linux-sg2042/arch/arm64/crypto/aes-glue.c

845 lines
22 KiB
C

/*
* linux/arch/arm64/crypto/aes-glue.c - wrapper code for ARMv8 AES
*
* Copyright (C) 2013 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <asm/neon.h>
#include <asm/hwcap.h>
#include <asm/simd.h>
#include <crypto/aes.h>
#include <crypto/internal/hash.h>
#include <crypto/internal/simd.h>
#include <crypto/internal/skcipher.h>
#include <crypto/scatterwalk.h>
#include <linux/module.h>
#include <linux/cpufeature.h>
#include <crypto/xts.h>
#include "aes-ce-setkey.h"
#include "aes-ctr-fallback.h"
#ifdef USE_V8_CRYPTO_EXTENSIONS
#define MODE "ce"
#define PRIO 300
#define aes_setkey ce_aes_setkey
#define aes_expandkey ce_aes_expandkey
#define aes_ecb_encrypt ce_aes_ecb_encrypt
#define aes_ecb_decrypt ce_aes_ecb_decrypt
#define aes_cbc_encrypt ce_aes_cbc_encrypt
#define aes_cbc_decrypt ce_aes_cbc_decrypt
#define aes_cbc_cts_encrypt ce_aes_cbc_cts_encrypt
#define aes_cbc_cts_decrypt ce_aes_cbc_cts_decrypt
#define aes_ctr_encrypt ce_aes_ctr_encrypt
#define aes_xts_encrypt ce_aes_xts_encrypt
#define aes_xts_decrypt ce_aes_xts_decrypt
#define aes_mac_update ce_aes_mac_update
MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 Crypto Extensions");
#else
#define MODE "neon"
#define PRIO 200
#define aes_setkey crypto_aes_set_key
#define aes_expandkey crypto_aes_expand_key
#define aes_ecb_encrypt neon_aes_ecb_encrypt
#define aes_ecb_decrypt neon_aes_ecb_decrypt
#define aes_cbc_encrypt neon_aes_cbc_encrypt
#define aes_cbc_decrypt neon_aes_cbc_decrypt
#define aes_cbc_cts_encrypt neon_aes_cbc_cts_encrypt
#define aes_cbc_cts_decrypt neon_aes_cbc_cts_decrypt
#define aes_ctr_encrypt neon_aes_ctr_encrypt
#define aes_xts_encrypt neon_aes_xts_encrypt
#define aes_xts_decrypt neon_aes_xts_decrypt
#define aes_mac_update neon_aes_mac_update
MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 NEON");
MODULE_ALIAS_CRYPTO("ecb(aes)");
MODULE_ALIAS_CRYPTO("cbc(aes)");
MODULE_ALIAS_CRYPTO("ctr(aes)");
MODULE_ALIAS_CRYPTO("xts(aes)");
MODULE_ALIAS_CRYPTO("cmac(aes)");
MODULE_ALIAS_CRYPTO("xcbc(aes)");
MODULE_ALIAS_CRYPTO("cbcmac(aes)");
#endif
MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
MODULE_LICENSE("GPL v2");
/* defined in aes-modes.S */
asmlinkage void aes_ecb_encrypt(u8 out[], u8 const in[], u32 const rk[],
int rounds, int blocks);
asmlinkage void aes_ecb_decrypt(u8 out[], u8 const in[], u32 const rk[],
int rounds, int blocks);
asmlinkage void aes_cbc_encrypt(u8 out[], u8 const in[], u32 const rk[],
int rounds, int blocks, u8 iv[]);
asmlinkage void aes_cbc_decrypt(u8 out[], u8 const in[], u32 const rk[],
int rounds, int blocks, u8 iv[]);
asmlinkage void aes_cbc_cts_encrypt(u8 out[], u8 const in[], u32 const rk[],
int rounds, int bytes, u8 const iv[]);
asmlinkage void aes_cbc_cts_decrypt(u8 out[], u8 const in[], u32 const rk[],
int rounds, int bytes, u8 const iv[]);
asmlinkage void aes_ctr_encrypt(u8 out[], u8 const in[], u32 const rk[],
int rounds, int blocks, u8 ctr[]);
asmlinkage void aes_xts_encrypt(u8 out[], u8 const in[], u32 const rk1[],
int rounds, int blocks, u32 const rk2[], u8 iv[],
int first);
asmlinkage void aes_xts_decrypt(u8 out[], u8 const in[], u32 const rk1[],
int rounds, int blocks, u32 const rk2[], u8 iv[],
int first);
asmlinkage void aes_mac_update(u8 const in[], u32 const rk[], int rounds,
int blocks, u8 dg[], int enc_before,
int enc_after);
struct cts_cbc_req_ctx {
struct scatterlist sg_src[2];
struct scatterlist sg_dst[2];
struct skcipher_request subreq;
};
struct crypto_aes_xts_ctx {
struct crypto_aes_ctx key1;
struct crypto_aes_ctx __aligned(8) key2;
};
struct mac_tfm_ctx {
struct crypto_aes_ctx key;
u8 __aligned(8) consts[];
};
struct mac_desc_ctx {
unsigned int len;
u8 dg[AES_BLOCK_SIZE];
};
static int skcipher_aes_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
unsigned int key_len)
{
return aes_setkey(crypto_skcipher_tfm(tfm), in_key, key_len);
}
static int xts_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
unsigned int key_len)
{
struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
int ret;
ret = xts_verify_key(tfm, in_key, key_len);
if (ret)
return ret;
ret = aes_expandkey(&ctx->key1, in_key, key_len / 2);
if (!ret)
ret = aes_expandkey(&ctx->key2, &in_key[key_len / 2],
key_len / 2);
if (!ret)
return 0;
crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
static int ecb_encrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
int err, rounds = 6 + ctx->key_length / 4;
struct skcipher_walk walk;
unsigned int blocks;
err = skcipher_walk_virt(&walk, req, false);
while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
kernel_neon_begin();
aes_ecb_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
ctx->key_enc, rounds, blocks);
kernel_neon_end();
err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
}
return err;
}
static int ecb_decrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
int err, rounds = 6 + ctx->key_length / 4;
struct skcipher_walk walk;
unsigned int blocks;
err = skcipher_walk_virt(&walk, req, false);
while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
kernel_neon_begin();
aes_ecb_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
ctx->key_dec, rounds, blocks);
kernel_neon_end();
err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
}
return err;
}
static int cbc_encrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
int err, rounds = 6 + ctx->key_length / 4;
struct skcipher_walk walk;
unsigned int blocks;
err = skcipher_walk_virt(&walk, req, false);
while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
kernel_neon_begin();
aes_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
ctx->key_enc, rounds, blocks, walk.iv);
kernel_neon_end();
err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
}
return err;
}
static int cbc_decrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
int err, rounds = 6 + ctx->key_length / 4;
struct skcipher_walk walk;
unsigned int blocks;
err = skcipher_walk_virt(&walk, req, false);
while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
kernel_neon_begin();
aes_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
ctx->key_dec, rounds, blocks, walk.iv);
kernel_neon_end();
err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
}
return err;
}
static int cts_cbc_init_tfm(struct crypto_skcipher *tfm)
{
crypto_skcipher_set_reqsize(tfm, sizeof(struct cts_cbc_req_ctx));
return 0;
}
static int cts_cbc_encrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
struct cts_cbc_req_ctx *rctx = skcipher_request_ctx(req);
int err, rounds = 6 + ctx->key_length / 4;
int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
struct scatterlist *src = req->src, *dst = req->dst;
struct skcipher_walk walk;
skcipher_request_set_tfm(&rctx->subreq, tfm);
if (req->cryptlen <= AES_BLOCK_SIZE) {
if (req->cryptlen < AES_BLOCK_SIZE)
return -EINVAL;
cbc_blocks = 1;
}
if (cbc_blocks > 0) {
unsigned int blocks;
skcipher_request_set_crypt(&rctx->subreq, req->src, req->dst,
cbc_blocks * AES_BLOCK_SIZE,
req->iv);
err = skcipher_walk_virt(&walk, &rctx->subreq, false);
while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
kernel_neon_begin();
aes_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
ctx->key_enc, rounds, blocks, walk.iv);
kernel_neon_end();
err = skcipher_walk_done(&walk,
walk.nbytes % AES_BLOCK_SIZE);
}
if (err)
return err;
if (req->cryptlen == AES_BLOCK_SIZE)
return 0;
dst = src = scatterwalk_ffwd(rctx->sg_src, req->src,
rctx->subreq.cryptlen);
if (req->dst != req->src)
dst = scatterwalk_ffwd(rctx->sg_dst, req->dst,
rctx->subreq.cryptlen);
}
/* handle ciphertext stealing */
skcipher_request_set_crypt(&rctx->subreq, src, dst,
req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
req->iv);
err = skcipher_walk_virt(&walk, &rctx->subreq, false);
if (err)
return err;
kernel_neon_begin();
aes_cbc_cts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
ctx->key_enc, rounds, walk.nbytes, walk.iv);
kernel_neon_end();
return skcipher_walk_done(&walk, 0);
}
static int cts_cbc_decrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
struct cts_cbc_req_ctx *rctx = skcipher_request_ctx(req);
int err, rounds = 6 + ctx->key_length / 4;
int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
struct scatterlist *src = req->src, *dst = req->dst;
struct skcipher_walk walk;
skcipher_request_set_tfm(&rctx->subreq, tfm);
if (req->cryptlen <= AES_BLOCK_SIZE) {
if (req->cryptlen < AES_BLOCK_SIZE)
return -EINVAL;
cbc_blocks = 1;
}
if (cbc_blocks > 0) {
unsigned int blocks;
skcipher_request_set_crypt(&rctx->subreq, req->src, req->dst,
cbc_blocks * AES_BLOCK_SIZE,
req->iv);
err = skcipher_walk_virt(&walk, &rctx->subreq, false);
while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
kernel_neon_begin();
aes_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
ctx->key_dec, rounds, blocks, walk.iv);
kernel_neon_end();
err = skcipher_walk_done(&walk,
walk.nbytes % AES_BLOCK_SIZE);
}
if (err)
return err;
if (req->cryptlen == AES_BLOCK_SIZE)
return 0;
dst = src = scatterwalk_ffwd(rctx->sg_src, req->src,
rctx->subreq.cryptlen);
if (req->dst != req->src)
dst = scatterwalk_ffwd(rctx->sg_dst, req->dst,
rctx->subreq.cryptlen);
}
/* handle ciphertext stealing */
skcipher_request_set_crypt(&rctx->subreq, src, dst,
req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
req->iv);
err = skcipher_walk_virt(&walk, &rctx->subreq, false);
if (err)
return err;
kernel_neon_begin();
aes_cbc_cts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
ctx->key_dec, rounds, walk.nbytes, walk.iv);
kernel_neon_end();
return skcipher_walk_done(&walk, 0);
}
static int ctr_encrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
int err, rounds = 6 + ctx->key_length / 4;
struct skcipher_walk walk;
int blocks;
err = skcipher_walk_virt(&walk, req, false);
while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
kernel_neon_begin();
aes_ctr_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
ctx->key_enc, rounds, blocks, walk.iv);
kernel_neon_end();
err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
}
if (walk.nbytes) {
u8 __aligned(8) tail[AES_BLOCK_SIZE];
unsigned int nbytes = walk.nbytes;
u8 *tdst = walk.dst.virt.addr;
u8 *tsrc = walk.src.virt.addr;
/*
* Tell aes_ctr_encrypt() to process a tail block.
*/
blocks = -1;
kernel_neon_begin();
aes_ctr_encrypt(tail, NULL, ctx->key_enc, rounds,
blocks, walk.iv);
kernel_neon_end();
crypto_xor_cpy(tdst, tsrc, tail, nbytes);
err = skcipher_walk_done(&walk, 0);
}
return err;
}
static int ctr_encrypt_sync(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
if (!may_use_simd())
return aes_ctr_encrypt_fallback(ctx, req);
return ctr_encrypt(req);
}
static int xts_encrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
int err, first, rounds = 6 + ctx->key1.key_length / 4;
struct skcipher_walk walk;
unsigned int blocks;
err = skcipher_walk_virt(&walk, req, false);
for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
kernel_neon_begin();
aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
ctx->key1.key_enc, rounds, blocks,
ctx->key2.key_enc, walk.iv, first);
kernel_neon_end();
err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
}
return err;
}
static int xts_decrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
int err, first, rounds = 6 + ctx->key1.key_length / 4;
struct skcipher_walk walk;
unsigned int blocks;
err = skcipher_walk_virt(&walk, req, false);
for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
kernel_neon_begin();
aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
ctx->key1.key_dec, rounds, blocks,
ctx->key2.key_enc, walk.iv, first);
kernel_neon_end();
err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
}
return err;
}
static struct skcipher_alg aes_algs[] = { {
.base = {
.cra_name = "__ecb(aes)",
.cra_driver_name = "__ecb-aes-" MODE,
.cra_priority = PRIO,
.cra_flags = CRYPTO_ALG_INTERNAL,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypto_aes_ctx),
.cra_module = THIS_MODULE,
},
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = skcipher_aes_setkey,
.encrypt = ecb_encrypt,
.decrypt = ecb_decrypt,
}, {
.base = {
.cra_name = "__cbc(aes)",
.cra_driver_name = "__cbc-aes-" MODE,
.cra_priority = PRIO,
.cra_flags = CRYPTO_ALG_INTERNAL,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypto_aes_ctx),
.cra_module = THIS_MODULE,
},
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = skcipher_aes_setkey,
.encrypt = cbc_encrypt,
.decrypt = cbc_decrypt,
}, {
.base = {
.cra_name = "__cts(cbc(aes))",
.cra_driver_name = "__cts-cbc-aes-" MODE,
.cra_priority = PRIO,
.cra_flags = CRYPTO_ALG_INTERNAL,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypto_aes_ctx),
.cra_module = THIS_MODULE,
},
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.walksize = 2 * AES_BLOCK_SIZE,
.setkey = skcipher_aes_setkey,
.encrypt = cts_cbc_encrypt,
.decrypt = cts_cbc_decrypt,
.init = cts_cbc_init_tfm,
}, {
.base = {
.cra_name = "__ctr(aes)",
.cra_driver_name = "__ctr-aes-" MODE,
.cra_priority = PRIO,
.cra_flags = CRYPTO_ALG_INTERNAL,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct crypto_aes_ctx),
.cra_module = THIS_MODULE,
},
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.chunksize = AES_BLOCK_SIZE,
.setkey = skcipher_aes_setkey,
.encrypt = ctr_encrypt,
.decrypt = ctr_encrypt,
}, {
.base = {
.cra_name = "ctr(aes)",
.cra_driver_name = "ctr-aes-" MODE,
.cra_priority = PRIO - 1,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct crypto_aes_ctx),
.cra_module = THIS_MODULE,
},
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.chunksize = AES_BLOCK_SIZE,
.setkey = skcipher_aes_setkey,
.encrypt = ctr_encrypt_sync,
.decrypt = ctr_encrypt_sync,
}, {
.base = {
.cra_name = "__xts(aes)",
.cra_driver_name = "__xts-aes-" MODE,
.cra_priority = PRIO,
.cra_flags = CRYPTO_ALG_INTERNAL,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypto_aes_xts_ctx),
.cra_module = THIS_MODULE,
},
.min_keysize = 2 * AES_MIN_KEY_SIZE,
.max_keysize = 2 * AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = xts_set_key,
.encrypt = xts_encrypt,
.decrypt = xts_decrypt,
} };
static int cbcmac_setkey(struct crypto_shash *tfm, const u8 *in_key,
unsigned int key_len)
{
struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
int err;
err = aes_expandkey(&ctx->key, in_key, key_len);
if (err)
crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return err;
}
static void cmac_gf128_mul_by_x(be128 *y, const be128 *x)
{
u64 a = be64_to_cpu(x->a);
u64 b = be64_to_cpu(x->b);
y->a = cpu_to_be64((a << 1) | (b >> 63));
y->b = cpu_to_be64((b << 1) ^ ((a >> 63) ? 0x87 : 0));
}
static int cmac_setkey(struct crypto_shash *tfm, const u8 *in_key,
unsigned int key_len)
{
struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
be128 *consts = (be128 *)ctx->consts;
int rounds = 6 + key_len / 4;
int err;
err = cbcmac_setkey(tfm, in_key, key_len);
if (err)
return err;
/* encrypt the zero vector */
kernel_neon_begin();
aes_ecb_encrypt(ctx->consts, (u8[AES_BLOCK_SIZE]){}, ctx->key.key_enc,
rounds, 1);
kernel_neon_end();
cmac_gf128_mul_by_x(consts, consts);
cmac_gf128_mul_by_x(consts + 1, consts);
return 0;
}
static int xcbc_setkey(struct crypto_shash *tfm, const u8 *in_key,
unsigned int key_len)
{
static u8 const ks[3][AES_BLOCK_SIZE] = {
{ [0 ... AES_BLOCK_SIZE - 1] = 0x1 },
{ [0 ... AES_BLOCK_SIZE - 1] = 0x2 },
{ [0 ... AES_BLOCK_SIZE - 1] = 0x3 },
};
struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
int rounds = 6 + key_len / 4;
u8 key[AES_BLOCK_SIZE];
int err;
err = cbcmac_setkey(tfm, in_key, key_len);
if (err)
return err;
kernel_neon_begin();
aes_ecb_encrypt(key, ks[0], ctx->key.key_enc, rounds, 1);
aes_ecb_encrypt(ctx->consts, ks[1], ctx->key.key_enc, rounds, 2);
kernel_neon_end();
return cbcmac_setkey(tfm, key, sizeof(key));
}
static int mac_init(struct shash_desc *desc)
{
struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
memset(ctx->dg, 0, AES_BLOCK_SIZE);
ctx->len = 0;
return 0;
}
static void mac_do_update(struct crypto_aes_ctx *ctx, u8 const in[], int blocks,
u8 dg[], int enc_before, int enc_after)
{
int rounds = 6 + ctx->key_length / 4;
if (may_use_simd()) {
kernel_neon_begin();
aes_mac_update(in, ctx->key_enc, rounds, blocks, dg, enc_before,
enc_after);
kernel_neon_end();
} else {
if (enc_before)
__aes_arm64_encrypt(ctx->key_enc, dg, dg, rounds);
while (blocks--) {
crypto_xor(dg, in, AES_BLOCK_SIZE);
in += AES_BLOCK_SIZE;
if (blocks || enc_after)
__aes_arm64_encrypt(ctx->key_enc, dg, dg,
rounds);
}
}
}
static int mac_update(struct shash_desc *desc, const u8 *p, unsigned int len)
{
struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
while (len > 0) {
unsigned int l;
if ((ctx->len % AES_BLOCK_SIZE) == 0 &&
(ctx->len + len) > AES_BLOCK_SIZE) {
int blocks = len / AES_BLOCK_SIZE;
len %= AES_BLOCK_SIZE;
mac_do_update(&tctx->key, p, blocks, ctx->dg,
(ctx->len != 0), (len != 0));
p += blocks * AES_BLOCK_SIZE;
if (!len) {
ctx->len = AES_BLOCK_SIZE;
break;
}
ctx->len = 0;
}
l = min(len, AES_BLOCK_SIZE - ctx->len);
if (l <= AES_BLOCK_SIZE) {
crypto_xor(ctx->dg + ctx->len, p, l);
ctx->len += l;
len -= l;
p += l;
}
}
return 0;
}
static int cbcmac_final(struct shash_desc *desc, u8 *out)
{
struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
mac_do_update(&tctx->key, NULL, 0, ctx->dg, 1, 0);
memcpy(out, ctx->dg, AES_BLOCK_SIZE);
return 0;
}
static int cmac_final(struct shash_desc *desc, u8 *out)
{
struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
u8 *consts = tctx->consts;
if (ctx->len != AES_BLOCK_SIZE) {
ctx->dg[ctx->len] ^= 0x80;
consts += AES_BLOCK_SIZE;
}
mac_do_update(&tctx->key, consts, 1, ctx->dg, 0, 1);
memcpy(out, ctx->dg, AES_BLOCK_SIZE);
return 0;
}
static struct shash_alg mac_algs[] = { {
.base.cra_name = "cmac(aes)",
.base.cra_driver_name = "cmac-aes-" MODE,
.base.cra_priority = PRIO,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct mac_tfm_ctx) +
2 * AES_BLOCK_SIZE,
.base.cra_module = THIS_MODULE,
.digestsize = AES_BLOCK_SIZE,
.init = mac_init,
.update = mac_update,
.final = cmac_final,
.setkey = cmac_setkey,
.descsize = sizeof(struct mac_desc_ctx),
}, {
.base.cra_name = "xcbc(aes)",
.base.cra_driver_name = "xcbc-aes-" MODE,
.base.cra_priority = PRIO,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct mac_tfm_ctx) +
2 * AES_BLOCK_SIZE,
.base.cra_module = THIS_MODULE,
.digestsize = AES_BLOCK_SIZE,
.init = mac_init,
.update = mac_update,
.final = cmac_final,
.setkey = xcbc_setkey,
.descsize = sizeof(struct mac_desc_ctx),
}, {
.base.cra_name = "cbcmac(aes)",
.base.cra_driver_name = "cbcmac-aes-" MODE,
.base.cra_priority = PRIO,
.base.cra_blocksize = 1,
.base.cra_ctxsize = sizeof(struct mac_tfm_ctx),
.base.cra_module = THIS_MODULE,
.digestsize = AES_BLOCK_SIZE,
.init = mac_init,
.update = mac_update,
.final = cbcmac_final,
.setkey = cbcmac_setkey,
.descsize = sizeof(struct mac_desc_ctx),
} };
static struct simd_skcipher_alg *aes_simd_algs[ARRAY_SIZE(aes_algs)];
static void aes_exit(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(aes_simd_algs); i++)
if (aes_simd_algs[i])
simd_skcipher_free(aes_simd_algs[i]);
crypto_unregister_shashes(mac_algs, ARRAY_SIZE(mac_algs));
crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
}
static int __init aes_init(void)
{
struct simd_skcipher_alg *simd;
const char *basename;
const char *algname;
const char *drvname;
int err;
int i;
err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
if (err)
return err;
err = crypto_register_shashes(mac_algs, ARRAY_SIZE(mac_algs));
if (err)
goto unregister_ciphers;
for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
if (!(aes_algs[i].base.cra_flags & CRYPTO_ALG_INTERNAL))
continue;
algname = aes_algs[i].base.cra_name + 2;
drvname = aes_algs[i].base.cra_driver_name + 2;
basename = aes_algs[i].base.cra_driver_name;
simd = simd_skcipher_create_compat(algname, drvname, basename);
err = PTR_ERR(simd);
if (IS_ERR(simd))
goto unregister_simds;
aes_simd_algs[i] = simd;
}
return 0;
unregister_simds:
aes_exit();
return err;
unregister_ciphers:
crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
return err;
}
#ifdef USE_V8_CRYPTO_EXTENSIONS
module_cpu_feature_match(AES, aes_init);
#else
module_init(aes_init);
EXPORT_SYMBOL(neon_aes_ecb_encrypt);
EXPORT_SYMBOL(neon_aes_cbc_encrypt);
#endif
module_exit(aes_exit);