linux-sg2042/drivers/net/fec.c

2029 lines
54 KiB
C

/*
* Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
* Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
*
* Right now, I am very wasteful with the buffers. I allocate memory
* pages and then divide them into 2K frame buffers. This way I know I
* have buffers large enough to hold one frame within one buffer descriptor.
* Once I get this working, I will use 64 or 128 byte CPM buffers, which
* will be much more memory efficient and will easily handle lots of
* small packets.
*
* Much better multiple PHY support by Magnus Damm.
* Copyright (c) 2000 Ericsson Radio Systems AB.
*
* Support for FEC controller of ColdFire processors.
* Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
*
* Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
* Copyright (c) 2004-2006 Macq Electronique SA.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
#include <linux/bitops.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/clk.h>
#include <linux/platform_device.h>
#include <asm/cacheflush.h>
#ifndef CONFIG_ARCH_MXC
#include <asm/coldfire.h>
#include <asm/mcfsim.h>
#endif
#include "fec.h"
#ifdef CONFIG_ARCH_MXC
#include <mach/hardware.h>
#define FEC_ALIGNMENT 0xf
#else
#define FEC_ALIGNMENT 0x3
#endif
/*
* Define the fixed address of the FEC hardware.
*/
#if defined(CONFIG_M5272)
#define HAVE_mii_link_interrupt
static unsigned char fec_mac_default[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
};
/*
* Some hardware gets it MAC address out of local flash memory.
* if this is non-zero then assume it is the address to get MAC from.
*/
#if defined(CONFIG_NETtel)
#define FEC_FLASHMAC 0xf0006006
#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
#define FEC_FLASHMAC 0xf0006000
#elif defined(CONFIG_CANCam)
#define FEC_FLASHMAC 0xf0020000
#elif defined (CONFIG_M5272C3)
#define FEC_FLASHMAC (0xffe04000 + 4)
#elif defined(CONFIG_MOD5272)
#define FEC_FLASHMAC 0xffc0406b
#else
#define FEC_FLASHMAC 0
#endif
#endif /* CONFIG_M5272 */
/* Forward declarations of some structures to support different PHYs */
typedef struct {
uint mii_data;
void (*funct)(uint mii_reg, struct net_device *dev);
} phy_cmd_t;
typedef struct {
uint id;
char *name;
const phy_cmd_t *config;
const phy_cmd_t *startup;
const phy_cmd_t *ack_int;
const phy_cmd_t *shutdown;
} phy_info_t;
/* The number of Tx and Rx buffers. These are allocated from the page
* pool. The code may assume these are power of two, so it it best
* to keep them that size.
* We don't need to allocate pages for the transmitter. We just use
* the skbuffer directly.
*/
#define FEC_ENET_RX_PAGES 8
#define FEC_ENET_RX_FRSIZE 2048
#define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
#define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
#define FEC_ENET_TX_FRSIZE 2048
#define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
#define TX_RING_SIZE 16 /* Must be power of two */
#define TX_RING_MOD_MASK 15 /* for this to work */
#if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
#error "FEC: descriptor ring size constants too large"
#endif
/* Interrupt events/masks. */
#define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
#define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
#define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
#define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
#define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
#define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
#define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
#define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
#define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
#define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
/* The FEC stores dest/src/type, data, and checksum for receive packets.
*/
#define PKT_MAXBUF_SIZE 1518
#define PKT_MINBUF_SIZE 64
#define PKT_MAXBLR_SIZE 1520
/*
* The 5270/5271/5280/5282/532x RX control register also contains maximum frame
* size bits. Other FEC hardware does not, so we need to take that into
* account when setting it.
*/
#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARCH_MXC)
#define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
#else
#define OPT_FRAME_SIZE 0
#endif
/* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
* tx_bd_base always point to the base of the buffer descriptors. The
* cur_rx and cur_tx point to the currently available buffer.
* The dirty_tx tracks the current buffer that is being sent by the
* controller. The cur_tx and dirty_tx are equal under both completely
* empty and completely full conditions. The empty/ready indicator in
* the buffer descriptor determines the actual condition.
*/
struct fec_enet_private {
/* Hardware registers of the FEC device */
void __iomem *hwp;
struct net_device *netdev;
struct clk *clk;
/* The saved address of a sent-in-place packet/buffer, for skfree(). */
unsigned char *tx_bounce[TX_RING_SIZE];
struct sk_buff* tx_skbuff[TX_RING_SIZE];
struct sk_buff* rx_skbuff[RX_RING_SIZE];
ushort skb_cur;
ushort skb_dirty;
/* CPM dual port RAM relative addresses */
dma_addr_t bd_dma;
/* Address of Rx and Tx buffers */
struct bufdesc *rx_bd_base;
struct bufdesc *tx_bd_base;
/* The next free ring entry */
struct bufdesc *cur_rx, *cur_tx;
/* The ring entries to be free()ed */
struct bufdesc *dirty_tx;
uint tx_full;
/* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
spinlock_t hw_lock;
/* hold while accessing the mii_list_t() elements */
spinlock_t mii_lock;
uint phy_id;
uint phy_id_done;
uint phy_status;
uint phy_speed;
phy_info_t const *phy;
struct work_struct phy_task;
uint sequence_done;
uint mii_phy_task_queued;
uint phy_addr;
int index;
int opened;
int link;
int old_link;
int full_duplex;
};
static void fec_enet_mii(struct net_device *dev);
static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
static void fec_enet_tx(struct net_device *dev);
static void fec_enet_rx(struct net_device *dev);
static int fec_enet_close(struct net_device *dev);
static void fec_restart(struct net_device *dev, int duplex);
static void fec_stop(struct net_device *dev);
/* MII processing. We keep this as simple as possible. Requests are
* placed on the list (if there is room). When the request is finished
* by the MII, an optional function may be called.
*/
typedef struct mii_list {
uint mii_regval;
void (*mii_func)(uint val, struct net_device *dev);
struct mii_list *mii_next;
} mii_list_t;
#define NMII 20
static mii_list_t mii_cmds[NMII];
static mii_list_t *mii_free;
static mii_list_t *mii_head;
static mii_list_t *mii_tail;
static int mii_queue(struct net_device *dev, int request,
void (*func)(uint, struct net_device *));
/* Make MII read/write commands for the FEC */
#define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
#define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
(VAL & 0xffff))
#define mk_mii_end 0
/* Transmitter timeout */
#define TX_TIMEOUT (2 * HZ)
/* Register definitions for the PHY */
#define MII_REG_CR 0 /* Control Register */
#define MII_REG_SR 1 /* Status Register */
#define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */
#define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */
#define MII_REG_ANAR 4 /* A-N Advertisement Register */
#define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */
#define MII_REG_ANER 6 /* A-N Expansion Register */
#define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */
#define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */
/* values for phy_status */
#define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
#define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
#define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
#define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
#define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
#define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
#define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
#define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
#define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
#define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
#define PHY_STAT_SPMASK 0xf000 /* mask for speed */
#define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
#define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
#define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
#define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
static int
fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
struct bufdesc *bdp;
void *bufaddr;
unsigned short status;
unsigned long flags;
if (!fep->link) {
/* Link is down or autonegotiation is in progress. */
return NETDEV_TX_BUSY;
}
spin_lock_irqsave(&fep->hw_lock, flags);
/* Fill in a Tx ring entry */
bdp = fep->cur_tx;
status = bdp->cbd_sc;
if (status & BD_ENET_TX_READY) {
/* Ooops. All transmit buffers are full. Bail out.
* This should not happen, since dev->tbusy should be set.
*/
printk("%s: tx queue full!.\n", dev->name);
spin_unlock_irqrestore(&fep->hw_lock, flags);
return NETDEV_TX_BUSY;
}
/* Clear all of the status flags */
status &= ~BD_ENET_TX_STATS;
/* Set buffer length and buffer pointer */
bufaddr = skb->data;
bdp->cbd_datlen = skb->len;
/*
* On some FEC implementations data must be aligned on
* 4-byte boundaries. Use bounce buffers to copy data
* and get it aligned. Ugh.
*/
if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
unsigned int index;
index = bdp - fep->tx_bd_base;
memcpy(fep->tx_bounce[index], (void *)skb->data, skb->len);
bufaddr = fep->tx_bounce[index];
}
/* Save skb pointer */
fep->tx_skbuff[fep->skb_cur] = skb;
dev->stats.tx_bytes += skb->len;
fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
/* Push the data cache so the CPM does not get stale memory
* data.
*/
bdp->cbd_bufaddr = dma_map_single(&dev->dev, bufaddr,
FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
/* Send it on its way. Tell FEC it's ready, interrupt when done,
* it's the last BD of the frame, and to put the CRC on the end.
*/
status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
| BD_ENET_TX_LAST | BD_ENET_TX_TC);
bdp->cbd_sc = status;
dev->trans_start = jiffies;
/* Trigger transmission start */
writel(0, fep->hwp + FEC_X_DES_ACTIVE);
/* If this was the last BD in the ring, start at the beginning again. */
if (status & BD_ENET_TX_WRAP)
bdp = fep->tx_bd_base;
else
bdp++;
if (bdp == fep->dirty_tx) {
fep->tx_full = 1;
netif_stop_queue(dev);
}
fep->cur_tx = bdp;
spin_unlock_irqrestore(&fep->hw_lock, flags);
return NETDEV_TX_OK;
}
static void
fec_timeout(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
dev->stats.tx_errors++;
fec_restart(dev, fep->full_duplex);
netif_wake_queue(dev);
}
static irqreturn_t
fec_enet_interrupt(int irq, void * dev_id)
{
struct net_device *dev = dev_id;
struct fec_enet_private *fep = netdev_priv(dev);
uint int_events;
irqreturn_t ret = IRQ_NONE;
do {
int_events = readl(fep->hwp + FEC_IEVENT);
writel(int_events, fep->hwp + FEC_IEVENT);
if (int_events & FEC_ENET_RXF) {
ret = IRQ_HANDLED;
fec_enet_rx(dev);
}
/* Transmit OK, or non-fatal error. Update the buffer
* descriptors. FEC handles all errors, we just discover
* them as part of the transmit process.
*/
if (int_events & FEC_ENET_TXF) {
ret = IRQ_HANDLED;
fec_enet_tx(dev);
}
if (int_events & FEC_ENET_MII) {
ret = IRQ_HANDLED;
fec_enet_mii(dev);
}
} while (int_events);
return ret;
}
static void
fec_enet_tx(struct net_device *dev)
{
struct fec_enet_private *fep;
struct bufdesc *bdp;
unsigned short status;
struct sk_buff *skb;
fep = netdev_priv(dev);
spin_lock(&fep->hw_lock);
bdp = fep->dirty_tx;
while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
if (bdp == fep->cur_tx && fep->tx_full == 0)
break;
dma_unmap_single(&dev->dev, bdp->cbd_bufaddr, FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
bdp->cbd_bufaddr = 0;
skb = fep->tx_skbuff[fep->skb_dirty];
/* Check for errors. */
if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
BD_ENET_TX_RL | BD_ENET_TX_UN |
BD_ENET_TX_CSL)) {
dev->stats.tx_errors++;
if (status & BD_ENET_TX_HB) /* No heartbeat */
dev->stats.tx_heartbeat_errors++;
if (status & BD_ENET_TX_LC) /* Late collision */
dev->stats.tx_window_errors++;
if (status & BD_ENET_TX_RL) /* Retrans limit */
dev->stats.tx_aborted_errors++;
if (status & BD_ENET_TX_UN) /* Underrun */
dev->stats.tx_fifo_errors++;
if (status & BD_ENET_TX_CSL) /* Carrier lost */
dev->stats.tx_carrier_errors++;
} else {
dev->stats.tx_packets++;
}
if (status & BD_ENET_TX_READY)
printk("HEY! Enet xmit interrupt and TX_READY.\n");
/* Deferred means some collisions occurred during transmit,
* but we eventually sent the packet OK.
*/
if (status & BD_ENET_TX_DEF)
dev->stats.collisions++;
/* Free the sk buffer associated with this last transmit */
dev_kfree_skb_any(skb);
fep->tx_skbuff[fep->skb_dirty] = NULL;
fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
/* Update pointer to next buffer descriptor to be transmitted */
if (status & BD_ENET_TX_WRAP)
bdp = fep->tx_bd_base;
else
bdp++;
/* Since we have freed up a buffer, the ring is no longer full
*/
if (fep->tx_full) {
fep->tx_full = 0;
if (netif_queue_stopped(dev))
netif_wake_queue(dev);
}
}
fep->dirty_tx = bdp;
spin_unlock(&fep->hw_lock);
}
/* During a receive, the cur_rx points to the current incoming buffer.
* When we update through the ring, if the next incoming buffer has
* not been given to the system, we just set the empty indicator,
* effectively tossing the packet.
*/
static void
fec_enet_rx(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
struct bufdesc *bdp;
unsigned short status;
struct sk_buff *skb;
ushort pkt_len;
__u8 *data;
#ifdef CONFIG_M532x
flush_cache_all();
#endif
spin_lock(&fep->hw_lock);
/* First, grab all of the stats for the incoming packet.
* These get messed up if we get called due to a busy condition.
*/
bdp = fep->cur_rx;
while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
/* Since we have allocated space to hold a complete frame,
* the last indicator should be set.
*/
if ((status & BD_ENET_RX_LAST) == 0)
printk("FEC ENET: rcv is not +last\n");
if (!fep->opened)
goto rx_processing_done;
/* Check for errors. */
if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
BD_ENET_RX_CR | BD_ENET_RX_OV)) {
dev->stats.rx_errors++;
if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
/* Frame too long or too short. */
dev->stats.rx_length_errors++;
}
if (status & BD_ENET_RX_NO) /* Frame alignment */
dev->stats.rx_frame_errors++;
if (status & BD_ENET_RX_CR) /* CRC Error */
dev->stats.rx_crc_errors++;
if (status & BD_ENET_RX_OV) /* FIFO overrun */
dev->stats.rx_fifo_errors++;
}
/* Report late collisions as a frame error.
* On this error, the BD is closed, but we don't know what we
* have in the buffer. So, just drop this frame on the floor.
*/
if (status & BD_ENET_RX_CL) {
dev->stats.rx_errors++;
dev->stats.rx_frame_errors++;
goto rx_processing_done;
}
/* Process the incoming frame. */
dev->stats.rx_packets++;
pkt_len = bdp->cbd_datlen;
dev->stats.rx_bytes += pkt_len;
data = (__u8*)__va(bdp->cbd_bufaddr);
dma_unmap_single(NULL, bdp->cbd_bufaddr, bdp->cbd_datlen,
DMA_FROM_DEVICE);
/* This does 16 byte alignment, exactly what we need.
* The packet length includes FCS, but we don't want to
* include that when passing upstream as it messes up
* bridging applications.
*/
skb = dev_alloc_skb(pkt_len - 4 + NET_IP_ALIGN);
if (unlikely(!skb)) {
printk("%s: Memory squeeze, dropping packet.\n",
dev->name);
dev->stats.rx_dropped++;
} else {
skb_reserve(skb, NET_IP_ALIGN);
skb_put(skb, pkt_len - 4); /* Make room */
skb_copy_to_linear_data(skb, data, pkt_len - 4);
skb->protocol = eth_type_trans(skb, dev);
netif_rx(skb);
}
bdp->cbd_bufaddr = dma_map_single(NULL, data, bdp->cbd_datlen,
DMA_FROM_DEVICE);
rx_processing_done:
/* Clear the status flags for this buffer */
status &= ~BD_ENET_RX_STATS;
/* Mark the buffer empty */
status |= BD_ENET_RX_EMPTY;
bdp->cbd_sc = status;
/* Update BD pointer to next entry */
if (status & BD_ENET_RX_WRAP)
bdp = fep->rx_bd_base;
else
bdp++;
/* Doing this here will keep the FEC running while we process
* incoming frames. On a heavily loaded network, we should be
* able to keep up at the expense of system resources.
*/
writel(0, fep->hwp + FEC_R_DES_ACTIVE);
}
fep->cur_rx = bdp;
spin_unlock(&fep->hw_lock);
}
/* called from interrupt context */
static void
fec_enet_mii(struct net_device *dev)
{
struct fec_enet_private *fep;
mii_list_t *mip;
fep = netdev_priv(dev);
spin_lock(&fep->mii_lock);
if ((mip = mii_head) == NULL) {
printk("MII and no head!\n");
goto unlock;
}
if (mip->mii_func != NULL)
(*(mip->mii_func))(readl(fep->hwp + FEC_MII_DATA), dev);
mii_head = mip->mii_next;
mip->mii_next = mii_free;
mii_free = mip;
if ((mip = mii_head) != NULL)
writel(mip->mii_regval, fep->hwp + FEC_MII_DATA);
unlock:
spin_unlock(&fep->mii_lock);
}
static int
mii_queue_unlocked(struct net_device *dev, int regval,
void (*func)(uint, struct net_device *))
{
struct fec_enet_private *fep;
mii_list_t *mip;
int retval;
/* Add PHY address to register command */
fep = netdev_priv(dev);
regval |= fep->phy_addr << 23;
retval = 0;
if ((mip = mii_free) != NULL) {
mii_free = mip->mii_next;
mip->mii_regval = regval;
mip->mii_func = func;
mip->mii_next = NULL;
if (mii_head) {
mii_tail->mii_next = mip;
mii_tail = mip;
} else {
mii_head = mii_tail = mip;
writel(regval, fep->hwp + FEC_MII_DATA);
}
} else {
retval = 1;
}
return retval;
}
static int
mii_queue(struct net_device *dev, int regval,
void (*func)(uint, struct net_device *))
{
struct fec_enet_private *fep;
unsigned long flags;
int retval;
fep = netdev_priv(dev);
spin_lock_irqsave(&fep->mii_lock, flags);
retval = mii_queue_unlocked(dev, regval, func);
spin_unlock_irqrestore(&fep->mii_lock, flags);
return retval;
}
static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
{
if(!c)
return;
for (; c->mii_data != mk_mii_end; c++)
mii_queue(dev, c->mii_data, c->funct);
}
static void mii_parse_sr(uint mii_reg, struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
volatile uint *s = &(fep->phy_status);
uint status;
status = *s & ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
if (mii_reg & 0x0004)
status |= PHY_STAT_LINK;
if (mii_reg & 0x0010)
status |= PHY_STAT_FAULT;
if (mii_reg & 0x0020)
status |= PHY_STAT_ANC;
*s = status;
}
static void mii_parse_cr(uint mii_reg, struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
volatile uint *s = &(fep->phy_status);
uint status;
status = *s & ~(PHY_CONF_ANE | PHY_CONF_LOOP);
if (mii_reg & 0x1000)
status |= PHY_CONF_ANE;
if (mii_reg & 0x4000)
status |= PHY_CONF_LOOP;
*s = status;
}
static void mii_parse_anar(uint mii_reg, struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
volatile uint *s = &(fep->phy_status);
uint status;
status = *s & ~(PHY_CONF_SPMASK);
if (mii_reg & 0x0020)
status |= PHY_CONF_10HDX;
if (mii_reg & 0x0040)
status |= PHY_CONF_10FDX;
if (mii_reg & 0x0080)
status |= PHY_CONF_100HDX;
if (mii_reg & 0x00100)
status |= PHY_CONF_100FDX;
*s = status;
}
/* ------------------------------------------------------------------------- */
/* The Level one LXT970 is used by many boards */
#define MII_LXT970_MIRROR 16 /* Mirror register */
#define MII_LXT970_IER 17 /* Interrupt Enable Register */
#define MII_LXT970_ISR 18 /* Interrupt Status Register */
#define MII_LXT970_CONFIG 19 /* Configuration Register */
#define MII_LXT970_CSR 20 /* Chip Status Register */
static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
volatile uint *s = &(fep->phy_status);
uint status;
status = *s & ~(PHY_STAT_SPMASK);
if (mii_reg & 0x0800) {
if (mii_reg & 0x1000)
status |= PHY_STAT_100FDX;
else
status |= PHY_STAT_100HDX;
} else {
if (mii_reg & 0x1000)
status |= PHY_STAT_10FDX;
else
status |= PHY_STAT_10HDX;
}
*s = status;
}
static phy_cmd_t const phy_cmd_lxt970_config[] = {
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_lxt970_startup[] = { /* enable interrupts */
{ mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_lxt970_ack_int[] = {
/* read SR and ISR to acknowledge */
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
{ mk_mii_read(MII_LXT970_ISR), NULL },
/* find out the current status */
{ mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_lxt970_shutdown[] = { /* disable interrupts */
{ mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
{ mk_mii_end, }
};
static phy_info_t const phy_info_lxt970 = {
.id = 0x07810000,
.name = "LXT970",
.config = phy_cmd_lxt970_config,
.startup = phy_cmd_lxt970_startup,
.ack_int = phy_cmd_lxt970_ack_int,
.shutdown = phy_cmd_lxt970_shutdown
};
/* ------------------------------------------------------------------------- */
/* The Level one LXT971 is used on some of my custom boards */
/* register definitions for the 971 */
#define MII_LXT971_PCR 16 /* Port Control Register */
#define MII_LXT971_SR2 17 /* Status Register 2 */
#define MII_LXT971_IER 18 /* Interrupt Enable Register */
#define MII_LXT971_ISR 19 /* Interrupt Status Register */
#define MII_LXT971_LCR 20 /* LED Control Register */
#define MII_LXT971_TCR 30 /* Transmit Control Register */
/*
* I had some nice ideas of running the MDIO faster...
* The 971 should support 8MHz and I tried it, but things acted really
* weird, so 2.5 MHz ought to be enough for anyone...
*/
static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
volatile uint *s = &(fep->phy_status);
uint status;
status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
if (mii_reg & 0x0400) {
fep->link = 1;
status |= PHY_STAT_LINK;
} else {
fep->link = 0;
}
if (mii_reg & 0x0080)
status |= PHY_STAT_ANC;
if (mii_reg & 0x4000) {
if (mii_reg & 0x0200)
status |= PHY_STAT_100FDX;
else
status |= PHY_STAT_100HDX;
} else {
if (mii_reg & 0x0200)
status |= PHY_STAT_10FDX;
else
status |= PHY_STAT_10HDX;
}
if (mii_reg & 0x0008)
status |= PHY_STAT_FAULT;
*s = status;
}
static phy_cmd_t const phy_cmd_lxt971_config[] = {
/* limit to 10MBit because my prototype board
* doesn't work with 100. */
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
{ mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_lxt971_startup[] = { /* enable interrupts */
{ mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
{ mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */
/* Somehow does the 971 tell me that the link is down
* the first read after power-up.
* read here to get a valid value in ack_int */
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_lxt971_ack_int[] = {
/* acknowledge the int before reading status ! */
{ mk_mii_read(MII_LXT971_ISR), NULL },
/* find out the current status */
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
{ mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_lxt971_shutdown[] = { /* disable interrupts */
{ mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
{ mk_mii_end, }
};
static phy_info_t const phy_info_lxt971 = {
.id = 0x0001378e,
.name = "LXT971",
.config = phy_cmd_lxt971_config,
.startup = phy_cmd_lxt971_startup,
.ack_int = phy_cmd_lxt971_ack_int,
.shutdown = phy_cmd_lxt971_shutdown
};
/* ------------------------------------------------------------------------- */
/* The Quality Semiconductor QS6612 is used on the RPX CLLF */
/* register definitions */
#define MII_QS6612_MCR 17 /* Mode Control Register */
#define MII_QS6612_FTR 27 /* Factory Test Register */
#define MII_QS6612_MCO 28 /* Misc. Control Register */
#define MII_QS6612_ISR 29 /* Interrupt Source Register */
#define MII_QS6612_IMR 30 /* Interrupt Mask Register */
#define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
volatile uint *s = &(fep->phy_status);
uint status;
status = *s & ~(PHY_STAT_SPMASK);
switch((mii_reg >> 2) & 7) {
case 1: status |= PHY_STAT_10HDX; break;
case 2: status |= PHY_STAT_100HDX; break;
case 5: status |= PHY_STAT_10FDX; break;
case 6: status |= PHY_STAT_100FDX; break;
}
*s = status;
}
static phy_cmd_t const phy_cmd_qs6612_config[] = {
/* The PHY powers up isolated on the RPX,
* so send a command to allow operation.
*/
{ mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
/* parse cr and anar to get some info */
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_qs6612_startup[] = { /* enable interrupts */
{ mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_qs6612_ack_int[] = {
/* we need to read ISR, SR and ANER to acknowledge */
{ mk_mii_read(MII_QS6612_ISR), NULL },
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
{ mk_mii_read(MII_REG_ANER), NULL },
/* read pcr to get info */
{ mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_qs6612_shutdown[] = { /* disable interrupts */
{ mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
{ mk_mii_end, }
};
static phy_info_t const phy_info_qs6612 = {
.id = 0x00181440,
.name = "QS6612",
.config = phy_cmd_qs6612_config,
.startup = phy_cmd_qs6612_startup,
.ack_int = phy_cmd_qs6612_ack_int,
.shutdown = phy_cmd_qs6612_shutdown
};
/* ------------------------------------------------------------------------- */
/* AMD AM79C874 phy */
/* register definitions for the 874 */
#define MII_AM79C874_MFR 16 /* Miscellaneous Feature Register */
#define MII_AM79C874_ICSR 17 /* Interrupt/Status Register */
#define MII_AM79C874_DR 18 /* Diagnostic Register */
#define MII_AM79C874_PMLR 19 /* Power and Loopback Register */
#define MII_AM79C874_MCR 21 /* ModeControl Register */
#define MII_AM79C874_DC 23 /* Disconnect Counter */
#define MII_AM79C874_REC 24 /* Recieve Error Counter */
static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
volatile uint *s = &(fep->phy_status);
uint status;
status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_ANC);
if (mii_reg & 0x0080)
status |= PHY_STAT_ANC;
if (mii_reg & 0x0400)
status |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX);
else
status |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX);
*s = status;
}
static phy_cmd_t const phy_cmd_am79c874_config[] = {
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
{ mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_am79c874_startup[] = { /* enable interrupts */
{ mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_am79c874_ack_int[] = {
/* find out the current status */
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
{ mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
/* we only need to read ISR to acknowledge */
{ mk_mii_read(MII_AM79C874_ICSR), NULL },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_am79c874_shutdown[] = { /* disable interrupts */
{ mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
{ mk_mii_end, }
};
static phy_info_t const phy_info_am79c874 = {
.id = 0x00022561,
.name = "AM79C874",
.config = phy_cmd_am79c874_config,
.startup = phy_cmd_am79c874_startup,
.ack_int = phy_cmd_am79c874_ack_int,
.shutdown = phy_cmd_am79c874_shutdown
};
/* ------------------------------------------------------------------------- */
/* Kendin KS8721BL phy */
/* register definitions for the 8721 */
#define MII_KS8721BL_RXERCR 21
#define MII_KS8721BL_ICSR 27
#define MII_KS8721BL_PHYCR 31
static phy_cmd_t const phy_cmd_ks8721bl_config[] = {
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_ks8721bl_startup[] = { /* enable interrupts */
{ mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL },
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_ks8721bl_ack_int[] = {
/* find out the current status */
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
/* we only need to read ISR to acknowledge */
{ mk_mii_read(MII_KS8721BL_ICSR), NULL },
{ mk_mii_end, }
};
static phy_cmd_t const phy_cmd_ks8721bl_shutdown[] = { /* disable interrupts */
{ mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL },
{ mk_mii_end, }
};
static phy_info_t const phy_info_ks8721bl = {
.id = 0x00022161,
.name = "KS8721BL",
.config = phy_cmd_ks8721bl_config,
.startup = phy_cmd_ks8721bl_startup,
.ack_int = phy_cmd_ks8721bl_ack_int,
.shutdown = phy_cmd_ks8721bl_shutdown
};
/* ------------------------------------------------------------------------- */
/* register definitions for the DP83848 */
#define MII_DP8384X_PHYSTST 16 /* PHY Status Register */
static void mii_parse_dp8384x_sr2(uint mii_reg, struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
volatile uint *s = &(fep->phy_status);
*s &= ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
/* Link up */
if (mii_reg & 0x0001) {
fep->link = 1;
*s |= PHY_STAT_LINK;
} else
fep->link = 0;
/* Status of link */
if (mii_reg & 0x0010) /* Autonegotioation complete */
*s |= PHY_STAT_ANC;
if (mii_reg & 0x0002) { /* 10MBps? */
if (mii_reg & 0x0004) /* Full Duplex? */
*s |= PHY_STAT_10FDX;
else
*s |= PHY_STAT_10HDX;
} else { /* 100 Mbps? */
if (mii_reg & 0x0004) /* Full Duplex? */
*s |= PHY_STAT_100FDX;
else
*s |= PHY_STAT_100HDX;
}
if (mii_reg & 0x0008)
*s |= PHY_STAT_FAULT;
}
static phy_info_t phy_info_dp83848= {
0x020005c9,
"DP83848",
(const phy_cmd_t []) { /* config */
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
{ mk_mii_read(MII_DP8384X_PHYSTST), mii_parse_dp8384x_sr2 },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* startup - enable interrupts */
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* ack_int - never happens, no interrupt */
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* shutdown */
{ mk_mii_end, }
},
};
static phy_info_t phy_info_lan8700 = {
0x0007C0C,
"LAN8700",
(const phy_cmd_t []) { /* config */
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* startup */
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* act_int */
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* shutdown */
{ mk_mii_end, }
},
};
/* ------------------------------------------------------------------------- */
static phy_info_t const * const phy_info[] = {
&phy_info_lxt970,
&phy_info_lxt971,
&phy_info_qs6612,
&phy_info_am79c874,
&phy_info_ks8721bl,
&phy_info_dp83848,
&phy_info_lan8700,
NULL
};
/* ------------------------------------------------------------------------- */
#ifdef HAVE_mii_link_interrupt
static irqreturn_t
mii_link_interrupt(int irq, void * dev_id);
/*
* This is specific to the MII interrupt setup of the M5272EVB.
*/
static void __inline__ fec_request_mii_intr(struct net_device *dev)
{
if (request_irq(66, mii_link_interrupt, IRQF_DISABLED, "fec(MII)", dev) != 0)
printk("FEC: Could not allocate fec(MII) IRQ(66)!\n");
}
static void __inline__ fec_disable_phy_intr(struct net_device *dev)
{
free_irq(66, dev);
}
#endif
#ifdef CONFIG_M5272
static void __inline__ fec_get_mac(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
unsigned char *iap, tmpaddr[ETH_ALEN];
if (FEC_FLASHMAC) {
/*
* Get MAC address from FLASH.
* If it is all 1's or 0's, use the default.
*/
iap = (unsigned char *)FEC_FLASHMAC;
if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
(iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
iap = fec_mac_default;
if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
(iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
iap = fec_mac_default;
} else {
*((unsigned long *) &tmpaddr[0]) = readl(fep->hwp + FEC_ADDR_LOW);
*((unsigned short *) &tmpaddr[4]) = (readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
iap = &tmpaddr[0];
}
memcpy(dev->dev_addr, iap, ETH_ALEN);
/* Adjust MAC if using default MAC address */
if (iap == fec_mac_default)
dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
}
#endif
/* ------------------------------------------------------------------------- */
static void mii_display_status(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
volatile uint *s = &(fep->phy_status);
if (!fep->link && !fep->old_link) {
/* Link is still down - don't print anything */
return;
}
printk("%s: status: ", dev->name);
if (!fep->link) {
printk("link down");
} else {
printk("link up");
switch(*s & PHY_STAT_SPMASK) {
case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break;
case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break;
case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break;
case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break;
default:
printk(", Unknown speed/duplex");
}
if (*s & PHY_STAT_ANC)
printk(", auto-negotiation complete");
}
if (*s & PHY_STAT_FAULT)
printk(", remote fault");
printk(".\n");
}
static void mii_display_config(struct work_struct *work)
{
struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
struct net_device *dev = fep->netdev;
uint status = fep->phy_status;
/*
** When we get here, phy_task is already removed from
** the workqueue. It is thus safe to allow to reuse it.
*/
fep->mii_phy_task_queued = 0;
printk("%s: config: auto-negotiation ", dev->name);
if (status & PHY_CONF_ANE)
printk("on");
else
printk("off");
if (status & PHY_CONF_100FDX)
printk(", 100FDX");
if (status & PHY_CONF_100HDX)
printk(", 100HDX");
if (status & PHY_CONF_10FDX)
printk(", 10FDX");
if (status & PHY_CONF_10HDX)
printk(", 10HDX");
if (!(status & PHY_CONF_SPMASK))
printk(", No speed/duplex selected?");
if (status & PHY_CONF_LOOP)
printk(", loopback enabled");
printk(".\n");
fep->sequence_done = 1;
}
static void mii_relink(struct work_struct *work)
{
struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
struct net_device *dev = fep->netdev;
int duplex;
/*
** When we get here, phy_task is already removed from
** the workqueue. It is thus safe to allow to reuse it.
*/
fep->mii_phy_task_queued = 0;
fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
mii_display_status(dev);
fep->old_link = fep->link;
if (fep->link) {
duplex = 0;
if (fep->phy_status
& (PHY_STAT_100FDX | PHY_STAT_10FDX))
duplex = 1;
fec_restart(dev, duplex);
} else
fec_stop(dev);
}
/* mii_queue_relink is called in interrupt context from mii_link_interrupt */
static void mii_queue_relink(uint mii_reg, struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
/*
* We cannot queue phy_task twice in the workqueue. It
* would cause an endless loop in the workqueue.
* Fortunately, if the last mii_relink entry has not yet been
* executed now, it will do the job for the current interrupt,
* which is just what we want.
*/
if (fep->mii_phy_task_queued)
return;
fep->mii_phy_task_queued = 1;
INIT_WORK(&fep->phy_task, mii_relink);
schedule_work(&fep->phy_task);
}
/* mii_queue_config is called in interrupt context from fec_enet_mii */
static void mii_queue_config(uint mii_reg, struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
if (fep->mii_phy_task_queued)
return;
fep->mii_phy_task_queued = 1;
INIT_WORK(&fep->phy_task, mii_display_config);
schedule_work(&fep->phy_task);
}
phy_cmd_t const phy_cmd_relink[] = {
{ mk_mii_read(MII_REG_CR), mii_queue_relink },
{ mk_mii_end, }
};
phy_cmd_t const phy_cmd_config[] = {
{ mk_mii_read(MII_REG_CR), mii_queue_config },
{ mk_mii_end, }
};
/* Read remainder of PHY ID. */
static void
mii_discover_phy3(uint mii_reg, struct net_device *dev)
{
struct fec_enet_private *fep;
int i;
fep = netdev_priv(dev);
fep->phy_id |= (mii_reg & 0xffff);
printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id);
for(i = 0; phy_info[i]; i++) {
if(phy_info[i]->id == (fep->phy_id >> 4))
break;
}
if (phy_info[i])
printk(" -- %s\n", phy_info[i]->name);
else
printk(" -- unknown PHY!\n");
fep->phy = phy_info[i];
fep->phy_id_done = 1;
}
/* Scan all of the MII PHY addresses looking for someone to respond
* with a valid ID. This usually happens quickly.
*/
static void
mii_discover_phy(uint mii_reg, struct net_device *dev)
{
struct fec_enet_private *fep;
uint phytype;
fep = netdev_priv(dev);
if (fep->phy_addr < 32) {
if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) {
/* Got first part of ID, now get remainder */
fep->phy_id = phytype << 16;
mii_queue_unlocked(dev, mk_mii_read(MII_REG_PHYIR2),
mii_discover_phy3);
} else {
fep->phy_addr++;
mii_queue_unlocked(dev, mk_mii_read(MII_REG_PHYIR1),
mii_discover_phy);
}
} else {
printk("FEC: No PHY device found.\n");
/* Disable external MII interface */
writel(0, fep->hwp + FEC_MII_SPEED);
fep->phy_speed = 0;
#ifdef HAVE_mii_link_interrupt
fec_disable_phy_intr(dev);
#endif
}
}
/* This interrupt occurs when the PHY detects a link change */
#ifdef HAVE_mii_link_interrupt
static irqreturn_t
mii_link_interrupt(int irq, void * dev_id)
{
struct net_device *dev = dev_id;
struct fec_enet_private *fep = netdev_priv(dev);
mii_do_cmd(dev, fep->phy->ack_int);
mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */
return IRQ_HANDLED;
}
#endif
static void fec_enet_free_buffers(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
int i;
struct sk_buff *skb;
struct bufdesc *bdp;
bdp = fep->rx_bd_base;
for (i = 0; i < RX_RING_SIZE; i++) {
skb = fep->rx_skbuff[i];
if (bdp->cbd_bufaddr)
dma_unmap_single(&dev->dev, bdp->cbd_bufaddr,
FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
if (skb)
dev_kfree_skb(skb);
bdp++;
}
bdp = fep->tx_bd_base;
for (i = 0; i < TX_RING_SIZE; i++)
kfree(fep->tx_bounce[i]);
}
static int fec_enet_alloc_buffers(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
int i;
struct sk_buff *skb;
struct bufdesc *bdp;
bdp = fep->rx_bd_base;
for (i = 0; i < RX_RING_SIZE; i++) {
skb = dev_alloc_skb(FEC_ENET_RX_FRSIZE);
if (!skb) {
fec_enet_free_buffers(dev);
return -ENOMEM;
}
fep->rx_skbuff[i] = skb;
bdp->cbd_bufaddr = dma_map_single(&dev->dev, skb->data,
FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
bdp->cbd_sc = BD_ENET_RX_EMPTY;
bdp++;
}
/* Set the last buffer to wrap. */
bdp--;
bdp->cbd_sc |= BD_SC_WRAP;
bdp = fep->tx_bd_base;
for (i = 0; i < TX_RING_SIZE; i++) {
fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
bdp->cbd_sc = 0;
bdp->cbd_bufaddr = 0;
bdp++;
}
/* Set the last buffer to wrap. */
bdp--;
bdp->cbd_sc |= BD_SC_WRAP;
return 0;
}
static int
fec_enet_open(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
int ret;
/* I should reset the ring buffers here, but I don't yet know
* a simple way to do that.
*/
ret = fec_enet_alloc_buffers(dev);
if (ret)
return ret;
fep->sequence_done = 0;
fep->link = 0;
fec_restart(dev, 1);
if (fep->phy) {
mii_do_cmd(dev, fep->phy->ack_int);
mii_do_cmd(dev, fep->phy->config);
mii_do_cmd(dev, phy_cmd_config); /* display configuration */
/* Poll until the PHY tells us its configuration
* (not link state).
* Request is initiated by mii_do_cmd above, but answer
* comes by interrupt.
* This should take about 25 usec per register at 2.5 MHz,
* and we read approximately 5 registers.
*/
while(!fep->sequence_done)
schedule();
mii_do_cmd(dev, fep->phy->startup);
}
/* Set the initial link state to true. A lot of hardware
* based on this device does not implement a PHY interrupt,
* so we are never notified of link change.
*/
fep->link = 1;
netif_start_queue(dev);
fep->opened = 1;
return 0;
}
static int
fec_enet_close(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
/* Don't know what to do yet. */
fep->opened = 0;
netif_stop_queue(dev);
fec_stop(dev);
fec_enet_free_buffers(dev);
return 0;
}
/* Set or clear the multicast filter for this adaptor.
* Skeleton taken from sunlance driver.
* The CPM Ethernet implementation allows Multicast as well as individual
* MAC address filtering. Some of the drivers check to make sure it is
* a group multicast address, and discard those that are not. I guess I
* will do the same for now, but just remove the test if you want
* individual filtering as well (do the upper net layers want or support
* this kind of feature?).
*/
#define HASH_BITS 6 /* #bits in hash */
#define CRC32_POLY 0xEDB88320
static void set_multicast_list(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
struct dev_mc_list *dmi;
unsigned int i, bit, data, crc, tmp;
unsigned char hash;
if (dev->flags & IFF_PROMISC) {
tmp = readl(fep->hwp + FEC_R_CNTRL);
tmp |= 0x8;
writel(tmp, fep->hwp + FEC_R_CNTRL);
return;
}
tmp = readl(fep->hwp + FEC_R_CNTRL);
tmp &= ~0x8;
writel(tmp, fep->hwp + FEC_R_CNTRL);
if (dev->flags & IFF_ALLMULTI) {
/* Catch all multicast addresses, so set the
* filter to all 1's
*/
writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
return;
}
/* Clear filter and add the addresses in hash register
*/
writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
netdev_for_each_mc_addr(dmi, dev) {
/* Only support group multicast for now */
if (!(dmi->dmi_addr[0] & 1))
continue;
/* calculate crc32 value of mac address */
crc = 0xffffffff;
for (i = 0; i < dmi->dmi_addrlen; i++) {
data = dmi->dmi_addr[i];
for (bit = 0; bit < 8; bit++, data >>= 1) {
crc = (crc >> 1) ^
(((crc ^ data) & 1) ? CRC32_POLY : 0);
}
}
/* only upper 6 bits (HASH_BITS) are used
* which point to specific bit in he hash registers
*/
hash = (crc >> (32 - HASH_BITS)) & 0x3f;
if (hash > 31) {
tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
tmp |= 1 << (hash - 32);
writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
} else {
tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
tmp |= 1 << hash;
writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
}
}
}
/* Set a MAC change in hardware. */
static int
fec_set_mac_address(struct net_device *dev, void *p)
{
struct fec_enet_private *fep = netdev_priv(dev);
struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
writel(dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
(dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24),
fep->hwp + FEC_ADDR_LOW);
writel((dev->dev_addr[5] << 16) | (dev->dev_addr[4] << 24),
fep + FEC_ADDR_HIGH);
return 0;
}
static const struct net_device_ops fec_netdev_ops = {
.ndo_open = fec_enet_open,
.ndo_stop = fec_enet_close,
.ndo_start_xmit = fec_enet_start_xmit,
.ndo_set_multicast_list = set_multicast_list,
.ndo_change_mtu = eth_change_mtu,
.ndo_validate_addr = eth_validate_addr,
.ndo_tx_timeout = fec_timeout,
.ndo_set_mac_address = fec_set_mac_address,
};
/*
* XXX: We need to clean up on failure exits here.
*
* index is only used in legacy code
*/
static int fec_enet_init(struct net_device *dev, int index)
{
struct fec_enet_private *fep = netdev_priv(dev);
struct bufdesc *cbd_base;
struct bufdesc *bdp;
int i;
/* Allocate memory for buffer descriptors. */
cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
GFP_KERNEL);
if (!cbd_base) {
printk("FEC: allocate descriptor memory failed?\n");
return -ENOMEM;
}
spin_lock_init(&fep->hw_lock);
spin_lock_init(&fep->mii_lock);
fep->index = index;
fep->hwp = (void __iomem *)dev->base_addr;
fep->netdev = dev;
/* Set the Ethernet address */
#ifdef CONFIG_M5272
fec_get_mac(dev);
#else
{
unsigned long l;
l = readl(fep->hwp + FEC_ADDR_LOW);
dev->dev_addr[0] = (unsigned char)((l & 0xFF000000) >> 24);
dev->dev_addr[1] = (unsigned char)((l & 0x00FF0000) >> 16);
dev->dev_addr[2] = (unsigned char)((l & 0x0000FF00) >> 8);
dev->dev_addr[3] = (unsigned char)((l & 0x000000FF) >> 0);
l = readl(fep->hwp + FEC_ADDR_HIGH);
dev->dev_addr[4] = (unsigned char)((l & 0xFF000000) >> 24);
dev->dev_addr[5] = (unsigned char)((l & 0x00FF0000) >> 16);
}
#endif
/* Set receive and transmit descriptor base. */
fep->rx_bd_base = cbd_base;
fep->tx_bd_base = cbd_base + RX_RING_SIZE;
#ifdef HAVE_mii_link_interrupt
fec_request_mii_intr(dev);
#endif
/* The FEC Ethernet specific entries in the device structure */
dev->watchdog_timeo = TX_TIMEOUT;
dev->netdev_ops = &fec_netdev_ops;
for (i=0; i<NMII-1; i++)
mii_cmds[i].mii_next = &mii_cmds[i+1];
mii_free = mii_cmds;
/* Set MII speed to 2.5 MHz */
fep->phy_speed = ((((clk_get_rate(fep->clk) / 2 + 4999999)
/ 2500000) / 2) & 0x3F) << 1;
/* Initialize the receive buffer descriptors. */
bdp = fep->rx_bd_base;
for (i = 0; i < RX_RING_SIZE; i++) {
/* Initialize the BD for every fragment in the page. */
bdp->cbd_sc = 0;
bdp++;
}
/* Set the last buffer to wrap */
bdp--;
bdp->cbd_sc |= BD_SC_WRAP;
/* ...and the same for transmit */
bdp = fep->tx_bd_base;
for (i = 0; i < TX_RING_SIZE; i++) {
/* Initialize the BD for every fragment in the page. */
bdp->cbd_sc = 0;
bdp->cbd_bufaddr = 0;
bdp++;
}
/* Set the last buffer to wrap */
bdp--;
bdp->cbd_sc |= BD_SC_WRAP;
fec_restart(dev, 0);
/* Queue up command to detect the PHY and initialize the
* remainder of the interface.
*/
fep->phy_id_done = 0;
fep->phy_addr = 0;
mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);
return 0;
}
/* This function is called to start or restart the FEC during a link
* change. This only happens when switching between half and full
* duplex.
*/
static void
fec_restart(struct net_device *dev, int duplex)
{
struct fec_enet_private *fep = netdev_priv(dev);
int i;
/* Whack a reset. We should wait for this. */
writel(1, fep->hwp + FEC_ECNTRL);
udelay(10);
/* Clear any outstanding interrupt. */
writel(0xffc00000, fep->hwp + FEC_IEVENT);
/* Reset all multicast. */
writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
#ifndef CONFIG_M5272
writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
#endif
/* Set maximum receive buffer size. */
writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
/* Set receive and transmit descriptor base. */
writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE,
fep->hwp + FEC_X_DES_START);
fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
fep->cur_rx = fep->rx_bd_base;
/* Reset SKB transmit buffers. */
fep->skb_cur = fep->skb_dirty = 0;
for (i = 0; i <= TX_RING_MOD_MASK; i++) {
if (fep->tx_skbuff[i]) {
dev_kfree_skb_any(fep->tx_skbuff[i]);
fep->tx_skbuff[i] = NULL;
}
}
/* Enable MII mode */
if (duplex) {
/* MII enable / FD enable */
writel(OPT_FRAME_SIZE | 0x04, fep->hwp + FEC_R_CNTRL);
writel(0x04, fep->hwp + FEC_X_CNTRL);
} else {
/* MII enable / No Rcv on Xmit */
writel(OPT_FRAME_SIZE | 0x06, fep->hwp + FEC_R_CNTRL);
writel(0x0, fep->hwp + FEC_X_CNTRL);
}
fep->full_duplex = duplex;
/* Set MII speed */
writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
/* And last, enable the transmit and receive processing */
writel(2, fep->hwp + FEC_ECNTRL);
writel(0, fep->hwp + FEC_R_DES_ACTIVE);
/* Enable interrupts we wish to service */
writel(FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII,
fep->hwp + FEC_IMASK);
}
static void
fec_stop(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
/* We cannot expect a graceful transmit stop without link !!! */
if (fep->link) {
writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
udelay(10);
if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
printk("fec_stop : Graceful transmit stop did not complete !\n");
}
/* Whack a reset. We should wait for this. */
writel(1, fep->hwp + FEC_ECNTRL);
udelay(10);
/* Clear outstanding MII command interrupts. */
writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
}
static int __devinit
fec_probe(struct platform_device *pdev)
{
struct fec_enet_private *fep;
struct net_device *ndev;
int i, irq, ret = 0;
struct resource *r;
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!r)
return -ENXIO;
r = request_mem_region(r->start, resource_size(r), pdev->name);
if (!r)
return -EBUSY;
/* Init network device */
ndev = alloc_etherdev(sizeof(struct fec_enet_private));
if (!ndev)
return -ENOMEM;
SET_NETDEV_DEV(ndev, &pdev->dev);
/* setup board info structure */
fep = netdev_priv(ndev);
memset(fep, 0, sizeof(*fep));
ndev->base_addr = (unsigned long)ioremap(r->start, resource_size(r));
if (!ndev->base_addr) {
ret = -ENOMEM;
goto failed_ioremap;
}
platform_set_drvdata(pdev, ndev);
/* This device has up to three irqs on some platforms */
for (i = 0; i < 3; i++) {
irq = platform_get_irq(pdev, i);
if (i && irq < 0)
break;
ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
if (ret) {
while (i >= 0) {
irq = platform_get_irq(pdev, i);
free_irq(irq, ndev);
i--;
}
goto failed_irq;
}
}
fep->clk = clk_get(&pdev->dev, "fec_clk");
if (IS_ERR(fep->clk)) {
ret = PTR_ERR(fep->clk);
goto failed_clk;
}
clk_enable(fep->clk);
ret = fec_enet_init(ndev, 0);
if (ret)
goto failed_init;
ret = register_netdev(ndev);
if (ret)
goto failed_register;
return 0;
failed_register:
failed_init:
clk_disable(fep->clk);
clk_put(fep->clk);
failed_clk:
for (i = 0; i < 3; i++) {
irq = platform_get_irq(pdev, i);
if (irq > 0)
free_irq(irq, ndev);
}
failed_irq:
iounmap((void __iomem *)ndev->base_addr);
failed_ioremap:
free_netdev(ndev);
return ret;
}
static int __devexit
fec_drv_remove(struct platform_device *pdev)
{
struct net_device *ndev = platform_get_drvdata(pdev);
struct fec_enet_private *fep = netdev_priv(ndev);
platform_set_drvdata(pdev, NULL);
fec_stop(ndev);
clk_disable(fep->clk);
clk_put(fep->clk);
iounmap((void __iomem *)ndev->base_addr);
unregister_netdev(ndev);
free_netdev(ndev);
return 0;
}
static int
fec_suspend(struct platform_device *dev, pm_message_t state)
{
struct net_device *ndev = platform_get_drvdata(dev);
struct fec_enet_private *fep;
if (ndev) {
fep = netdev_priv(ndev);
if (netif_running(ndev)) {
netif_device_detach(ndev);
fec_stop(ndev);
}
}
return 0;
}
static int
fec_resume(struct platform_device *dev)
{
struct net_device *ndev = platform_get_drvdata(dev);
if (ndev) {
if (netif_running(ndev)) {
fec_enet_init(ndev, 0);
netif_device_attach(ndev);
}
}
return 0;
}
static struct platform_driver fec_driver = {
.driver = {
.name = "fec",
.owner = THIS_MODULE,
},
.probe = fec_probe,
.remove = __devexit_p(fec_drv_remove),
.suspend = fec_suspend,
.resume = fec_resume,
};
static int __init
fec_enet_module_init(void)
{
printk(KERN_INFO "FEC Ethernet Driver\n");
return platform_driver_register(&fec_driver);
}
static void __exit
fec_enet_cleanup(void)
{
platform_driver_unregister(&fec_driver);
}
module_exit(fec_enet_cleanup);
module_init(fec_enet_module_init);
MODULE_LICENSE("GPL");