L2_XFER_FUNC_DEFAULT;
return 0;
}
static int mt9m001_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_mbus_code_enum *code)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct mt9m001 *mt9m001 = to_mt9m001(client);
if (code->pad || code->index >= mt9m001->num_fmts)
return -EINVAL;
code->code = mt9m001->fmts[code->index].code;
return 0;
}
static int mt9m001_g_mbus_config(struct v4l2_subdev *sd,
struct v4l2_mbus_config *cfg)
{
/* MT9M001 has all capture_format parameters fixed */
cfg->flags = V4L2_MBUS_PCLK_SAMPLE_FALLING |
V4L2_MBUS_HSYNC_ACTIVE_HIGH | V4L2_MBUS_VSYNC_ACTIVE_HIGH |
V4L2_MBUS_DATA_ACTIVE_HIGH | V4L2_MBUS_MASTER;
cfg->type = V4L2_MBUS_PARALLEL;
return 0;
}
static const struct v4l2_subdev_video_ops mt9m001_subdev_video_ops = {
.s_stream = mt9m001_s_stream,
.g_mbus_config = mt9m001_g_mbus_config,
};
static const struct v4l2_subdev_sensor_ops mt9m001_subdev_sensor_ops = {
.g_skip_top_lines = mt9m001_g_skip_top_lines,
};
static const struct v4l2_subdev_pad_ops mt9m001_subdev_pad_ops = {
.init_cfg = mt9m001_init_cfg,
.enum_mbus_code = mt9m001_enum_mbus_code,
.get_selection = mt9m001_get_selection,
.set_selection = mt9m001_set_selection,
.get_fmt = mt9m001_get_fmt,
.set_fmt = mt9m001_set_fmt,
};
static const struct v4l2_subdev_ops mt9m001_subdev_ops = {
.core = &mt9m001_subdev_core_ops,
.video = &mt9m001_subdev_video_ops,
.sensor = &mt9m001_subdev_sensor_ops,
.pad = &mt9m001_subdev_pad_ops,
};
static int mt9m001_probe(struct i2c_client *client)
{
struct mt9m001 *mt9m001;
struct i2c_adapter *adapter = client->adapter;
int ret;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_WORD_DATA)) {
dev_warn(&adapter->dev,
"I2C-Adapter doesn't support I2C_FUNC_SMBUS_WORD\n");
return -EIO;
}
mt9m001 = devm_kzalloc(&client->dev, sizeof(*mt9m001), GFP_KERNEL);
if (!mt9m001)
return -ENOMEM;
mt9m001->clk = devm_clk_get(&client->dev, NULL);
if (IS_ERR(mt9m001->clk))
return PTR_ERR(mt9m001->clk);
mt9m001->standby_gpio = devm_gpiod_get_optional(&client->dev, "standby",
GPIOD_OUT_LOW);
if (IS_ERR(mt9m001->standby_gpio))
return PTR_ERR(mt9m001->standby_gpio);
mt9m001->reset_gpio = devm_gpiod_get_optional(&client->dev, "reset",
GPIOD_OUT_LOW);
if (IS_ERR(mt9m001->reset_gpio))
return PTR_ERR(mt9m001->reset_gpio);
v4l2_i2c_subdev_init(&mt9m001->subdev, client, &mt9m001_subdev_ops);
mt9m001->subdev.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE |
V4L2_SUBDEV_FL_HAS_EVENTS;
v4l2_ctrl_handler_init(&mt9m001->hdl, 4);
v4l2_ctrl_new_std(&mt9m001->hdl, &mt9m001_ctrl_ops,
V4L2_CID_VFLIP, 0, 1, 1, 0);
v4l2_ctrl_new_std(&mt9m001->hdl, &mt9m001_ctrl_ops,
V4L2_CID_GAIN, 0, 127, 1, 64);
mt9m001->exposure = v4l2_ctrl_new_std(&mt9m001->hdl, &mt9m001_ctrl_ops,
V4L2_CID_EXPOSURE, 1, 255, 1, 255);
/*
* Simulated autoexposure. If enabled, we calculate shutter width
* ourselves in the driver based on vertical blanking and frame width
*/
mt9m001->autoexposure = v4l2_ctrl_new_std_menu(&mt9m001->hdl,
&mt9m001_ctrl_ops, V4L2_CID_EXPOSURE_AUTO, 1, 0,
V4L2_EXPOSURE_AUTO);
mt9m001->subdev.ctrl_handler = &mt9m001->hdl;
if (mt9m001->hdl.error)
return mt9m001->hdl.error;
v4l2_ctrl_auto_cluster(2, &mt9m001->autoexposure,
V4L2_EXPOSURE_MANUAL, true);
mutex_init(&mt9m001->mutex);
mt9m001->hdl.lock = &mt9m001->mutex;
/* Second stage probe - when a capture adapter is there */
mt9m001->y_skip_top = 0;
mt9m001->rect.left = MT9M001_COLUMN_SKIP;
mt9m001->rect.top = MT9M001_ROW_SKIP;
mt9m001->rect.width = MT9M001_MAX_WIDTH;
mt9m001->rect.height = MT9M001_MAX_HEIGHT;
ret = mt9m001_power_on(&client->dev);
if (ret)
goto error_hdl_free;
pm_runtime_set_active(&client->dev);
pm_runtime_enable(&client->dev);
ret = mt9m001_video_probe(client);
if (ret)
goto error_power_off;
mt9m001->pad.flags = MEDIA_PAD_FL_SOURCE;
mt9m001->subdev.entity.function = MEDIA_ENT_F_CAM_SENSOR;
ret = media_entity_pads_init(&mt9m001->subdev.entity, 1, &mt9m001->pad);
if (ret)
goto error_power_off;
ret = v4l2_async_register_subdev(&mt9m001->subdev);
if (ret)
goto error_entity_cleanup;
pm_runtime_idle(&client->dev);
return 0;
error_entity_cleanup:
media_entity_cleanup(&mt9m001->subdev.entity);
error_power_off:
pm_runtime_disable(&client->dev);
pm_runtime_set_suspended(&client->dev);
mt9m001_power_off(&client->dev);
error_hdl_free:
v4l2_ctrl_handler_free(&mt9m001->hdl);
mutex_destroy(&mt9m001->mutex);
return ret;
}
static int mt9m001_remove(struct i2c_client *client)
{
struct mt9m001 *mt9m001 = to_mt9m001(client);
pm_runtime_get_sync(&client->dev);
v4l2_async_unregister_subdev(&mt9m001->subdev);
media_entity_cleanup(&mt9m001->subdev.entity);
pm_runtime_disable(&client->dev);
pm_runtime_set_suspended(&client->dev);
pm_runtime_put_noidle(&client->dev);
mt9m001_power_off(&client->dev);
v4l2_ctrl_handler_free(&mt9m001->hdl);
mutex_destroy(&mt9m001->mutex);
return 0;
}
static const struct i2c_device_id mt9m001_id[] = {
{ "mt9m001", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, mt9m001_id);
static const struct dev_pm_ops mt9m001_pm_ops = {
SET_RUNTIME_PM_OPS(mt9m001_power_off, mt9m001_power_on, NULL)
};
static const struct of_device_id mt9m001_of_match[] = {
{ .compatible = "onnn,mt9m001", },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, mt9m001_of_match);
static struct i2c_driver mt9m001_i2c_driver = {
.driver = {
.name = "mt9m001",
.pm = &mt9m001_pm_ops,
.of_match_table = mt9m001_of_match,
},
.probe_new = mt9m001_probe,
.remove = mt9m001_remove,
.id_table = mt9m001_id,
};
module_i2c_driver(mt9m001_i2c_driver);
MODULE_DESCRIPTION("Micron MT9M001 Camera driver");
MODULE_AUTHOR("Guennadi Liakhovetski <kernel@pengutronix.de>");
MODULE_LICENSE("GPL v2");